8. Hypogene Ore Characteristics

By Randolph A. Koski

Volcanogenic Massive Sulfide Occurrence Model
For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:
8. Hypogene Ore Characteristics

By Randolph A. Koski

Mineralogy

Although a detailed review of primary ore minerals in VMS deposits is beyond the scope of this report, a representative list of major, minor, and trace minerals culled from the literature is presented in table 8–1. The dominant ore mineralogy in most VMS deposits is relatively simple. In all deposit subtypes, the dominant sulfide mineral is pyrite or pyrrhotite. The next most abundant ore minerals, chalcopyrite and sphalerite, occur in variable amounts, and in a few deposits, one or the other or both occur in concentrations that exceed Fe sulfide content. The only other sulfide in the major mineral category is galena, which is concentrated in deposits associated with bimodal-felsic and siliciclastic-felsic rocks.

There are notable examples in which other ore minerals are abundant in VMS deposits. These include bornite at Kidd Creek (Hannington and others, 1999b) and Mount Lyell (Corbett, 2001); tetrahedrite, stibnite, and realgar in Au- and Ag-rich ores at Eskay Creek (Roth and others, 1999); arsenopyrite in Au-rich ore at Bolden (Weihed and others, 1996); and stannite and cassiterite in ore-grade tin mineralization at Neves Corvo and Kidd Creek (Hennigh and Hutchinson, 1999; Relvas and others, 2006). Table 8–1 includes a distinctive suite of Co- and Ni-bearing arsenides, sulfarsenides, and sulfides (for example, skutterudite, safflorite, cobaltite, löllingite, millerite, and pentlandite) that are rare in most VMS deposits, but relatively abundant in massive sulfide deposits associated with serpentinized ultramafic rocks in ophiolitic terranes of Quebec (Auclair and others, 1993), Morocco (Ahmed and others, 2009), and Cyprus (Thalhammer and others, 1986), as well as metaperidotites of the Outokumpu mining district in Finland (Peltonen and others, 2008). Potentially analogous VMS deposits associated with serpentinized ultramafic rocks on slow-spreading segments of the Mid-Atlantic Ridge (Rainbow, Logatchev) are also enriched in Co and Ni (Mozgova and others, 1999; Marques and others, 2006).

Mineral Assemblages

The mineral assemblages (and bulk chemical characteristics) of VMS deposits are directly related to the chemistry of ore-forming hydrothermal fluids that, in turn, reflect exchange reactions with wall rocks during fluid circulation. Thus, massive sulfide deposits formed in predominantly mafic rock environments are likely to have discrete mineralogical differences from deposits associated with sequences of predominantly felsic rocks. Furthermore, mineral assemblages are also influenced by fluids whose compositions are altered during passage through substantial thicknesses of arc- or continent-derived sediment. Whatever the source rocks, variations in mineralogy are often most obvious in the minor and trace mineral assemblages. A few examples are cited to illustrate variations in VMS mineral assemblages that correspond to a range of host-rock compositions.

Volcanogenic massive sulfide deposits occurring in mafic volcanic rocks are characterized by a major-mineral assemblage dominated by pyrite (much less frequently pyrrhotite or marcasite) along with variable but subordinate amounts of chalcopyrite and sphalerite (Galley and Koski, 1999). Other sulfide minerals are present in trace amounts, and more significantly, galena and base-metal sulfosalts are rare in all parts of these deposits. Deposits in siliciclastic-mafic environments have similar lead-poor mineral assemblages; however, pyrrhotite is more abundant relative to pyrite in some deposits (Slack, 1993; Peter and Scott, 1999). At the other end of the lithologic spectrum in which rhyolites and dacites are predominant, VMS deposits (such as Kuroko deposits) contain abundant and variable amounts of pyrite, chalcopyrite, and sphalerite, along with significant galena and tetrahedrite (Eldridge...
Hypogene Ore Characteristics

Table 8–1. Hypogene ore mineralogy of volcanogenic massive sulfide deposits.

[Sources: Franklin and others, 1981; Large, 1992; Slack, 1993; Hannington and others, 1999a, e; Peter and Scott, 1999; Slack and others, 2003; Herrington and others, 2005; Koski and others, 2008; Peltonen and others, 2008; Ahmed and others, 2009]

<table>
<thead>
<tr>
<th>Major minerals</th>
<th>Trace minerals (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyrite</td>
<td>FeS₂</td>
</tr>
<tr>
<td>pyrrhotite</td>
<td>Fe₁₋ₓS</td>
</tr>
<tr>
<td>chalcopyrite</td>
<td>CuFeS₂</td>
</tr>
<tr>
<td>sphalerite</td>
<td>(Zn, Fe)S</td>
</tr>
<tr>
<td>galena</td>
<td>ZnS</td>
</tr>
<tr>
<td>Minor minerals</td>
<td></td>
</tr>
<tr>
<td>marcasite</td>
<td>FeS₂</td>
</tr>
<tr>
<td>magnetite</td>
<td>Fe₃O₄</td>
</tr>
<tr>
<td>cobaltite</td>
<td>(Co, Fe)ₙAsS</td>
</tr>
<tr>
<td>arsenopyrite</td>
<td>FeₙAsS</td>
</tr>
<tr>
<td>tennantite</td>
<td>Cu₁₂AsₙS₁₃</td>
</tr>
<tr>
<td>tetrahedrite</td>
<td>Cu₁₂₋ₙSₙS₁₃</td>
</tr>
<tr>
<td>Trace minerals</td>
<td></td>
</tr>
<tr>
<td>acanthite</td>
<td>Ag₂S</td>
</tr>
<tr>
<td>argentite</td>
<td>Ag₂S</td>
</tr>
<tr>
<td>bismuth</td>
<td>Bi</td>
</tr>
<tr>
<td>bismuthinite</td>
<td>BiₙSₙ</td>
</tr>
<tr>
<td>bismuth tellurides</td>
<td>Bi₂Te₃</td>
</tr>
<tr>
<td>bornite</td>
<td>CuₙFeₙSₙ</td>
</tr>
<tr>
<td>cubanite</td>
<td>CuₙFeₙSₙ</td>
</tr>
<tr>
<td>braunlangerite</td>
<td>PbₙSbₙSn₉</td>
</tr>
<tr>
<td>bournonite</td>
<td>PbₙCuₙSbₙSn₉</td>
</tr>
<tr>
<td>brannerite</td>
<td>UₙTiₙOₘ</td>
</tr>
<tr>
<td>bravoite</td>
<td>(Fe, Ni, Co)ₙS₂</td>
</tr>
<tr>
<td>carrolite</td>
<td>CuₙCo₉Sₙ</td>
</tr>
<tr>
<td>cassiterite</td>
<td>SnₙO₂</td>
</tr>
<tr>
<td>cinnabar</td>
<td>HgₙS</td>
</tr>
<tr>
<td>electrum</td>
<td>(Au, Ag)</td>
</tr>
<tr>
<td>digenite</td>
<td>CuₙSₙ</td>
</tr>
<tr>
<td>enargite</td>
<td>CuₙₙₙAsₙₙₙ</td>
</tr>
</tbody>
</table>
and others, 1983). Deposits having this lithologic association often contain zones of ore with sulfide assemblages dominated by sphalerite and galena (for example, Rosebery; Smith and Huston, 1992), and in rare instances, ore mineral assemblages dominated by galena, tetrahedrite, realgar, and stibnite (Eskay Creek; Roth and others, 1999). Massive sulfide deposits in bimodal volcanic sequences can be expected to have sulfide mineral assemblages somewhat intermediate between mafic- and felsic-rock endmembers. Thus, the major mineral suite of pyrite, pyrrhotite, sphalerite, and chalcopyrite at Bald Mountain contains minor but significant galena and arsenopyrite mineralization within the orebody (Slack and others, 2003).

Paragenesis

Paragenesis, the sequence of mineral deposition, is complicated by replacement of early-formed minerals by new minerals as temperature conditions wax and wane during ongoing hydrothermal activity. Studies of contemporary “black smoker” massive sulfide chimneys and mounds on ocean ridges provide the best record of temporal mineralogical changes during formation of VMS deposits. Although mineral paragenesis will vary somewhat from deposit to deposit and within a given deposit, a generalized depositional sequence for major sulfide, sulfate, and silica minerals within a hypothetical sulfide chimney is shown in figure 8–1A (Hannington and others, 1995). At temperatures up to about 250 °C, barite, anhydrite, silica, sphalerite, and marcasite are precipitated. When temperature increases to about 350 °C, these minerals are replaced by pyrite, wurtzite, chalcopyrite, pyrrhotite, and isocubanite. An important aspect of this sequence is the replacement of original sulfides by Cu-Fe sulfides and pyrrhotite at high temperature. Sulfate and silicate mineral phases along with sphalerite and marcasite/pyrite are also deposited in late stages of mineralization as fluid temperatures decrease.

Mineral paragenesis for ancient VMS deposits can be much more complicated than that for the seafloor chimney cited above. A paragenetic diagram for the principal hypogene sulfide minerals (plus quartz) in the massive sulfide deposit at Bald Mountain is presented in figure 8–1B (Slack and others, 2003). The diagram for Bald Mountain illustrates a complex and repetitive pattern of sulfide mineral deposition during multiple stages of deposit formation. A noteworthy similarity between the Bald Mountain and seafloor chimney paragenesis, however, is the early Stage 1 deposition of pyrite, marcasite, sphalerite, and quartz followed by pyrrhotite and chalcopyrite replacement at higher temperatures in Stage 2. Numerous additional stages of mineral precipitation, mostly in the form of crosscutting veins, are superimposed on the massive pyrrhotite-chalcopyrite mineralization at Bald Mountain (Slack and others, 2003). The paragenesis of hypogene ore minerals in many ancient VMS deposits is further complicated by recrystallization and replacement during posthydrothermal metamorphism (for example, bornite ores at Kidd Creek; Hannington and others, 1999b).

Zoning Patterns

A deposit-scale zonation pattern in which the upper stockwork is dominated by chalcopyrite + pyrite ± magnetite, the basal part of the massive sulfide body is dominated by pyrite + chalcopyrite, and the upper and outer margins of the massive sulfide are dominated by sphalerite ± galena (± barite) has long been recognized in VMS systems (Lambert and Sato, 1974; Large, 1977; Eldridge and others, 1983). A highly idealized version of this zonation pattern (modified from Lydon, 1984)—including hypogene ore minerals in the massive sulfide lens and stockwork along with related stockwork alteration and peripheral sedimentary deposits—is illustrated in figure 8–2. This basic pattern of vertical zoning is best exhibited in well preserved deposits having bimodal-felsic or bimodal-mafic affinities (table 8–2) and has been attributed to sequential episodes of sulfide deposition and replacement within an intensifying geothermal system by Eldridge and others (1983) and Pisutha-Armond and Ohmoto (1983). In their models, increasing fluid temperatures at the base of the growing ore lens result in chalcopyrite replacement of an earlier sulfide facies dominated by sphalerite, tetrahedrite, galena, and pyrite. The mobilized Zn and Pb migrate upward and reprecipitate as sphalerite and galena in cooler parts of the lens, resulting in the zonation of chalcopyrite and sphalerite (±galena) and Cu and Zn (±Pb) in many VMS deposits. The outward movement or “zone refining” of metals may also produce Au enrichment in sphalerite-rich zones of VMS deposits (Hannington and others, 1986; Large and others, 1989). Conversely, the very low base- and precious-metal concentrations in pyrite, ophiolite-hosted VMS deposits located in Cyprus and Oman may reflect the complete stripping or “over refining” of metals during sustained hydrothermal activity on the paleoseafloor (Hannington and others, 1998).

Deposit-scale zonation of Cu and Zn sulfides has also been described in massive sulfide mounds constructed on mid-ocean ridges (Embley and others, 1988; Fouquet and others, 1993). Perhaps the most distinctive example of Cu-Zn zoning is observed in individual high-temperature (>300 °C) black smoker chimneys (fig. 8–3) forming in contemporary ridge settings (Haymon, 1983; Goldfarb and others, 1983; Koski and others, 1994). In these examples, the precipitation of chalcopyrite and sphalerite is controlled by extreme temperature and chemical gradients operating at the centimeter scale.

Textures and Structures

Volcanogenic massive sulfide deposits span a continuum of physical attributes from massive ores composed of 100 percent sulfide minerals through semimassive ores that are mixtures of sulfides, gangue minerals, and host rock (volcanic or sedimentary) to increasingly sparse sulfide disseminated in wall rocks. This gradation may represent a vertical transition from seafloor (or near seafloor) mineralization to mineralization at depth within the feeder zone of the hydrothermal
Figure 8–1. Examples of paragenetic sequences in volcanogenic massive sulfide deposits. A, Mineral paragenesis in hypothetical sulfide-sulfate-silica chimney. From Hannington and others (1995). During chimney growth, fluid temperatures increase to approximately 350 °C and then decrease as hydrothermal fluids mix with seawater. B, Paragenesis of hypogene sulfide minerals and quartz at Bald Mountain (Maine) massive sulfide deposit. After Slack and others (2003). Thickness of black bars represents relative proportions of minerals. [ISS, intermediate solid solution in the copper-iron-sulfur system]
Figure 8–2. Idealized massive sulfide lens illustrating zonation features for hypogene ore minerals. Modified from Lydon (1984). [ba, barite; cpy, chalcopyrite; gn, galena; po, pyrrhotite; py, pyrite; sp, sphalerite]

Table 8–2. Examples of hypogene mineral zonation patterns in selected volcanogenic massive sulfide deposits.

<table>
<thead>
<tr>
<th>Deposit or district</th>
<th>Mineral zonation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokuroku district (composite)</td>
<td>Top to bottom: Barite ore: ba > sulfides
Massive black ore: sp + ba > py + gl
Semiblack ore: sp + ba > py > cp
Massive yellow ore: ch + py
Powdery yellow ore: py > cp
Massive pyrite ore: py >> cp >> sp</td>
<td>Eldridge and others (1983)</td>
</tr>
<tr>
<td>Silver Peak (Oregon, USA)</td>
<td>Top to bottom: Barite ore: ba
Black ore: py + bn + ten + sp + ba ± cp
Yellow ore: py + cp + bn
Friable yellow ore: py</td>
<td>Derkey and Matsueda (1989)</td>
</tr>
<tr>
<td>Urals Cu-Zn deposit (composite)</td>
<td>Top to bottom: Outer/upper massive sulfide: sp + py ± cp ± ba ± gl
Middle massive sulfide: cp + py
Stockwork and basal massive sulfide: cp + py ± po ± mt</td>
<td>Herrington and others (2005)</td>
</tr>
<tr>
<td>Bathurst camp (composite)</td>
<td>Distal to proximal: Bedded pyrite: py ± sp ± gl
Bedded ores: py + sp + gl ± cp
Ore-vent complex: po + mt + py + cp ± sp ± gl</td>
<td>Goodfellow and McCutcheon (2003)</td>
</tr>
</tbody>
</table>
system (for example, Turner-Albright; Zierenberg and others, 1988). Sulfide minerals also form veins (usually with quartz and other gangue minerals) cutting wall rock and earlier-formed massive sulfides, and many massive sulfide bodies are underlain by discordant vein networks (stockwork zones). Massive sulfides in many deposits are laterally gradational to bedded or layered sulfide deposits formed by mass wasting of the elevated mounds on the seafloor.

At the hand-specimen and thin section scale, massive sulfides are typically compact, fine-grained aggregates of intergrown sulfide minerals with irregular grain boundaries. More diagnostic primary textures in massive ores include idiomorphic crystals (for example, pyrite, pyrrhotite) projecting into cavities, colloform overgrowths (especially sphalerite, pyrite, and marcasite), frambooidal and botryoidal pyrite, pseudomorph replacement (for example, sulfate by pyrrhotite), fine-scale replacement relationships (for example, chalcopyrite disease in sphalerite; Barton and Bethke, 1987), boxwork intergrowths, and internal mineral growth zoning (especially in Zn sulfides). Other common attributes of unmetamorphosed ores are high porosity and textural heterogeneity on the thin section scale. These types of primary textural features are especially well preserved in modern seafloor deposits (see Koski and others, 1984; Paradis and others, 1988; Hannington and others, 1995).

Textures and structures in ancient VMS deposits typically bear some overprint of postdepositional diagenesis and metamorphism. Metamorphism causes numerous textural changes including (1) recrystallization and increase in grain size, (2) development of porphyroblasts, (3) foliation and alignment of sulfide and gangue crystals, (4) 120° triple junction grain boundaries (annealing textures), (5) remobilization...
of chalcopyrite, and (6) penetrative deformation (“durchbe-
wegung” texture) of pyrrhotite and wall rock (Vokes, 1969;
Franklin and others, 1981).

Most VMS deposits exhibit some form of primary
structure. Fragmental and layered ores are prevalent struc-
tural characteristics at the deposit scale (see Spense, 1975;
Slack and others, 2003; Tornos, 2006). In many cases, these
features appear to result from mass wasting and flow from
the steep flanks of sulfide mounds. Mass wasting and proximal
sedimentation of hydrothermal debris from the TAG sulfide
mound on the Mid-Atlantic Ridge represent a useful modern
analogs (Mills and Elderfield, 1995). Blocky, fragmental, and
sandy zones also form distinctive internal structural features of
well preserved massive sulfides (Constantinou, 1976; Eldridge
and others, 1983; Lydon and Galley, 1986). Studies of contem-
porary seafloor sulfide mounds, especially the TAG site, indic-
ate that these breccias formed by collapse of unstable sulfide
chimneys on the mound surface as well as collapse follow-
 ing anhydrite dissolution in the core of the mound structure
(Humphris and others, 1995; Petersen and others, 2000). Less
common primary structures preserved in some VMS deposits
include chimney fragments with fluid channelways (Oudin
and Constantinou, 1984; Slack and others, 2003), fossils of
hydrothermal vent fauna (Haymon and others, 1984; Little
and others, 1999), and traces of microbial life forms (Juniper
and Fouquet, 1988).

Grain Size

Volcanogenic massive sulfide deposits are typically fine
grained. The range in grain sizes for the major hypogene sul-
fide minerals in unmetamorphosed massive sulfide deposits is
approximately 0.1–1 millimeter (mm); accessory sulfides are
considerably smaller in size. The grain size of gold minerals is
smaller than that of major sulfides by more than one order
of magnitude. In one example, the median size values for
discrete gold grains (electrum) in eleven eastern Australian
VMS deposits lie between 2.5 and 25 micrometers (mm) (Hus-
ton and others, 1992). In contrast, metamorphosed massive
sulfides are coarser grained; sulfide grains in metamorphosed
deposits commonly exceed 1 mm in diameter, and pyrite
porphyroblasts up to 300 mm across occur in pyrrhotite-rich
ores of the Ducktown mining district, Tennessee (Brooker and
others, 1987).

References Cited

Ahmed, A.H., Arai, S., and Ikenne, M., 2009, Mineralogy and
paragenesis of the Co-Ni arsenide ores of Bou Azzer,
Anti-Atlas, Morocco: Economic Geology, v. 104,
p. 249–266.

Auclair, M., Gauthier, M., Trotter, J., Jébrak, M., and Char-
trand, F., 1993, Mineralogy, geochemistry, and para-
genesis of the Eastern Metals serpentinite-associated
Ni-Cu-Zn deposit, Quebec Appalachians: Economic

Barton, P.B., Jr., and Bethke, P.M., 1987, Chalcopyrite disease
in sphalerite—Pathology and epidemiology: American
Mineralogist, v. 72, p. 451–467.

Brooker, D.D., Craig, J.R., and Rimstidt, J.D., 1987, Ore
metamorphism and pyrite porphyroblast development
at the Cherokee mine, Ducktown, Tennessee: Economic
Geology, v. 82, p. 72–86.

Constantinou, G., 1976, Genesis of conglomerate structure,
porosity and collomorphic textures of the massive sul-
fide ores of Cyprus, in Strong, D.F., ed., Metallogeny
and plate tectonics: Geological Association of Canada

Corbett, K.D., 2001, New mapping and interpretations of the
Mount Lyell mining district, Tasmania—A large hybrid
Cu-Au system with an exhalative Pb-Zn top: Economic
Geology, v. 96, p. 1089–1122.

Derkey, R.E., and Matsueda, H., 1989, Geology of the Silver
Peak mine, a Kuroko-type deposit in Jurassic volcanic
rocks, Oregon, U.S.A.: Journal of the Mining College

Eldridge, C.S., Barton, P.B., Jr., and Ohimoto, H., 1983,
Mineral textures and their bearing on formation of the
Kuroko orebodies, in Ohimoto, H., and Skinner, B.J.,
ed., The Kuroko and related volcanogenic massive
sulfide deposits: Economic Geology Monograph 5,

Embley, R.W., Jonasson, I.R., Perfit, M.R., Franklin, J.M.,
Tivey, M.A., Malahoff, A., Smith, M.F., and Francis,
T.J.G, 1988, Submersible investigation of an extinct
hydrothermal system on the Galapagos Ridge—
Sulfide mounds, stockwork zone, and differentiated

Fouquet, Y., Wafic, A., Cambon, P., Mevel, C., Meyer, G., and
Gente, P., 1993, Tectonic setting and mineralogical and
geochemical zonation in the Snake Pit sulfide deposit
(Mid-Atlantic Ridge at 23°N): Economic Geology,

canic-associated massive sulfide deposits, in Skinner,
B.J., ed., Economic Geology 75th anniversary volume,
1905–1980: Littleton, Colo., Economic Geology Pub-
8. Hypogene Ore Characteristics

Hannington, M.D., Bleeker, W., and Kjarsgaard, I., 1999b, Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Creek deposit—Part II. The bornite zone, in Hannington, M.D., and Barrie, C.T., eds., The giant Kidd Creek volcanogenic massive sulfide deposit, western Abitibi subprovince, Canada: Economic Geology Monograph 10, p. 225–266.

8. Hypogene Ore Characteristics

