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Name and Synonyms

The type of deposit described in this document is referred 
to as volcanogenic massive sulfide (VMS). This terminology 
has been in use for more than 35 years (Hutchinson, 1973) and 
embraces the temporal and spatial association of sulfide miner-
alization with submarine volcanic processes. Similar terms for 
VMS deposits recorded in the literature include volcanogenic 
sulfide, volcanic massive sulfide, exhalative massive sulfide, 
volcanic-exhalative massive sulfide, submarine-exhalative 
massive sulfide, volcanic-hosted massive sulfide, volcanic-
sediment-hosted massive sulfide, volcanic-associated massive 
sulfide, and volcanophile massive sulfide deposits. In some 
earlier studies, the terms cupreous pyrite and stratabound 
pyrite deposits were used in reference to the pyrite-rich ore-
bodies hosted by ophiolitic volcanic sequences in Cyprus and 
elsewhere (Hutchinson, 1965; Gilmour, 1971; Hutchinson and 
Searle, 1971). More recently, the term polymetallic massive 
sulfide deposit has been applied by many authors to VMS 
mineralization on the modern seafloor that contains significant 
quantities of base metals (for example, Herzig and Hanning-
ton, 1995, 2000). Other commonly used names for VMS 
deposit subtypes such as Cyprus type, Besshi type, Kuroko 
type, Noranda type, and Urals type are derived from areas of 
extensive mining activities.

Brief Description

Volcanogenic massive sulfide deposits are stratabound 
concentrations of sulfide minerals precipitated from hydro-
thermal fluids in extensional seafloor environments. The term 
volcanogenic implies a genetic link between mineraliza-
tion and volcanic activity, but siliciclastic rocks dominate 
the stratigraphic assemblage in some settings. The principal 
tectonic settings for VMS deposits include mid-oceanic ridges, 
volcanic arcs (intraoceanic and continental margin), back-
arc basins, rifted continental margins, and pull-apart basins. 
The composition of volcanic rocks hosting individual sulfide 
deposits range from felsic to mafic, but bimodal mixtures are 
not uncommon. The volcanic strata consist of massive and 
pillow lavas, sheet flows, hyaloclastites, lava breccias, pyro-
clastic deposits, and volcaniclastic sediment. Deposits range 

in age from Early Archean (3.55 Ga) to Holocene; deposits are 
currently forming at numerous localities in modern oceanic 
settings.

Deposits are characterized by abundant Fe sulfides (pyrite 
or pyrrhotite) and variable but subordinate amounts of chalco-
pyrite and sphalerite; bornite, tetrahedrite, galena, barite, and 
other mineral phases are concentrated in some deposits. Mas-
sive sulfide bodies typically have lensoidal or sheetlike forms. 
Many, but not all, deposits overlie discordant sulfide-bearing 
vein systems (stringer or stockwork zones) that represent fluid 
flow conduits below the seafloor. Pervasive alteration zones 
characterized by secondary quartz and phyllosilicate minerals 
also reflect hydrothermal circulation through footwall vol-
canic rocks. A zonation of metals within the massive sulfide 
body from Fe+Cu at the base to Zn+Fe±Pb±Ba at the top and 
margins characterizes many deposits. Other features spatially 
associated with VMS deposits are exhalative (chemical) sedi-
mentary rocks, subvolcanic intrusions, and semi-conformable 
alteration zones.

Associated Deposit Types

Associations with other types of mineral deposits formed 
in submarine environments remain tentative. There is likely 
some genetic kinship among VMS deposits, Algoma-type 
iron formations (Gross, 1980, 1996; Cannon, 1986), and 
volcanogenic manganese deposits (Mosier and Page, 1988). 
Sedimentary-exhalative (SEDEX) deposits have broadly 
similar morphological features consistent with syngenetic 
formation in extensional submarine environments, but their 
interpreted paleotectonic settings (failed intracratonic rifts and 
rifted Atlantic-type continental margins), hydrothermal fluid 
characteristics (concentrated NaCl brines), absence or paucity 
of volcanic rocks, and association with shale and carbonate 
rocks distinguish them from VMS deposits (Leach and others, 
2005).

The recognition of high-sulfidation mineralization and 
advanced argillic alteration assemblages at hydrothermal dis-
charge zones in both modern and ancient submarine oceanic 
arc environments has led to the hypothesis (Sillitoe and others, 
1996; Large and others, 2001) that a transitional relationship 
exists between VMS and epithermal (Au-Ag) types of mineral 
deposits. Galley and others (2007) include epithermal-style 
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mineralization in the hybrid bimodal-felsic subtype of their 
VMS classification.

A rather enigmatic type of Co-, As-, and Cu-rich mas-
sive sulfide mineralization in serpentinized ultramafic rocks 
of some ophiolite complexes (for example, Troodos and Bou 
Azzer) has been attributed to magmatic (syn- or post-ophiolite 
emplacement) and serpentinization processes (Panayiotou, 
1980; Page, 1986; Leblanc and Fischer, 1990; Ahmed and oth-
ers, 2009). Recent discoveries at slow-rate spreading axes of 
the Mid-Atlantic Ridge reveal that high-temperature hydro-
thermal fluids are precipitating Cu-Zn-Co-rich massive sulfide 
deposits on substrates composed of serpentinized peridotite 
(for example, Rainbow vent field; Marques and others, 2007). 
Based on these modern analogs, it is suggested that Co-Cu-As 
mineralization in ultramafic rocks of ophiolites may in fact 
belong to the spectrum of VMS deposits.

Primary and Byproduct Commodities

Volcanogenic massive sulfide deposits are a major global 
source of copper, lead, zinc, gold, and silver. Figure 2–1 illus-
trates the broad ranges in combined base-metal concentrations 
(Cu+Zn+Pb) and tonnages for more than 1,000 VMS deposits 
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Figure 2–1. Grade and tonnage of volcanogenic massive sulfide deposits. Data are shown for 1,021 
deposits worldwide. U.S. deposits are shown as red dots. Data from Mosier and others (2009) (Cu, copper; 
Zn, zinc;.Pb, lead).

worldwide. Although generally present as trace constituents, 
a number of other elements are of interest as economically 
recoverable byproducts or environmental contaminants: 
arsenic, beryllium, bismuth, cadmium, cobalt, chromium, gal-
lium, germanium, mercury, indium, manganese, molybdenum, 
nickel, selenium, tin, tellurium, and platinum group metals. 

Example Deposits

Worldwide, there are nearly 1,100 recognized VMS 
deposits including more than 100 in the United States and 350 
in Canada (Galley and others, 2007; Mosier and others, 2009). 
Locations of significant VMS deposits in the United States are 
plotted on a geologic base map from the National Atlas of the 
United States in figure 2–2. Selected representatives of this 
deposit type, grouped according to their lithologic associa-
tions, are presented in table 2–1 along with inferred tectonic 
settings (modified from Franklin and others, 2005) and pos-
sible modern analogs.
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Figure 2–2. Locations of significant volcanogenic massive sulfide deposits in the United States.
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Table 2–1. Examples of deposit types with lithologic associations, inferred tectonic settings, and possible modern seafloor analogs.

Examples of 
ancient deposits

Lithologic 
associations

Inferred 
tectonic settings

Possible
 modern analogs

References

Rio Tinto (Spain); Brunswick 12 
(Canada); Stekenjokk (Sweden); 
Delta (USA); Bonnifield (USA) 

Siliciclastic-felsic Mature epicontinental margin arc 
and back arc

Ancient deposits: Tornos (2006); Goodfellow 
and others (2003); Grenne and others (1999); 
Dashevsky and others (2003); Dusel-Bacon and 
others (2004) 

Hanaoka (Japan); Eskay Creek 
(Canada); Rosebery (Australia); 
Tambo Grande (Peru); Arctic 
(USA); Jerome (USA)

Bimodal-felsic Rifted continental margin  
arc and back arc

Okinawa Trough; Woodlark 
Basin; Manus Basin

Ancient deposits: Ohmoto and Skinner (1983); Bar-
rett and Sherlock (1996); Large and others (2001); 
Steinmüller and others, 2000); Schmidt (1986); 
Gustin (1990)

Modern analogs: Binns and others (1993); Halbach 
and others (1993); Binns and Scott (1993)

Horne (Canada); Komsomolskoye 
(Russia); Bald Mountain (USA);  
Crandon (USA)

Bimodal-mafic Rifted immature  
intraoceanic arc

Kermadec Arc; Izu-Bonin  
Arc; Mariana Arc

Ancient deposits: Gibson and others (2000); Prokin 
and Buslaev (1999); Schulz and Ayuso (2003); 
Lambe and Rowe (1987)

Modern analogs: Wright and others (1998); Glasby 
and others (2000); Hannington and others (2005)

Windy Craggy (Canada);
Besshi (Japan); 
Ducktown (USA); Gossan Lead 

(USA);
Beatson (USA)

Siliciclastic-mafic Rifted continental margin; sedi-
mented oceanic ridge  
or back arc; intracontinental rift

Guaymas Basin; Escanaba 
Trough; Middle Valley;  
Red Sea

Ancient deposits: Peter and Scott (1999); Banno and 
Sakai (1989); Stephens and others (1984); Gair 
and Slack (1984); Crowe and others (1992); 

Modern analogs: Koski and others (1985);  Zieren-
berg and others (1993);  Goodfellow and Franklin 
(1993); Shanks and Bischoff (1980)

Skouriotissa (Cyprus); Lasail 
(Oman); Lokken (Norway); Betts 
Cove (Canada); Bou Azzer (Mo-
rocco); Turner-Albright (USA)

Mafic-ultramafic Intraoceanic back-arc or fore-arc 
basin; oceanic ridge 

Lau Basin; North Fiji Basin; 
Trans-Atlantic Geothermal 
(TAG) field; Rainbow vent 
field

Ancient deposits: Constantinou and Govett (1973); 
Alabaster and Grenne and others (1999); Stephens 
and others (1984); Upadhyay and Strong (1973); 
Leblanc and Fischer (1990); Zierenberg and oth-
ers (1988)

Modern analogs: Fouquet and others (1993); Kim 
and others (2006); Rona and others (1993); 
Marques and others (2007)
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