Global Mineral Resource Assessment

Porphyry Copper Assessment of the Central Asian Orogenic Belt and Eastern Tethysides—China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India

Prepared in cooperation with the China Geological Survey, the Centre for Russian and Central EurAsian Mineral Studies, and the Russian Academy of Sciences


U.S. Department of the Interior
U.S. Geological Survey
Suggested citation:

ISSN 2328-0328 (online)
# Contents

Abstract .................................................................................................................................................. 1
Introduction............................................................................................................................................. 2
Terminology .............................................................................................................................................. 2
  Report Format ........................................................................................................................................ 3
  Political Boundaries ............................................................................................................................... 3
  Considerations for Users of this Assessment .......................................................................................... 3
Porphyry Copper Deposit Models ........................................................................................................... 7
  Descriptive Models ............................................................................................................................... 7
  Grade and Tonnage Models ................................................................................................................... 7
Permissive Tracts for Porphyry Copper Deposits .................................................................................... 8
Assessment Data ...................................................................................................................................... 8
  Geologic Maps ...................................................................................................................................... 8
  Mineral Occurrence Data ...................................................................................................................... 8
  Geophysical Data ................................................................................................................................ 9
  Regional Geodynamics and Metallogeny ............................................................................................... 9
Geologic Framework ............................................................................................................................... 9
  Central Asian Orogenic Belt .................................................................................................................. 10
    Caledonian Magmatism ....................................................................................................................... 10
    Variscan Magmatism .......................................................................................................................... 15
    Indosinian Magmatism ....................................................................................................................... 15
  Tethysides .......................................................................................................................................... 15
    Caledonian Through Indosinian Magmatism .................................................................................... 15
    Indosinian Through Early Tertiary Magmatism .............................................................................. 20
Exploration History ............................................................................................................................... 20
Tract Delineation .................................................................................................................................... 20
Estimating Numbers of Undiscovered Deposits ................................................................................... 22
Assessment of Tracts in the Central Asia Orogenic Belt and Eastern Tethysides .................................. 23
  Early Paleozoic Tracts in the Central Asia Orogenic Belt ................................................................. 23
    Solonker Tract (142pCu8501) ............................................................................................................. 23
      Location .......................................................................................................................................... 23
      Tectonic Setting .............................................................................................................................. 23
      Geologic Criteria ............................................................................................................................. 26
      Known Porphyry Deposits ............................................................................................................... 26
        Chehugou ...................................................................................................................................... 26
        Prospects, Mineral Occurrences, and Related Deposit Types ..................................................... 26
        Grade and Tonnage Model Selection ............................................................................................ 26
        Estimates of Undiscovered Deposits and Rationale .................................................................. 26
        Probabilistic Assessment Simulation Results .............................................................................. 28
    Kazakh-Tianshan Tract (142pCu8502) ............................................................................................... 28
      Location .......................................................................................................................................... 28
      Tectonic Setting .............................................................................................................................. 28
      Geologic Criteria ............................................................................................................................. 28
Known Porphyry Deposits ................................................................. 28
Prospects, Mineral Occurrences, and Related Deposit Types ........ 32
Probabilistic Assessment .................................................................. 32
Grade and Tonnage Model Selection ............................................... 32
Estimates of Undiscovered Deposits and Rationale ....................... 32
Probabilistic Assessment Simulation Results .................................. 32
Gobi-Amur Tract (142pCu8503) ......................................................... 32
Location ......................................................................................... 32
Tectonic Setting .............................................................................. 32
Geologic Criteria ........................................................................... 32
Known Porphyry Deposits ............................................................. 36
Duobaoshan .................................................................................. 36
Known Porphyry Deposits ............................................................. 36
Prospects, Mineral Occurrences, and Related Deposit Types ........ 36
Probabilistic Assessment .................................................................. 36
Grade and Tonnage Model Selection ............................................... 36
Estimates of Undiscovered Deposits and Rationale ....................... 36
Probabilistic Assessment Simulation Results .................................. 36
Mongol-Sayan Tract (142pCu8504) .................................................. 38
Location ......................................................................................... 38
Tectonic Setting .............................................................................. 38
Geologic Criteria ........................................................................... 38
Known Porphyry Deposits ............................................................. 38
Aksug ............................................................................................. 38
Sora ............................................................................................... 38
Agaskyr .......................................................................................... 41
Known Porphyry Deposits ............................................................. 41
Prospects, Mineral Occurrences, and Related Deposit Types ........ 41
Probabilistic Assessment .................................................................. 41
Grade and Tonnage Model Selection ............................................... 41
Estimates of Undiscovered Deposits and Rationale ....................... 41
Probabilistic Assessment Simulation Results .................................. 41
Late Paleozoic Tracts in the Central Asia Orogenic Belt .................. 42
Kazakh-Tarim Tract (142pCu8505) .................................................. 43
Location ......................................................................................... 43
Tectonic Setting .............................................................................. 43
Geologic Criteria ........................................................................... 45
Known Porphyry Deposits ............................................................. 45
Koktasdzhal ................................................................................... 45
Kyzlkain .......................................................................................... 45
Baogutu .......................................................................................... 45
Tuwu-Yandong-Yanxi ..................................................................... 45
Known Porphyry Deposits ............................................................. 47
Prospects, Mineral Occurrences, and Related Deposit Types ........ 47
Probabilistic Assessment .................................................................. 47
Grade and Tonnage Model Selection ............................................... 47
Estimates of Undiscovered Deposits and Rationale ....................... 47
Probabilistic Assessment Simulation Results .................................. 47
Figures

1. Map of the study area in central and eastern Asia .........................................................5
2. Map of the major orogenic systems of Asia .................................................................6
3. Chart showing the distribution of the permissive tracts for porphyry copper deposits in the Central Asia Orogenic Belt and eastern Tethysides in terms of geologic time span and orogenic events .................................................................13
4. Map showing the distribution of permissive tracts for porphyry copper deposits in the Central Asia Orogenic Belt and eastern Tethysides and adjacent study areas ..........14
5. Map of the Central Asia Orogenic Belt showing Caledonian (540 to 400 million years ago) arcs, porphyry copper deposits, and assessment tracts .............................................17
6. Map of the Central Asia Orogenic Belt showing Variscan age (400 to 280 million years ago) arcs, porphyry copper deposits, and assessment tracts .............................................18
7. Map of the Indosinian (280 to 200 million years ago) Erdenet permissive tract of the Central Asia Orogenic Belt and the Caledonian (540 to 400 million years ago) through Indosinian Qinling-Dabie orogen of the Tethysides region showing porphyry copper deposits .................................................................................................19
8. Map of the Tethysides region showing Permian, Mesozoic, and Paleocene magmatic arcs, porphyry copper deposits, and assessment tracts ...........................................21
9. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8501, Solonker—China .................................................................25
10. Map showing the distribution of permissive rocks used to delineate tract 142pCu8501, Solonker—China and Mongolia .................................................................27
11. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8501, Solonker—China ........................................................................................................29
12. Map showing the location, known deposits, and significant prospects for permissive tract 142pCu8502, Kazakh-Tianshan—Kazakhstan and China ........................................30
13. Map showing the distribution of permissive rocks used to delineate tract 142pCu8502, Kazakh-Tianshan—Kazakhstan and China .........................................................31
14. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8502, Kazakh-Tianshan—Kazakhstan and China .........................................................33
15. Map showing the location, known deposits, and significant prospects for permissive tract 142pCu8503, Gobi-Amur—Mongolia, China, and Russia ..............................34
16. Map showing the distribution of permissive rocks used to delineate tract 142pCu8503, Gobi-Amur—Mongolia, China, and Russia .........................................................35
17. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8503, Gobi-Amur—Mongolia, China, and Russia .................................................................37
18. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8504, Mongol-Sayan—Mongolia, Russia, and China .................................39
19. Map showing the distribution of permissive rocks used to delineate tract 142pCu8504, Mongol-Sayan—Mongolia, Russia, and China .........................................................40
20. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8504, Mongol-Sayan—Mongolia, Russia, and China .........................................................43
21. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8505, Kazakh-Tarim—Kazakhstan and China .................................44
22. Map showing the distribution of permissive intrusive and extrusive rocks used to delineate tract 142pCu8505, Kazakh-Tarim—Kazakhstan and China ........................................46
23. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8505, Kazakh-Tarim—Kazakhstan and China ........................................48
24. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8506, Oyu Tolgoi—Mongolia and China ........................................50
25. Map showing the distribution of permissive intrusive and extrusive rocks used to delineate tract 142pCu8506, Oyu Tolgoi—Mongolia and China ........................................51
26. Map showing the distribution of porphyry copper deposits and exploration targets at Oyu Tolgoi, Mongolia ........................................................................................................52
27. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8506, Oyu Tolgoi—Mongolia and China ........................................54
28. Map showing the location, significant prospects, and prospects for permissive tract 142pCu8507, Mongol-Altai—Mongolia, Russia, China, and Kazakhstan ........................................55
29. Map showing the distribution of permissive rocks used to delineate tract 142pCu8507, Mongol-Altai—Mongolia, Russia, China, and Kazakhstan ........................................56
30. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8507, Mongol-Altai—Mongolia, Russia, China, and Kazakhstan ........................................58
31. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8508, Erdenet—Mongolia and Russia ........................................59
32. Map showing the distribution of permissive rocks used to delineate tract 142pCu8508, Erdenet—Mongolia and Russia ........................................61
33. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8508a, Erdenet Southwest—Mongolia ........................................64
34. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8701, Qinling-Dabie—China and Tajikistan ........................................65
35. Map showing the distribution of permissive rocks used to delineate tract 142pCu8701, Qinling-Dabie—China and Tajikistan ........................................67
36. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8701, Qinling-Dabie—China and Tajikistan ........................................69
37. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8702, Jinsajiang—China ........................................70
38. Map showing the distribution of permissive rocks used to delineate tract 142pCu8702, Jinsajiang—China ........................................71
39. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8702, Jinsajiang—China ........................................74
40. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8706, Tethyan-Gangdese—China, India, and Pakistan ........................................76
41. Map showing the distribution of permissive rocks used to delineate tract 142pCu8706, Tethyan-Gangdese—China, India, and Pakistan ........................................77
42. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8706, Tethyan-Gangdese—China, India, and Pakistan ........................................79
43. Bar charts comparing identified resources in known deposits with mean and median estimates of undiscovered resources for each tract in the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 82

E1. Geologic time correlations among series-epoch map symbols and durations for eons/eras as used in Russia, China, and Mongolia ....................................................... 105

Tables

1. Permissive tracts for porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 11
2. Identified resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 16
3. Statistical test results for grade and tonnage model selection, porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 24
4. Probabilistic assessment results for tract 142pCu8501, Solonker—China ........................................................... 29
5. Probabilistic assessment results for tract 142pCu8502, Kazakh-Tianshan—Kazakhstan and China ........................................................... 33
6. Probabilistic assessment results for tract 142pCu8503, Gobi-Amur—Mongolia, China, and Russia ........................................................... 37
7. Probabilistic assessment results for tract 142pCu8504, Mongol-Sayan—Mongolia, Russia, and China ........................................................... 42
8. Probabilistic assessment results for tract 142pCu8505, Kazakh-Tarim—Kazakhstan and China ........................................................... 48
9. Probabilistic assessment results for tract 142pCu8506, Oyu Tolgoi—Mongolia and China ........................................................... 54
10. Probabilistic assessment results for tract 142pCu8507, Mongol-Altai—Mongolia, Russia, China, and Kazakhstan ........................................................... 58
11. Probabilistic assessment results for sub-tract 142pCu8508a, Erdenet Southwest—Mongolia ........................................................... 64
12. Probabilistic assessment results for tract 142pCu8701, Qinling-Dabie—China and Tajikistan ........................................................... 69
13. Probabilistic assessment results for tract 142pCu8702, Jinsajiang—China ........................................................... 74
14. Probabilistic assessment results for tract 142pCu8706, Tethyan-Gangdese—China, India, and Pakistan ........................................................... 79
15. Summary of estimates of numbers of undiscovered porphyry copper deposits for the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 80
16. Summary of simulations of undiscovered resources in porphyry copper deposits and comparison with identified copper and gold resources in porphyry copper deposits within each permissive tract in the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 81
A1. Geologic maps used for the porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 98
A2. Mineral occurrences used for the porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 99
A3. Other maps used for the porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides ........................................................... 99
## Conversion Factors

### Conversion Factors

#### Inch/Pound to SI

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inch (in)</td>
<td>2.54</td>
<td>centimeter (cm)</td>
</tr>
<tr>
<td>foot (ft)</td>
<td>0.3048</td>
<td>meter (m)</td>
</tr>
<tr>
<td>mile (mi)</td>
<td>1.609</td>
<td>kilometer (km)</td>
</tr>
<tr>
<td>yard (yd)</td>
<td>0.9144</td>
<td>meter (m)</td>
</tr>
</tbody>
</table>

| Area      |      |                    |
| acre     | 4,047 | square meter (m²) |
| acre     | 0.4047 | hectare (ha) |
| acre     | 0.004047 | square kilometer (km²) |
| square mile (mi²) | 259.0 | hectare (ha) |
| square mile (mi²) | 2.590 | square kilometer (km²) |

| Mass      |      |                    |
| ounce, avoirdupois (oz) | 28.35 | gram (g) |
| ounce, troy (troy oz)  | 31.015 | gram (g) |
| ounce, troy (troy oz)  | 0.0000311 | megagram (Mg) |
| ton, short (2,000 lb)   | 0.9072 | megagram (Mg) |

#### SI to Inch/Pound

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>centimeter (cm)</td>
<td>0.3937</td>
<td>inch (in)</td>
</tr>
<tr>
<td>meter (m)</td>
<td>3.281</td>
<td>foot (ft)</td>
</tr>
<tr>
<td>kilometer (km)</td>
<td>0.6214</td>
<td>mile (mi)</td>
</tr>
<tr>
<td>meter (m)</td>
<td>1.094</td>
<td>yard (yd)</td>
</tr>
</tbody>
</table>

| Area      |      |                    |
| square meter (m²) | 0.0002471 | acre |
| square meter (m²) | 10.76 | square foot (ft²) |
| hectare (ha)  | 2.471 | acre |
| square kilometer (km²) | 247.1 | acre |
| hectare (ha)  | 0.003861 | square mile (mi²) |
| square kilometer (km²) | 0.3861 | square mile (mi²) |

| Mass      |      |                    |
| gram (g) | 0.03215 | ounce, troy (troy oz) |
| kilograms (kg) | 2.205 | pound avoirdupois (lb) |
| megagram (Mg) | 32,151 | ounce, troy (troy oz) |
| megagram (Mg) | 1.102 | ton, short (2,000 lb) |
| megagram (Mg) | 0.9842 | ton, long (2,240 lb) |
Other conversions used in this report

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric ton (t)</td>
<td>1</td>
<td>megagram (Mg)</td>
</tr>
<tr>
<td>troy ounce per short ton</td>
<td>34.2857</td>
<td>gram per metric ton (g/t)</td>
</tr>
<tr>
<td>percent (%)</td>
<td>10,000</td>
<td>part per million (ppm) or grams per metric ton (g/t)</td>
</tr>
<tr>
<td>percent metal</td>
<td>0.01 × metal grade, percent × ore tonnage, metric tons</td>
<td>metric tons of metal</td>
</tr>
</tbody>
</table>

Acronyms and Abbreviations Used

- **ANOVA**: analysis of variance
- **CIS**: Commonwealth of Independent States
- **GIS**: geographic information system
- **g/t**: grams per metric ton
- **kt**: thousand metric tons
- **Ma**: mega-annum/millions of years before the present
- **Mt**: million metric tons
- **PGE**: platinum-group elements
- **ppb**: parts per billion
- **REE**: rare-earth elements
- **SHRIMP**: sensitive high resolution ion microprobe
- **SSIB**: small-scale digital international boundaries
- **t**: metric ton (tonne) or megagram (Mg)
- **USGS**: U.S. Geological Survey
- **USSR**: Union of Soviet Socialist Republics
- **VSEGEI**: A.P. Karpinsky Russian Geological Research Institute

Chemical Symbols Used

- **Fe**: iron
- **Hf**: hafnium
- **Nb**: niobium
- **Nd**: neodymium
- **Sm**: samarium
- **Sr**: strontium
This page left intentionally blank.
Porphyry Copper Assessment of the Central Asian Orogenic Belt and Eastern Tethysides—China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India

By Mark J. Mihalasky¹, Steve Ludington¹, Jane M. Hammarstrom¹, Dmitriy V. Alexeiev², Thomas P. Frost¹, Thomas D. Light¹, Gilpin R. Robinson, Jr.¹, Deborah A. Briggs¹, John Wallis¹, and Robert J. Miller¹, with contributions from Arthur A. Bookstrom¹, Andre Panteleyev³, Andre Chitalin⁴, Reimar Seltmann⁵, Yan Guangsheng⁶, Lian Changyun⁶, Mao Jingwen⁷, Li Jinyi⁸, Xiao Keyan⁶, Qiu Ruizhao⁶, Shao Jianbao⁶, Shai Gangyi⁹, and Du Yuliang⁶

Abstract

The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events.

Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km²); (2) a complex area of about 400,000 km² on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100,000 km² Jinsajiang tract and the 300,000 km² Tethyan-Gangdese tract.

Assessment participants evaluated applicable grade and tonnage models and estimated numbers of undiscovered deposits at different confidence levels for each permissive tract. The estimates were then combined with the selected grade and tonnage models using Monte Carlo simulations to generate probabilistic estimates of undiscovered resources. Additional resources in extensions of deposits with identified resources were not specifically evaluated.

Assessment results, presented in tables and graphs, show amounts of metal and rock in undiscovered deposits at selected quantile levels of probability (0.95, 0.9, 0.5, 0.1, and 0.05 confidence levels), as well as the arithmetic mean and associated standard deviations and variances for each tract. This assessment estimated a total of 97 undiscovered porphyry copper deposits within the assessed permissive tracts. This represents nearly five times the 20 known deposits. Predicted mean resources that could be associated with these undiscovered deposits are about 370,000,000 metric tons (t) of copper, 10,000 t of gold, 7,700,000 t of molybdenum, and 120,000 t of silver. The assessment area is estimated to contain about five times as much copper in undiscovered deposits as has been identified to date.

This report includes a summary of the data used in the assessment, a brief overview of the geologic framework of the area, descriptions of permissive tracts and known deposits, maps, and tables. A geographic information system database that accompanies this report includes the tract boundaries and known porphyry copper deposits, significant prospects, and prospects. Assessments of overlapping younger rocks and adjacent areas are included in separate reports available online at http://minerals.usgs.gov/global/.

¹U.S. Geological Survey, United States.
²Russian Academy of Sciences, Moscow, Russia.
³XDM Resources, Inc.
⁴Consultant.
⁵Centre for Russian and Central EurAsian Mineral Studies, Natural History Museum, London, United Kingdom.
⁶China Geological Survey, Beijing, China.
⁷Chinese Academy of Geological Sciences, Beijing, China.
Introduction

The U.S. Geological Survey (USGS) conducted a probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in parts of the Central Asian Orogenic Belt (CAOB) and eastern Tethysides as part of its global mineral resource assessment project (GMRAP). The purpose of the assessment was to (1) compile a database of known porphyry copper deposits and significant prospects, (2) delineate geology-based permissive areas (tracts) for undiscovered porphyry copper deposits at a scale of 1:1,000,000, (3) estimate numbers of undiscovered deposits within those permissive tracts, and (4) provide probabilistic estimates of amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in those undiscovered deposits.

This report describes an assessment of undiscovered resources in porphyry copper deposits for the CAOB and eastern Tethysides (figs. 1 and 2). The assessment describes permissive areas for porphyry copper deposits in Russia, Mongolia, and China, as well as small areas in Pakistan, Kazakhstan, Tajikistan, and India. In some cases, very small parts of tracts extend into Kyrgyzstan, Afghanistan, and Myanmar. The study was conducted in cooperation with the China Geological Survey (CGS), the Centre for Russian and Central EurAsian Mineral Studies (CERCAMS), and colleagues from the Russian Academy of Sciences and industry consultants.

The assessment was done using a three-part form of mineral-resource assessment based on established mineral deposit models (Singer, 1993, 2007a, b; Singer and Berger, 2007; Singer and Menzie, 2010). Geographic areas (permissive tracts) are delineated using geologic, mineral occurrence, geochemical, and geophysical data to identify areas with features typical of the type of deposit under consideration. The amount of metal in undiscovered deposits is estimated using grade and tonnage models derived from information about known deposits. Probabilistic estimates of numbers of undiscovered deposits are consistent with the known deposits that define grade and tonnage models (Singer, 2007a). Numbers of undiscovered deposits at various quantities (degrees of certainty) are estimated by an assessment team of experts using a variety of strategies, such as counting the number and ranking the favorability of significant prospects and comparing the spatial density of known deposits and expected undiscovered deposits to that of known deposits in similar, well-explored regions (Singer, 2007b). Probable amounts of undiscovered resources are then estimated by combining estimates of numbers of undiscovered deposits with grade and tonnage models using a Monte Carlo simulation process (Root and others, 1992; Bawiec and Spanski, 2012; Duval, 2012).

This report primarily addresses Paleozoic through Triassic porphyry copper deposits in central and eastern Asia. Readers are referred to separate porphyry copper assessment reports on adjacent and overlapping areas. These include reports on (1) the Mesozoic of East Asia in China, Vietnam, North Korea, Mongolia, and Russia (Ludington and others, 2012b) that describe Yanshanian events in the eastern part of the study area, (2) the Cenozoic of the Tibetan Plateau (Ludington and others, 2012a), (3) the Paleozoic of Kazakhstan (Berger and others, 2014), (4) the Late Triassic through Holocene Tethys region of western and southern Asia (Zürcher and others, in press), and (5) the Paleozoic through Holocene of northeast Asia in Far East Russia and northeasternmost China (Mihalasky and others, in press).

Terminology

The terminology used in this assessment follows the definitions used in the 1998 assessment of undiscovered deposits of gold, silver, copper, lead, and zinc in the United States (U.S. Geological Survey National Mineral Resource Assessment Team, 2000), as well as mineral resource definitions used by the U.S. Bureau of Mines and U.S. Geological Survey (1980) and geologic definitions found in Bates and Jackson (1997). The terminology is intended to represent standard definitions and general usage by the minerals industry and the resource-assessment community. Some countries in the world recently have adopted more rigorous definitions of terms for estimating mineral resources and mineral reserves and for reporting exploration information to comply with legal mandates (for example, see Committee for Mineral Reserves International Reporting Standards, 2004).

• **Mineral occurrence**—A locality where a useful mineral or material is found. A mineral concentration, usually (but not necessarily) considered in terms of some commodity (such as copper or gold) that is considered to be of value to someone, somewhere, or that is of scientific or technical interest. It can be said to have an anomalous concentration of one or more commodities. Enough information may be available to allow for classification as a specific deposit type or suite of deposit types.

• **Mineral deposit**—A mineral concentration of sufficient size and grade that it might, under the most favorable of circumstances, be considered to have potential for economic development.

• **Undiscovered mineral deposit**—A mineral deposit believed to exist 1 kilometer or less below the surface of the ground, or an incompletely explored mineral occurrence that could have sufficient size and grade to be classified as a deposit.

• **Mineral prospect**—A mineral concentration that has been (or is being) examined to determine whether a mineral deposit exists.

• **Significant mineral prospect**—A mineral prospect that has been (or is being) actively investigated by means of exploration drilling, trenching, or other sampling methods and has recorded copper grades or partial ore tonnages or other indicators, such as detailed descriptions of mineralization, that suggest the prospect is of high interest.

• **Descriptive mineral deposit model**—A set of data in a convenient, standardized form that describes a group of mineral deposits having similar characteristics.
• **Grade and tonnage model**—Frequency distributions of the grades and sizes of thoroughly explored, and (or) completely mined out, individual mineral deposits that are classified as a particular type by a descriptive mineral deposit model.

• **Permissive tract**—The surface projection of a volume of rock where the geology permits the existence of a mineral deposit of a specified type. The probability of deposits of the type being studied occurring outside the tract is negligible.

• **Resource**—A mineral concentration of sufficient size and grade and in such form and amount that economic extraction of a commodity from the concentration is currently or potentially feasible.

• **Identified resources**—Resources whose location, grade, quality, and quantity are known or can be estimated from specific geologic evidence. For this assessment, identified resources are the deposits that constitute the grade and tonnage models used in the assessment (which can include measured, indicated, and inferred mineral resources at the lowest available cutoff grade). In addition, deposits that are not included in the models used for the assessment may be considered as identified resources if they are characterized well enough by deposit type, grade, and tonnage to meet U.S. Securities and Exchange Commission or CRIRSCO8 reporting guidelines.

• **Undiscovered resources**—Resources in undiscovered mineral deposits whose existence is postulated on the basis of indirect geologic evidence. These include undiscovered resources in known types of mineral deposits postulated to exist in permissive geologic settings. Undiscovered resources may include active mines if the resource is delineated incompletely. For example, a deposit that is explored only partially and reported as “open to the west or open at depth” could be counted as an undiscovered deposit. Undiscovered resources in extensions to identified resources are not addressed explicitly in the assessment process.

• **Calc-alkaline, calc-alkalic; alkaline, alkalic**—These terms are used in a general, nonrigorous manner to refer to plutonic igneous rocks of granitoid composition (calc-alkaline or calc-alkalic) and of syenitoid through dioritoid to gabbroid composition (alkaline or alkalic) and their extrusive equivalents (see Le Maitre, 2002, provisional field classifications, figures 2.10 and 2.19). In the igneous literature, the terms “-alkaline” and “-alkalic” are defined and used in multiple and inconsistent ways (see Arculus, 2003). For this assessment, the term calc-alkalic is used synonymously for calc-alkaline and alkalic is used synonymously for alkaline, as well as for their associated deposits, which are classified as calc-alkaline (or calc-alkalic) Cu±Mo±Au or alkaline (or alkalic) porphyry copper subtypes.

### Report Format

This report begins with a discussion of porphyry copper deposit models, both descriptive and grade and tonnage models. This is followed by the definition of a permissive tract and a description of the nature and quality of the data used for the assessment, then by a brief description of the geologic framework and exploration history of the region. Next, the processes used to delineate permissive tracts are described. Subsequent sections provide descriptions of the permissive tracts. Permissive tracts are assigned unique coded identifiers based on the United Nations region (142 for Asia), a deposit type (pCu for porphyry copper), and a four-digit number (for example 8505) and names based on a prominent geographic or tectonic feature.

The last section of the report includes a discussion and a summary of results. Appendix A lists the principal sources of information used in the assessment. Appendix B is a table of porphyry copper deposit types, significant prospects, and prospects. Permissive tract boundaries and point locations of deposits, significant prospects, and prospects are included in a geographic information system (GIS) database in appendix C, and appendix D identifies the participants in the assessment. Geologic time scales used on geologic maps for former Soviet Union countries, as well as for China and Mongolia, differ slightly from the International Stratigraphic Chart (International Commission on Stratigraphy, 2010) and from each other. Appendix E includes correlation tables to clarify geologic age terms and abbreviations used in this report.

### Political Boundaries

The political boundaries used in this report are, in accord with U.S. Government policy, the small-scale digital international boundaries (SSIB) provided by the U.S. Department of State (U.S. Department of State, 2009). In various parts of the world, some political boundaries are in dispute. The use of the boundaries certified by the U.S. Department of State does not imply that the U.S. Geological Survey advocates or has an interest in the outcome of any international boundary disputes.

### Considerations for Users of this Assessment

Ideally, assessments are done on a recurring basis, at a variety of scales, because available data change over time. This report is a synthesis of current, readily available information as of August 2013. The assessment is based on the descriptive and grade and tonnage data contained in published mineral deposit models. Data in the grade and tonnage models represent the most reliable average grades available for each commodity of possible economic interest. The tonnages are based on the total of production, reserves, and resources at the

---

Figure 1. Map of the study area in central and eastern Asia, showing geographic features mentioned in this report.
Figure 2. Map of the major orogenic systems of Asia showing the location of the Central Asian Orogenic Belt, the Tethysides, and major cratons, blocks, and belts. (Modified from Şengör and Natal’ in, 1996a).
lowest cutoff grade for which data were available when the model was constructed.

The economic viability of any mineral deposit depends on a wide variety of factors, many of which vary with time. This caveat applies to the deposits used to construct the grade and tonnage models, as well as to undiscovered deposits, so care must be exercised when using the results of this assessment to answer economic questions. If discovered, deposits may not be developed immediately or ever. Furthermore, the estimates in this assessment are of numbers of deposits that are likely to exist, not necessarily those likely to be discovered (Singer, 2007b). Prospects, revealed by past or current exploration efforts, may become deposits through further drilling and characterization. These probable deposits are treated here as undiscovered deposits, albeit ones with a high degree of certainty of existence.

This assessment considers the potential for both exposed deposits and concealed deposits within 1 kilometer (km) of the surface. Very high-grade deposits may be exploited at greater depths, but it is not common. Exploration for and possible exploitation of these deeper deposits may be so expensive that they may not be discovered in the near term. If they are discovered, the cost to mine a deeply buried porphyry deposit may easily prohibit its development into a mine given current or near-term metal prices and technology.

Permissive tracts are based on geology, irrespective of political boundaries. Therefore, tracts may cross country boundaries or include lands that already have been developed for other uses or have been withdrawn from mineral development as protected areas. The tracts are constructed at a scale of 1:1,000,000 and are not intended for use at larger scales. For additional information about proper usage of the tracts, see the completeness and accuracy statements in the metadata of the accompanying spatial datasets (appendix C).

Porphyry Copper Deposit Models

Porphyry copper deposits typically form in subduction-related, compressional tectonic settings, during active subduction of oceanic or continental crust (Sillitoe, 2010; John and others, 2010). These deposits are commonly associated with shallowly emplaced calc-alkaline plutons. The Andes range of South America is the classic province for continental-arc magmatism (Kay and others, 1999). Magma associated with porphyry copper deposits typically is hydrous, oxidized, and rich in sulfur and has likely undergone complex processes of differentiation and evolution at the crust-mantle boundary (Richards, 2003; John and others, 2010). Island arcs in the southwest Pacific Ocean are the archetypes of island-arc magmatism (Garwin and others, 2005). Magma associated with island-arc porphyry copper deposits is similar to that associated with continental arcs, but diorite, quartz diorite, and other more mafic rocks are comparatively more abundant (Kesler and others, 1975).

In recent years, evidence has accumulated for the existence of a family of porphyry copper deposits that formed in a significantly different tectonic setting—extensional, transtensional, or transpressional regimes that have evolved within relatively cratonized regions after active subduction had ceased. A number of the porphyry copper deposits in the study area represent examples of this family of porphyry copper deposits, which are referred to as “postconvergent” or “postcollisional” (Richards, 2009; Ludington and others, 2013). Their geology and mineralization style are broadly similar to subduction-related porphyry copper deposits; however, the magmas that are associated with them originated from as yet only partially understood mantle-involved processes (Richards, 2009; Richards and Kerrich, 2007; Hou and others, 2011).

Descriptive Models

Mineral deposit models used for this assessment include the descriptive porphyry copper models of Singer and others (2008), Cox (1986a, b, c), and John and others (2010), Cox (1986a, b, c) subdivides porphyry copper deposits into three subtypes on the basis of copper, gold, and molybdenum grades—(1) porphyry Cu, (2) porphyry Cu-Au, and (3) porphyry Cu-Mo. The recent review of salient features of porphyry copper deposits by Sillitoe (2010) is also pertinent.

Grade and Tonnage Models

Singer and others (2008) developed global grade and tonnage models for porphyry copper deposits from ore tonnages and average grades, based on the total production, reserves, and resources at the lowest possible cutoff grade. On the basis of available ore tonnages and grades of copper, gold, and molybdenum for 422 deposits worldwide, four global porphyry copper grade and tonnage models were defined—(1) porphyry Cu deposits (256 deposits), (2) porphyry Cu-Au (115 deposits), (3) porphyry Cu-Mo deposits (51 deposits), and (4) a “general model,” which includes all 422 deposits from the three subtypes models.

These global grade and tonnage models were tested for applicability for the assessment of undiscovered resources in porphyry copper deposits in the study area using statistical tests. For each permissive tract that contains known deposits, the grades and tonnages of any deposits in a tract were tested against global models with a Student’s t-test. In a t-test, the means and distributions of two sets of observations are compared to determine if they come from the same population or if they are representative of distinct populations. Analysis of variance (ANOVA) was used in cases of a single known deposit per tract. If the test results indicate no statistical differences between the tract deposits and the deposits of a given global model (that is, the data fit the model and are not distinguishable), the model was considered appropriate for estimating the undiscovered resources of a permissive tract. For tracts with no known deposits, the general model was selected as a default.
Permissive Tracts for Porphyry Copper Deposits

A permissive tract for porphyry copper deposits is delineated as a geographic area that includes intrusive and extrusive rocks of specified ranges of composition and age that are part of a magmatic arc or belt. These arcs have been traditionally related to convergent plate margins, but some magmatic belts have uncertain origins or formed after subduction ceased. A tract generally is bounded by the outline of the magmatic arc, as depicted at the scale of the maps available for tract delineation, and may include areas covered by younger or structurally overlying materials that are less than 1 km thick. For tracts in the study area, many of the igneous rocks most closely associated with porphyry copper formation are not depicted on available digital geologic maps. Instead, their locations come from the scientific literature.

Assessment Data

Our knowledge of the geology and mineral deposits of this part of the world can best be termed incomplete. Government geological agencies and institutions in some countries do not publicly distribute detailed earth science information. Critical geologic data are not always available from government and other earth science organizations through those institutions’ Web sites (although in some cases datasets can be licensed or purchased).

Principal sources of information used by the assessment team for delineation of the tracts and compilation of deposits, significant prospects, and prospects are listed in appendix A.

Geologic Maps

Geologic maps at a variety of scales were used for tract delineation. For China, geologic maps of the Chinese provinces that were available as part of a collection of Geologic Memoirs that were produced by the Chinese Ministry of Geology and Mineral Resources from 1984 through 1993 were used. In addition, the digital geologic map of China, based on the 1:2,500,000-scale map by the China Geological Survey (2004a), was consulted. Although this map is at a smaller scale than those in the geologic memoirs, it incorporates significant new petrologic and radiometric age data gathered in the 1990s. For Mongolia, a digital version of the 1:1,000,000-scale geologic map of Mongolia compiled by Tomurtogoo and others (1999) was used (this is a compilation based on mapping at various scales). For Russia, a digital version of the 1:2,500,000 scale map of Russia and the Commonwealth of Independent States (CIS) countries published by the A.P. Karpinsky All-Russia Geological Research Institute (Petrov and Streinkov, 2008) was used. Similar to the 1:2,500,000 digital map of China, the Russia and CIS countries geologic map has incorporated newer data than the source maps from which it was compiled. The geology of Kazakhstan is covered in a digital GIS product authored by Seltmann and others (2012).

Mineral Occurrence Data

A global database of porphyry copper deposits and prospects published by Singer and others (2008) was supplemented with other global- and regional-scale mineral occurrence databases, including that of the Geological Survey of Canada (Natural Resources Canada, 2010; Kirkham and Dunne, 2000) and databases prepared by the Geological Survey of Japan (Kamitani and others, 2007). In addition, commercially available databases (InfoMine9, Intierra10, Metals Economic Group11), technical reports, company Web sites, and geologic literature were consulted. The GIS package for Central Asia by Seltmann and others (2012) includes detailed mineral occurrence data for Kazakhstan and adjacent areas. The U.S. Geological Survey Mineral Resources Data System (MRDS), an online searchable database, also includes information on mines, prospects, and mineral occurrences worldwide (U.S. Geological Survey, 2011). Promotional material from Web sites maintained by mineral exploration companies were very helpful in developing a deposit and prospect database, particularly in Mongolia.

Mineral occurrence sites were classified as deposits (grade and tonnage well delineated), significant prospects (incompletely characterized with respect to grade and tonnage), or prospects (some descriptive exploration information or assay data available) on the basis of recent published literature.

Information about porphyry copper deposits in this part of the world, and particularly China, has proven exceptionally difficult to compile. There is a certain amount of confusion about classification, as deposits are sometimes referred to as “porphyry-style” primarily because they are large and can be mined using open-pit methods, not because they have characteristics corresponding to existing deposit models.

Many of the locations reported should be treated with caution because, unless the mine is being exploited and its location can be verified by satellite imagery, the location often derives from an approximation based on a page-size location map, often without coordinates. Every attempt was made to update the locations of the deposits and prospects, with mixed success.

The deposit-type classification of some mineral sites is ambiguous because of insufficient information. Deposits, significant prospects, and prospects that could be classified with some certainty as porphyry copper or porphyry copper

---

9http://www.infomine.com/.
related are included in an Excel spreadsheet file in appendix B and in the spatial database that accompanies this report (appendix C). Distributions of gold placers, copper- and copper-gold skarns, and epithermal precious-metal deposits, as well as unclassified copper and gold occurrences, were considered during the assessment, but those deposits are generally not included in the database. Some skarns were included if an associated porphyry system could plausibly be inferred.

Geophysical Data

Global magnetic anomaly data cover most of southern and eastern Asia (National Geophysical Data Center, 2009). The data are at 2 arc-minute resolution and display primarily broad, relatively deep magnetic features; however, because they do not correlate well with mapped outcrops of permissive rocks, they were of limited use. These data were used for delineating regional-scale structural and tectonomagmatic features, such as suture zones, and in some instances, for identifying possible permissive plutonic complexes under Cenozoic cover along and within shallow basins. The 1:5,000,000-scale aeromagnetic map of China (China Geological Survey, 2004b) and the magnetic anomaly map of the former Union of Soviet Socialist Republics (USSR) (A.P. Karpinsky Russian Geological Research Institute [VSEGEI], 1978; Racey and others, 1996) were similarly of limited use.

Regional Geodynamics and Metallogeny

The first modern, comprehensive English-language syntheses of the tectonics of Eurasia and the Tethysides became available in the 1980s and 1990s in publications by Şengör and his colleagues (Şengör, 1984; Şengör and others, 1988; Şengör and others, 1993; Şengör and Natal’ in, 1996a, b). Badarch and others (2002) established a terrane synthesis for Mongolia based on 60 years of studies of that part of the CAOB, and Windley and others (2007), Xiao and others (2010), and Wilhem and others (2012) reviewed models for the Neoproterozoic through Permian accretion of the CAOB. These and other geodynamic studies established a framework that continues to be challenged, refined, and reinterpreted. Nevertheless, the understanding of the complex geodynamic framework, magmatism, and metallogeny of eastern Asia is rapidly evolving owing to abundant new data on the age, geochemistry, and isotopic signatures of igneous rocks, much of which is becoming available in English. A May 2013 issue of Gondwana Research on the tectonics of China, for example, which was published after this assessment was largely completed, addressed the nature and age of many of the magmatic systems that may host porphyry copper deposits in China.

Results from an international project that examined the mineral resources, metallogenesis, and tectonics of Northeast Asia that covers parts of the study area were published by Nokleberg and others (1999). Readers also are directed to selected papers published since the early 2000s that provide discussions of the settings for porphyry copper deposits in eastern Asia. Specifically, Seltmann and Porter (2005) summarized the tectonic setting and described porphyry copper-gold-molybdenum deposits of central Eurasia. A number of papers deal with the settings for porphyry copper deposits in the Altaids (Yakubchuk, 2002, 2004, 2008, 2009), including a 2008 issue of the Journal of Asian Earth Sciences focused on the geodynamics and metallogeny of the Altaids orogen (Xiao and others, 2008). Seltmann and others (2010) summarized the metallogeny of Siberia, including a discussion of porphyry and skarn deposits along the southern margins of the craton within the study area. Pirajno’s (2013) book on the geology and tectonic setting of China’s mineral deposits (and references therein) provides a comprehensive synthesis of the state of knowledge for China and adjacent areas, as well as a cogent discussion of time scales and terminology used in the geologic literature of eastern Asia.

Geologic Framework

The study area encompasses parts of several major lithotectonic domains—(1) the Central Asia Orogenic Belt (Altaids) on the southern margin of the Siberian Craton in southern Russia, northern Kazakhstan, Mongolia, and northeastern China, (2) the North China (also referred to as the Sino-Korean) and Tarim Craton blocks that span central China, and (3) eastern parts of the Tethysides (Alpine-Himalayan orogenic belt) (fig. 2). Paleozoic through Triassic porphyry copper deposits mainly are concentrated in magmatic belts along major sutures, regional-scale transcurrent structural features, and fold belts that bound these lithotectonic domains. These orogenic belts are complex collages that include continental margin and oceanic magmatic arcs and belts that formed in convergent and postconvergent settings (see Ludington and others, 2013). These major lithotectonic domains evolved to their present configuration through major orogenies that mark ocean basin closures, multiple collisions, and terrane reconfigurations—the early Paleozoic Caledonian orogeny (~540–400 million years before present/mega-annum, Ma), the late Paleozoic Variscan orogeny (~400–280 Ma), the Mesozoic Indo-Eurasian (~280–65 Ma) orogenies, and the ongoing Cenozoic Himalayan orogeny. In many parts of the study area,vestiges of all of these orogenies are preserved and younger events overprint and obscure older events.

Twelve permissive tracts for porphyry copper deposits were delineated within the study area (table 1). From oldest to youngest, the tracts include four early Paleozoic
and five late Paleozoic tracts within the Central Asia Orogenic Belt, and three Paleozoic to Mesozoic tracts that belong to the eastern part of the Tethysides (fig. 3). Within the Central Asia Orogenic Belt, the early and late Paleozoic tracts are intimately mixed and some younger tracts overlap older tracts (fig. 4). The age ranges for each tract are shown schematically in figure 3, along with the names of the orogenies that are applied to events in the literature. The use of the names of orogenies as time terms is inappropriate, but because they are so commonly used, especially in the Chinese literature, to denote “magmatic stages,” the same terminology is used here. In the discussion that follows, the term “Caledonian time” is used to mean about 540 to 400 Ma, “Variscan time” to mean about 400 to 280 Ma, “Indosinian time” to mean about 280 to 200 Ma, and “Yanshanian time” to mean about 200 to 65 Ma (also see the time-scale correlation chart in appendix E).

The permissive tracts represent examples of a variety of geologic settings, including island arcs, continental arcs, postconvergent magmatic belts, and composite settings that represent arcs accreted to former continental margins as ancient oceans closed. All of the tracts are elongated in a general east-west direction, perpendicular to the modern Asian Pacific Ocean continental margin, and some reflect the deformation of permissive units into regional-scale oroclines (such as parts of tracts 142pCu8504, Mongol-Sayan, and 142pCu8507, Molgol-Altai). Porphyry copper assessments for adjacent areas are shown in gray on figure 4. These include assessments of western Central Asia (Berger and others, 2014), the Tibetan Plateau (Ludington and others, 2012a), the Mesozoic of East Asia (Ludington and others, 2012b), and the Tethys region of western and southern Asia (Zürcher and others, in press).

A brief and simplified summary of the broad-scale geologic framework for porphyry copper deposits in the study area is presented here. More specific details are described for individual permissive tracts later in this report. Readers are cautioned that geodynamic models for this part of the world are controversial, often contradictory, and repeatedly change as new data become available. Identification of permissive settings for porphyry copper deposits in the future will undoubtedly benefit from more studies integrating new age determinations, igneous geochemistry, and large-scale geodynamic-metallogenic studies.

Central Asian Orogenic Belt

The Central Asian Orogenic Belt (CAOB) is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west, nearly to the Pacific Coast of Asia in the east (fig. 2). It includes all the terranes between the Eurasian Continent (Siberian Craton) and the combination of the North China Craton and the Tarim Craton. The CAOB, which is one of the world’s largest orogenic systems, formed along the southern margin of the Eurasian Continent in a complex and much-debated manner. It includes microcontinental fragments, island arcs, continental arcs, back-arc basins, accretionary wedges, and oceanic plateaus, as well as numerous suture zones that bound all these terranes.

Two key features characterize all the various models for the evolution of the CAOB—(1) Many island arcs and continental arcs developed through subduction of the Paleo-Asian and Paleotethys Oceans, and (2) a number of continental fragments, mainly of Precambrian crust, periodically rifted off both Gondwanaland and Eurasia and became incorporated with the arcs into the resulting collage. The subduction-related island arcs and continental arcs, as well as some postconvergent magmatic belts, have produced porphyry copper deposits in a variety of places and times. Although development of the CAOB began before 1,000 Ma (Kröner and others, 2007), and there are several named arcs of Vendian (late Precambrian) age along the southern margin of Siberia (Yenesei, Kan, Baikal-Muya), there are no significant Precambrian porphyry copper deposits or prospects (see appendix E for geologic-age terms). This assessment deals only with the Paleozoic and early Mesozoic parts of the orogen. To review the competing theories of continental evolution, see Windley and others, 2007; Xiao and others, 2010; Wilhem and others, 2012; and Pirajno, 2013.

Caledonian Magmatism

At least two major magmatic arcs and three other areas of volcanic rocks in the CAOB that involved subduction of oceanic crust of the Paleo-Asian Ocean were active from at least Vendian time through approximately the end of the Silurian.

Caledonian-age rocks that occur in unnamed island arcs in the southern part of the CAOB are assessed by the Solonker (142pCu8501) and the Gobi-Amur (142pCu8503) tracts (fig. 5). The few Caledonian rocks in the Solonker tract (which is delineated mostly on the basis of Variscan and Indosinian rocks) are scattered across northern China, from eastern Xinjiang Autonomous Region in China eastward nearly to the Pacific Ocean in Heilongjiang and Liaoning Provinces in eastern China. There are no known porphyry copper deposits of Caledonian age. The Chehugou deposit (table 2, fig. 5) is within the area of the Solonker tract, but it is late Permian to Early Triassic in age. Younger volcanic rocks largely cover the second unnamed Caledonian arc, which corresponds to the Gobi-Amur tract. It extends from southwestern Mongolia eastward through southern Mongolia to Heilongjiang Province in China near the boundary with Russia and hosts the Duobaoishan porphyry copper deposit at the eastern end (see fig. 5).
Table 1. Permissive tracts for porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides.

<table>
<thead>
<tr>
<th>Tract</th>
<th>Tract name</th>
<th>Countries</th>
<th>Area (km²)</th>
<th>Geologic feature assessed</th>
<th>Duration of igneous activity (million years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>142pCu8501</td>
<td>Solonker</td>
<td>China</td>
<td>250,100</td>
<td>Paleozoic through Triassic igneous rocks (early Paleozoic Bainaimiao island arc, a late Paleozoic continental arc formed by south-directed subduction of the Paleo-Asian Ocean beneath the North China craton) and Permo-Triassic rocks formed by collision of the North China and Tarim cratons (Manchurides) with Eurasia (Altaiids).</td>
<td>297</td>
</tr>
<tr>
<td>142pCu8502</td>
<td>Kazakh-Tianshan</td>
<td>Kazakhstan and China</td>
<td>89,610</td>
<td>A varied assemblage of Cambrian through Silurian igneous rocks (Kipchak and Stepnyak-North Tienshan island arcs) in the western part of the Central Asian Orogenic Belt. Partly covered by the Late Paleozoic Balkash-Yili Arc.</td>
<td>126</td>
</tr>
<tr>
<td>142pCu8503</td>
<td>Gobi-Amur</td>
<td>Mongolia, China, and Russia</td>
<td>56,090</td>
<td>An assemblage of Cambrian through Silurian igneous rocks that consist mostly of continental-margin arc rocks with some island-arc rocks at the eastern end; mostly covered by the Late Paleozoic Kazakh-Mongol Arc.</td>
<td>144</td>
</tr>
<tr>
<td>142pCu8504</td>
<td>Mongol-Sayan</td>
<td>Mongolia, China, and Russia</td>
<td>575,100</td>
<td>An assemblage of Cambrian through Silurian igneous rocks primarily in central and northern Mongolia and bordering parts of Russia, including the Tuva-Mongol island arc and a variety of other calc-alkaline rocks.</td>
<td>126</td>
</tr>
<tr>
<td>142pCu8505</td>
<td>Kazakh-Tarim</td>
<td>Kazakhstan and China</td>
<td>344,290</td>
<td>A varied assemblage of Devonian through Triassic igneous rocks that include the Balkash-Yili continental-margin arc, as well as younger rocks related to the Indosinian orogeny (collision of China with Asia).</td>
<td>170</td>
</tr>
<tr>
<td>142pCu8506</td>
<td>Oyu Tolgoi</td>
<td>Mongolia and China</td>
<td>329,850</td>
<td>A varied assemblage of Devonian through Triassic igneous rocks primarily in Mongolia and China that include the Devonian Kazakh-Mongol continental-margin arc, as well as younger rocks related to the Indosinian orogeny (collision of China with Asia).</td>
<td>216</td>
</tr>
<tr>
<td>142pCu8507</td>
<td>Mongol-Altai</td>
<td>Russia, Mongolia, China, and Kazakhstan</td>
<td>785,570</td>
<td>A varied assemblage of Devonian through early Permian igneous rocks in Mongolia and Russia that include primarily calc-alkaline continental-margin arc rocks.</td>
<td>145</td>
</tr>
<tr>
<td>142pCu8508a</td>
<td>Erdenet Southwest</td>
<td>Mongolia</td>
<td>61,430</td>
<td>An assemblage of middle Permian through Triassic igneous rocks in Mongolia that formed during and after closure of the Mongol-Okhotsk Ocean, apparently in a postsubduction environment.</td>
<td>70</td>
</tr>
<tr>
<td>142pCu8508b</td>
<td>Erdenet Northeast</td>
<td>Russia</td>
<td>103,790</td>
<td>An assemblage of middle Permian through Triassic igneous rocks in Russia that formed during and after closure of the Mongol-Okhotsk Ocean, apparently in a postsubduction environment.</td>
<td>70</td>
</tr>
<tr>
<td>Tract</td>
<td>Tract name</td>
<td>Countries</td>
<td>Area (km²)</td>
<td>Geologic feature assessed</td>
<td>Duration of igneous activity (million years)</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>142pCu8701</td>
<td>Qinling-Dabie</td>
<td>China and Tajikistan</td>
<td>403,220</td>
<td>An assemblage of Paleozoic through Triassic igneous rocks in central China that includes a Cambro-Ordovician island arc, a Devonian continental-margin arc related to north-directed subduction of the Paleo-Tethys Ocean beneath the North China, Qaidam, and Tarim Cratons, and Permian-Triassic rocks formed as a result of the collision of the North China and Tarim cratons (Manchurides) with the Eurasian continent (Altaids).</td>
<td>340</td>
</tr>
<tr>
<td>142pCu8702</td>
<td>Jinsajiang</td>
<td>China</td>
<td>111,690</td>
<td>An assemblage of Carboniferous, Permian, and Triassic igneous rocks in southwestern China that formed both as island arcs and continental-margin arcs during subduction of the Paleo-Tethys Ocean below the Qiangtang and South China terranes</td>
<td>157</td>
</tr>
<tr>
<td>142pCu8706</td>
<td>Tethyan-Gangdese</td>
<td>China, India, and Pakistan</td>
<td>289,650</td>
<td>An assemblage of Late Triassic, Yanshanian (Jurassic and Cretaceous), and early Tertiary igneous rocks in southwestern China that were formed during subduction of the Tethys Ocean below the southern margin of Asia.</td>
<td>185</td>
</tr>
</tbody>
</table>
Figure 3. Chart showing the distribution of the permissive tracts for porphyry copper deposits in the Central Asia Orogenic Belt and eastern Tethysides regions in terms of geologic time span and orogenic events. Note that tract 142pCu8508 (Erdenet), consisting of two sub-tracts ("a" and "b"), is represented as a single time-interval bar on the chart. Ma, mega-annum/millions of years before present.
Figure 4. Map showing the distribution of permissive tracts for porphyry copper deposits in the Central Asia Orogenic Belt and eastern Tethysides and adjacent study areas. The tracts shown in gray and cross-hatch patterns were assessed in other studies by Berger and others (2014), Ludington and others (2012a), Ludington (2012b), and Zürcher and others (in press).
In northeast Kazakhstan, rocks of the Caledonian Kipchak mixed island arcs and continental arcs host the Bozhakol, Nurkazgan, and Kyzylytu porphyry copper deposits and define the Kazakh-Tianshan tract (142pCu8502).

Different parts of the Kipchak Arc are sometimes referred to as the Baidulet-Akbusu, Bozhakol-Chingiz, Selety, and Stepnyak-North Tien Shan Arcs (see fig. 5) (Windley and others, 2007; Xiao and others, 2010; Wilhem and others, 2012; and Pirajno, 2013). Not all of these arcs are in the Kazakh-Tianshan tract. Most of the southwestern part of the Kipchak Arc is described and assessed in Berger and others (2014).

In Russia, west of Lake Baikal, probable Vendian and Caledonian continental-arc rocks of the Uimen-Lebed and Gorny Altai assemblages form the northern part of the Mongol-Sayan tract (142pCu8504) and host the Agaskyr, Kiyalykh-Uzen, and Sora porphyry copper deposits (fig. 5, table 2) (Windley and others, 2007; Xiao and others, 2010; Wilhem and others, 2012; and Pirajno, 2013). Closest to the Siberian Craton is the Tuva-Mongol island arc, which corresponds generally to the southern part of the Mongol-Sayan tract. This is a long arc that has been oroclinally folded and covers a large area in central and northern Mongolia and eastern Russia. The Tuva-Mongol arc hosts the Aksug porphyry copper deposit, as well as several prospects in western Mongolia (table 2, fig. 5).

**Variscan Magmatism**

In Devonian time, reorganization of the tectonic plates in the area resulted in the initiation of new arcs, including the Kazakh-Mongol, an island arc primarily in the southern part of present-day Mongolia, and the Balkash-Ili, primarily a continental arc located in present-day Kazakhstan (fig. 6). Both these arcs were active from approximately Devonian time until the collision of the North China and Tarim Cratons with the southern margin of the CAOB in Permian time (initiation of the Indosinian orogeny) (Windley and others, 2007; Xiao and others, 2010; Wilhem and others, 2012; and Pirajno, 2013).

The Carboniferous and Permian Kazakh-Mongol island arc is included in parts of two assessment tracts, the Kazakh-Tarim (142pCu8505), in western China, and the Oyu Tolgoi (142pCu8506), mostly in southern Mongolia. The westernmost parts of the arc, in China, are also known as the Dulate-Baytag and Yemaquan Arcs (Windley and others, 2007; Xiao and others, 2010; Wilhem and others, 2012; and Pirajno, 2013). The most important porphyry copper deposit in the Kazakh-Mongol Arc is the giant Oyu Tolgoi deposit in southern Mongolia (table 2, fig. 6).

In Kazakhstan and northwestern China, the Balkash-Ili island arc (sometimes considered to be part of the Kazakh-Mongol Arc) corresponds to a major part of the Kazakh-Tarim tract and contains the Koktasdzhal and Kyzylkain deposits in Kazakhstan, the Baogutu deposit in China, and the large Tuwu-Yandong-Yanxi deposit in Xinjiang province of China (table 2, fig. 6) (Windley and others, 2007; Xiao and others, 2010; Wilhem and others, 2012; and Pirajno, 2013). The part of the arc near Tuwu-Yandong-Yanxi is also known as the Dananhou-Tousuan Arc. The part of the arc in northeast Kazakhstan is also called the Zharmasaur Arc. The parts of the Balkash-Ili Arc that are in southeast Kazakhstan are described and assessed by Berger and others (2014).

The Selenga-Gobi-Khanka Arc refers to a belt of primarily Middle Carboniferous to Early Triassic intrusive rocks in eastern Russia that make up part of the Mongol-Altai tract (142pCu8507). The origin of these intrusions involved a considerable amount of crustal melting. There are no known porphyry copper deposits in this assemblage of rocks. Parts of the Mongol-Altai tract are also defined by parts of the Permian-Triassic Sayan-Transbaikal continental arc (see fig. 6) (Windley and others, 2007; Xiao and others, 2010; Wilhem and others, 2012; and Pirajno, 2013).

**Indosinian Magmatism**

The Indosinian orogeny is recognized throughout East Asia and took place in Permian and Triassic time. It refers to the deformation related to the final amalgamation of the North and South China Cratons (also referred to as the Yangtze Terrane) and the Indochina Block with South China and appears to have triggered widespread postconvergent magmatism throughout much of eastern Asia. The Selenga-Gobi-Khanka continental arc (fig. 7) of Permian-Triassic age is the result of the youngest magmatism in the CAOB, formed during Indosinian time, and probably contains both subduction-related and postconvergent rocks. The postconvergent rocks are usually referred to as being related to the Mongolian-Transbaikal rift belt (Jahn and others, 2009; Reichow and others, 2010). This area corresponds to the Erdenet tract (142pCu8508) and contains the important Erdenet porphyry copper deposit (table 2, fig. 7).

**Tethysides**

The Tethysides (Alpine-Himalayan belt) represent a superorogenic collage that lies to the south of the Central Asia Orogenic Belt (see fig. 2). The Tethysides record the evolution and final closure of the Paleoethys and Neotethys Oceans and the ongoing tectonics related to the collision of India with southern Eurasia.

**Caledonian Through Indosinian Magmatism**

South of the CAOB, the Qinling-Dabie orogen marks the suture between the North China and Tarim Cratons with the South China (Yangtze) Craton to the south. The Ordovician Erlangping island arc (fig. 7) produced the oldest rocks in the orogeny. In Devonian time, an unnamed continental arc overprinted the area, and further magmatism related to the final amalgamation of North and South China in Indosinian time also punctuated the area. The composite Qinling-Dabie orogen and some igneous rocks further west in China and Tajikistan define the Qinling-Dabie tract (142pCu8701). Saishitang, a moderate-sized skarn-related porphyry copper deposit is in the central part of the orogen (table 2, fig. 7).
<table>
<thead>
<tr>
<th>Tract</th>
<th>Tract Name</th>
<th>Name</th>
<th>Country</th>
<th>Age (Ma)</th>
<th>Tonnage (Mt)</th>
<th>Cu (%)</th>
<th>Mo (%)</th>
<th>Au (g/t)</th>
<th>Ag (g/t)</th>
<th>Contained Cu (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>142pCu8501</td>
<td>Solonker</td>
<td>Chehugou*</td>
<td>China</td>
<td>257.5</td>
<td>178.6</td>
<td>0.14</td>
<td>0.07</td>
<td>n.d.</td>
<td>n.d.</td>
<td>250,000</td>
</tr>
<tr>
<td>142pCu8502</td>
<td>Kazakh-Tianshan</td>
<td>Bozshakol</td>
<td>Kazakhstan</td>
<td>481</td>
<td>1,000</td>
<td>0.67</td>
<td>0.023</td>
<td>0.049</td>
<td>1.61</td>
<td>6,700,000</td>
</tr>
<tr>
<td>142pCu8502</td>
<td>Kazakh-Tianshan</td>
<td>Kyzyltu</td>
<td>Kazakhstan</td>
<td>445</td>
<td>65.8</td>
<td>0.48</td>
<td>0.015</td>
<td>0.2</td>
<td>6.56</td>
<td>320,000</td>
</tr>
<tr>
<td>142pCu8502</td>
<td>Kazakh-Tianshan</td>
<td>Nurkazgan</td>
<td>Kazakhstan</td>
<td>410</td>
<td>213</td>
<td>0.81</td>
<td>0.01</td>
<td>0.26</td>
<td>2.5</td>
<td>1,725,300</td>
</tr>
<tr>
<td>142pCu8503</td>
<td>Gobi-Amur</td>
<td>Duobaoshan</td>
<td>China</td>
<td>485</td>
<td>644</td>
<td>0.52</td>
<td>0.02</td>
<td>0.255</td>
<td>6.1</td>
<td>3,300,000</td>
</tr>
<tr>
<td>142pCu8504</td>
<td>Mongol-Sayan</td>
<td>Aksug</td>
<td>Russia</td>
<td>516</td>
<td>805.2</td>
<td>0.52</td>
<td>0.014</td>
<td>0.156</td>
<td>0.99</td>
<td>4,200,000</td>
</tr>
<tr>
<td>142pCu8504</td>
<td>Mongol-Sayan</td>
<td>Sora</td>
<td>Russia</td>
<td>396.5</td>
<td>323.5</td>
<td>0.17</td>
<td>0.058</td>
<td>0.017</td>
<td>2.3</td>
<td>550,000</td>
</tr>
<tr>
<td>142pCu8504</td>
<td>Mongol-Sayan</td>
<td>Agaskyr</td>
<td>Russia</td>
<td>n.d.</td>
<td>310.5</td>
<td>0.032</td>
<td>0.05</td>
<td>n.d.</td>
<td>n.d.</td>
<td>99,400</td>
</tr>
<tr>
<td>142pCu8505</td>
<td>Kazakh-Tarim</td>
<td>Tuwu-Yandong-Yanxi</td>
<td>China</td>
<td>328</td>
<td>674.3</td>
<td>0.61</td>
<td>0.01</td>
<td>0.1</td>
<td>1.28</td>
<td>4,100,000</td>
</tr>
<tr>
<td>142pCu8505</td>
<td>Kazakh-Tarim</td>
<td>Kyzylkain</td>
<td>Kazakhstan</td>
<td>325</td>
<td>542</td>
<td>0.3</td>
<td>0.005</td>
<td>n.d.</td>
<td>n.d.</td>
<td>1,626,000</td>
</tr>
<tr>
<td>142pCu8505</td>
<td>Kazakh-Tarim</td>
<td>Baogutu</td>
<td>China</td>
<td>311</td>
<td>225</td>
<td>0.28</td>
<td>0.011</td>
<td>0.1</td>
<td>1.8</td>
<td>630,000</td>
</tr>
<tr>
<td>142pCu8505</td>
<td>Kazakh-Tarim</td>
<td>Koksadzhak</td>
<td>Kazakhstan</td>
<td>292</td>
<td>57</td>
<td>0.62</td>
<td>n.d.</td>
<td>0.72</td>
<td>3.8</td>
<td>353,400</td>
</tr>
<tr>
<td>142pCu8506</td>
<td>Oyu Tolgoi</td>
<td>Oyu Tolgoi</td>
<td>Mongolia</td>
<td>372</td>
<td>3,754.6</td>
<td>0.98</td>
<td>0.01</td>
<td>0.38</td>
<td>n.d.</td>
<td>37,000,000</td>
</tr>
<tr>
<td>142pCu8506</td>
<td>Oyu Tolgoi</td>
<td>Zaun Mod</td>
<td>Mongolia</td>
<td>n.d.</td>
<td>650</td>
<td>0.063</td>
<td>0.046</td>
<td>n.d.</td>
<td>n.d.</td>
<td>409,500</td>
</tr>
<tr>
<td>142pCu8506</td>
<td>Oyu Tolgoi</td>
<td>Tsagaan-Suvarga</td>
<td>Mongolia</td>
<td>370</td>
<td>240</td>
<td>0.53</td>
<td>0.018</td>
<td>0.084</td>
<td>2.6</td>
<td>1,272,000</td>
</tr>
<tr>
<td>142pCu8508a</td>
<td>Erdenet Southwest</td>
<td>Erdenet</td>
<td>Mongolia</td>
<td>240.7</td>
<td>2,370</td>
<td>0.38</td>
<td>0.013</td>
<td>n.d.</td>
<td>n.d.</td>
<td>9,006,000</td>
</tr>
</tbody>
</table>

*Solonker tract includes rocks as young as Indosinian. See appendix B for sources of resource data.*
Figure 5. Map of the Central Asia Orogenic Belt showing Caledonian age (540 to 400 million years ago) arcs, porphyry copper deposits, and assessment tracts.
Figure 6. Map of the Central Asia Orogenic Belt showing Variscan age (400 to 280 million years ago) arcs, porphyry copper deposits, and assessment tracts.
Figure 7. Map of the Indosinian (280 to 200 million years ago) Erdenet permissive tract of the Central Asia Orogenic Belt and the Caledonian (540 to 400 million years ago) through Indosinian Qinling-Dabie orogen of the Tethysides region showing porphyry copper deposits.
Indosinian Through Early Tertiary Magmatism

Further south, along the northeastern margin of the Tibetan Plateau, several Permian and Triassic continental arcs and island arcs are incorporated into the Jinsa Suture that separates the Qiangtang Terrane to the southwest and the Songpan-Ganze and Yangtze (South China) Terranes to the north and east (fig. 8). This suture marks the closure of the Paleotethys Ocean at the end of Indosinian time, in the Late Triassic. The Jiangda-Weixi and Zugong-Jinghong (fig. 8) are both continental arcs of Permian age that contain no known porphyry copper deposits. The Yidun (or Zhongdian) island arc is a somewhat younger (Triassic) feature that contains two known porphyry copper deposits, Pulang and Xuejiping, and a number of poorly explored prospects (table 2, fig. 8) (Hou and others, 2007). The Permian and Triassic igneous rocks accreted to the Yangtze and Songpan-Ganze Terranes define the Jinsajiang tract (142pCu8702).

After the docking of the Qiangtang Terrane, at the end of the Triassic, arc volcanism continued in response to subduction within and at the northern margin of the Tethys Ocean until the Paleocene docking of the Indian continental block with Asia. One set of plutonic rocks characterizes the Bangong-Nujiang Suture (fig. 8), which marks the middle Jurassic accretion of the Lhasa microcontinental terrane to the Qiangtang Terrane. These rocks, emplaced into largely continental crust, range in age from Jurassic through middle Cretaceous. There are no fully explored deposits in this region, but the 118 Ma Duolong prospect, discovered in about 2000, is actively undergoing development and contains at least 4 million metric tons (Mt) of copper, likely more (Rui and others, 2005; Tse, 2008; Li and others, 2011a). In the southern part of the Lhasa Terrane, the continental-margin Gangdese batholith and associated volcanic rocks range in age from middle Cretaceous to Paleocene. There are no known porphyry copper deposits. Together, all these Mesozoic and earliest Tertiary arc rocks define the Tethyan Gangdese tract (142pCu8706). Post-Paleocene igneous activity and porphyry copper deposits are described in a porphyry copper assessment of the Tibetan Plateau by Ludington and others (2012a).

Exploration History

In many parts of the world, porphyry copper exploration activity has been cyclic in response to changing global economic trends and the evolution of local infrastructure development. Exploration methods for porphyry copper deposits based on porphyry copper deposit models were not well known in China until the 1960s, when scientific and industrial activity was renewed after a long period of warfare and internal turmoil. Access to the region was also difficult due to limited infrastructure. Subsequently, basic geologic mapping and detailed geochemical and geophysical surveys have been completed, resulting in the discovery of numerous porphyry copper deposits and prospects. Remote-sensing techniques are increasingly being used in rarely visited areas to map alteration and identify targets for follow-up field investigations (Liu and others, 2013). A few international companies based outside of China have operated in the region since about 1990, but most of the exploration activity has been conducted by Chinese companies and is not well documented in the English language literature.

More than 99 percent of Mongolia has been mapped at a scale of 1:200,000, and about 25 percent of the country has been mapped and explored at a scale of 1:50,000. Aerial multispectral surveys at scales of 1:50,000 and 1:25,000 cover about 30 percent of the country (Javkhlanbold, 2006). Many of the prominent exposed mineralized systems were first discovered before 1991 and the information produced before that time is difficult to access. Recent private sector exploration using modern methods is expected to result in new discoveries, as exemplified by the discovery in the late 1990s of the giant Oyu Tolgoi porphyry copper deposit (Perelló and others, 2001). In July 2014, the Mongolian parliament ended a 4-year moratorium on issuing new mineral exploration licenses and extended exploration periods from 9 to 12 years (Kohn, 2014).

Before its breakup, exploration in the former Soviet Union was state sponsored. Geochemical exploration data (for example, stream sediment) and commodity occurrences are recorded on 1:200,000 scale maps produced mainly in the 1960s and 1970s, but detailed reports are not in the public domain. In recent years, strict mining laws limit amounts of foreign investment and exploration in Russia. Much of the recent exploration activity in the parts of eastern Kazakhstan covered in this report is focused on massive sulfide deposits and orogenic gold. In April 2013, Kazakhstan lifted a 4-year ban on the issuance of new mineral exploration licenses.

Tract Delineation

The geology-based strategy for permissive tract delineation used in this assessment is described below. Digital geologic data were processed in a GIS using Esri ArcMap software as follows:

- Regional-scale maps and geologic literature were used to identify the fundamental units for tract delineation (magmatic arcs or belts of igneous rocks of a given age range and petrologic association).

- Digital geologic maps were then used to select map units to define preliminary tracts permissive for porphyry copper deposits. Igneous map units were subdivided by age groups and classified as permissive or nonpermissive based on lithology. Permissive rocks include calc-alkaline and alkaline plutonic and volcanic rocks. Nonpermissive rocks include, for example, basalts and ultramafic assemblages, ophiolitic assemblages, highly evolved granites, and peraluminous granites.

- Typically, a 10-km buffer was then applied to plutonic rock polygons or a 2-km buffer was applied to volcanic rock polygons. This generally expanded the area of
Figure 8. Map of the Tethysides region showing Permian, Mesozoic, and Paleocene magmatic arcs, porphyry copper deposits, and assessment tracts.
the tract to include all porphyry copper deposits and significant associated prospects.

- After buffering, available data on mineral occurrences, locations of dated igneous rock samples, and geophysical and geochemical information were examined to identify previously unrecognized evidence of unmapped permissive rocks or hydrothermal systems. Scanned and rectified page-size illustrations from the literature were incorporated in the GIS database to check locations and permissive rock boundaries. In a few instances, 10-km-wide buffers were also placed at known locations of porphyry copper deposits, significant prospects, and prospects if intrusive rocks were reported from the literature and depicted in deposit-scale maps but not shown at the regional scale of the available digital map base.

- An aggregation and smoothing routine was applied to the resulting polygons, and the tracts were further edited by hand to ensure that all units were contained within the delineated permissive area. In many cases, more detailed geologic maps were used to resolve tract boundary issues. Tract boundaries were also edited to honor major tectonic boundaries.

- Areas where postmineral volcanic centers, depositional basins, and other forms of cover were judged to exceed 1 km in thickness were excluded from the tracts. Intrusions younger than the designated tract age were also excluded. Volcanic rocks younger than the designated tract age, but inferred to be less than 1 km thick, were included within permissive areas.

The different mapping scales and mapping styles available for the assessment posed challenges in identifying permissive versus nonpermissive rocks. Some map units considered permissive unavoidably contain rock types that would normally be excluded. Similar issues exist with respect to the generalized stratigraphic ages assigned to some map units. More detailed geologic maps would likely result in a smaller, more restrictive tracts.

### Estimating Numbers of Undiscovered Deposits

The assessment team evaluated the available data and made individual, subjective, initially blind estimates of the numbers of undiscovered porphyry copper deposits using expert judgment. Estimates are expressed in terms of different levels of certainty. Estimators were asked for the least number of deposits of a given type that they believe could be present at three specified levels of certainty (90 percent, 50 percent, and 10 percent). For example, on the basis of all the available data, a team member might estimate that there was a 90-percent chance (or better) of at least one, a 50-percent chance of at least three, and a 10-percent chance of at least five undiscovered deposits in a permissive tract. The individual blind estimates were then shared and discussed as a group, and a consensus estimate was agreed upon by the team for each tract.

The estimates were converted to a mean number of undiscovered deposits and associated standard deviation based on the algorithm developed by Singer and Menzie (2005). The algorithm can be described by the following general equations to calculate a mean number of undiscovered deposits (λ) and a standard deviation (σ) based on estimates predicted at different quantile levels (N_0.90, N_0.50, N_0.10, N_0.05) (N_0.90 = 90-percent level, N_0.50 = 50-percent level, and so on):

\[
\lambda = 0.233 N_{0.90} + 0.4 N_{0.50} + 0.225 N_{0.10} + 0.045 N_{0.05} + 0.03 N_{0.01}
\]

\[
\sigma = 0.121 - 0.237 N_{0.90} - 0.093 N_{0.50} + 0.183 N_{0.10} + 0.073 N_{0.05} + 0.123 N_{0.01}.
\]

These equations were programmed in a spreadsheet to allow the team to quickly evaluate their estimates. The difference between the number of undiscovered deposits associated with the 90th percentile and the 10th percentile or 1st percentile is a measure of uncertainty; large differences suggest great uncertainty. Estimates of number of deposits explicitly represent the probability (or degree of belief) that some fixed but unknown number of undiscovered deposits exist in the delineated tracts (Singer, 2007a). Another useful parameter for reporting uncertainty associated with an estimate is the coefficient of variation (C_v), defined as:

\[
C_v = \frac{\sigma}{\lambda}.
\]

The coefficient of variation is often reported as percent relative variation (100 × C_v). Thus, the final team estimates reflect both the uncertainty in what may exist and the favorability of the tract (Singer, 2007a).

The estimates were combined with appropriate grade and tonnage models in a Monte Carlo simulation using the EMINERS computer program (Bawiec and Spanski, 2012; Duval, 2012), based on the original Mark 3 computer program described by Root and others (1992), to provide a probabilistic estimate of amounts of resources that could be associated with undiscovered deposits. No economic filters were applied, so results must be viewed with the understanding that deposits, even if discovered, may not be feasible.

The rationales for individual tract estimates are discussed in the tract descriptions below. In some cases, the density of known significant porphyry copper prospects within a tract was also used as part of the basis for estimates at the 90th and 50th quantiles. Particular weight was given

---

Footnote: To use the equation in cases where three nonzero quantiles (90-50-10) are estimated, use the N_0.90 values for N_0.90 and N_0.01; where four quantiles (90-50-10-5) are estimated, use the N_0.90 value for N_0.10.
Assessment of Tracts in the Central Asian Orogenic Belt and Eastern Tethysides

The assessment for each permissive tract in the Central Asian Orogenic Belt and eastern Tethysides is described below in a standardized format that begins with a reference to the descriptive and the grade and tonnage model used and a brief statement describing the fundamental geologic feature that formed the basis for delineation of the tract. This is followed by descriptions of the tract location, tectonic setting, geologic criteria for tract delineation, and a discussion of important deposits, significant prospects, and prospects. For each tract, map figures show (1) the permissive tract with porphyry copper deposits and significant prospects within it and (2) the distribution of permissive intrusive and extrusive rocks that formed the basis for tract delineation, along with any significant geologic features mentioned in the tract description.

The criteria used to select the grade and tonnage model for the probabilistic assessment of undiscovered resources are summarized in Table 3 and discussed in the text. Estimates of numbers of undiscovered deposits and results of the Monte Carlo simulation are also presented in tables and as cumulative frequency plots. The tables list estimates at the different levels of certainty, the probabilistic amounts of undiscovered deposits, and the deposit densities for each tract. Because tract delineation is a subjective process, it could be misleading to place great credence in calculated deposit densities, especially for large tracts based on small-scale geologic map units. In most cases, the assessment team’s subjective estimate is consistent with worldwide deposit density estimates (Singer and Menzie, 2010; Singer, 2008, 2010; Singer and others, 2005).

Results of the Monte Carlo simulations for each tract are shown graphically as cumulative frequency plots. These graphs show the estimated resource amounts associated with cumulative probabilities of occurrence, as well as the mean for each commodity and for total mineralized rock.

Early Paleozoic Tracts in the Central Asia Orogenic Belt

Four permissive tracts in the CAOB include rocks as old as the early Paleozoic (Caledonian). The Caledonian tracts (Fig. 5) are described here from south to north.

Solonker Tract (142pCu8501)

**Descriptive model:** Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

**Grade and tonnage model:** Global Cu-Au-Mo porphyry copper model (Singer and others, 2008)

**Geologic Feature Assessed:** An assemblage of Paleozoic through Triassic igneous rocks, primarily in northern China, that includes the early Paleozoic Bainaimiao island arc, a late Paleozoic continental arc formed by south-directed subduction of the Paleo-Asian Ocean beneath the North China Craton, and Permian-Triassic rocks formed as a result of the collision of the North China and Tarim Cratons (Manchurides) with the Eurasian Continent (Altaids)

**Location**

The Solonker tract is a 2,400-km-long by as much as 300-km-wide belt that extends from easternmost Xinjiang eastwards through the southern Gobi Desert (Fig. 1) to the lowlands north of Beijing, in northeastern China (Fig. 9). Except for a very small part in Mongolia, the tract lies within China.

**Tectonic Setting**

The Solonker tract is named for the Solonker Suture (Fig. 5), an east-west zone that marks the final closure of the Paleo-Asian Ocean during the convergence of the North China and the Siberian Cratons in Permian time. This tract consists of an assemblage of Caledonian and Variscan igneous rocks that belong to island arcs and continental arcs that formed along the northern margin of the North China and Tarim Cratons before the closure, along with a few Permian-Triassic igneous rocks that formed during and immediately after closure. Thus, three different magmatic systems are superimposed here—(1) a Cambrian-Ordovician island arc that formed in the Paleo-Asian Ocean, (2) a Carboniferous and Permian continental arc formed by south-directed subduction of the Paleo-Asian Ocean beneath the North China and Tarim Cratons, and (3) collisional and postcollisional rocks that formed in the Permian and Triassic (Indosinian).
Table 3. Statistical test results for grade and tonnage model selection, porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides.

[Pooled t-test results assuming equal variances; ANOVA tests used for tracts with a single deposit; \( p > 0.01 \) indicates that the deposits in the tract are not significantly different from those in the global models of Singer and others (2008) at the 1-percent level; *, fails t-test; Cu, copper; Mo, molybdenum; Ag, silver; Au, gold; t, metric tons; n.d., no data]

<table>
<thead>
<tr>
<th>Tract</th>
<th>Tract name</th>
<th>N known</th>
<th>Model tested</th>
<th>p values</th>
<th>Model selected</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>032Cu8501</td>
<td>Solonker</td>
<td>1</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.85 0.015 0.08 n.d. n.d. 0.39</td>
<td>Cu-Au-Mo</td>
</tr>
<tr>
<td>032Cu8502</td>
<td>Kazakh-Tianshan</td>
<td>3</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.98 0.14 0.7 0.43 0.87 0.79</td>
<td>Cu-Au-Mo</td>
</tr>
<tr>
<td>032Cu8503</td>
<td>Gobi-Amur</td>
<td>1</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.5 0.69 0.62 0.2 0.71 0.46</td>
<td>Cu-Au-Mo</td>
</tr>
<tr>
<td>032Cu8504</td>
<td>Mongol-Sayan</td>
<td>4</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.93 0.83 0.02 0.59 0.24 0.89</td>
<td>Cu-Mo subtype</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cu-Mo subtype</td>
<td>t</td>
<td>0.44 0.85 0.39 0.91 0.17 0.44</td>
<td>t-test results; Mo-rich known deposits and prospects</td>
</tr>
<tr>
<td>032Cu8505</td>
<td>Kazakh-Tarim</td>
<td>4</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.89 0.92 0.5 0.96 0.55 0.92</td>
<td>Cu-Au-Mo</td>
</tr>
<tr>
<td>032Cu8506</td>
<td>Oyu Tolgoi</td>
<td>3</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.15 0.27 0.38 0.77 0.88 0.3</td>
<td>Cu-Au-Mo</td>
</tr>
<tr>
<td>032Cu8508a</td>
<td>Erdenet Southwest</td>
<td>1</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.12 0.78 0.94 n.d. n.d. 0.18</td>
<td>Cu-Au-Mo</td>
</tr>
<tr>
<td>032Cu8701</td>
<td>Qinling-Dabie</td>
<td>1</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.68 0.04 n.d. n.d. 0.39 0.83</td>
<td>Cu-Au-Mo</td>
</tr>
<tr>
<td>032Cu8702</td>
<td>Jinsajiang</td>
<td>2</td>
<td>Cu-Au-Mo</td>
<td>t</td>
<td>0.9 0.88 0.85 0.5 0.66 0.94</td>
<td>Cu-Au subtype</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cu-Au subtype</td>
<td>t</td>
<td>0.77 0.85 0.27 0.34 *0.001 0.83</td>
<td>Deposits in the tract are Au-rich; the geology of the tract is a continuation of the Au-rich Sukhotai tract to the south (Hammarstrom and others, 2013).</td>
</tr>
</tbody>
</table>
Figure 9. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8501, Solonker—China.
Geologic Criteria

The Solonker tract was defined using calc-alkaline, intermediate-composition igneous map units with map unit ages of Caledonian, Cambrian, Ordovician, Silurian, Variscan, Hercynian, Devonian, Carboniferous, and Permian (fig. 10). Intrusive map units include granite, diorite, monzonite, and syenite. Extrusive units include primarily rhyolite and andesite closely associated with permissive intrusive units, with lesser amounts of dacite.

The Solonker tract is bound on the north by the Variscan Solonker Suture. The tract pinches out to the west against the eastern margin of the Tarim Craton. To the south, the western half of the tract is bounded by various Caledonian and Variscan sutures and faults associated with the northern Qinling-Dabie orogen, and the eastern half of the tract is bounded by the northern margin of the Sino-Korean (or North China) Craton. The eastern end of the tract is limited by the eastern margin of the CAOB, beyond which the magmatic history is related to Mesozoic Pacific-margin subduction. The extent of the tract was primarily delineated by the selection of appropriate map units and the distribution of mineral deposits.

Known Porphyry Deposits

Chehugou

Chehugou, the only porphyry copper deposit in the tract, is an example of a group of deposits that seem to be common in eastern Asia that have subequal copper and molybdenum grades. Although vein deposits had been known since 1956, the porphyry deposit was recognized only in 2007 (Zeng and others, 2011). The deposit is relatively small, with a copper resource reported as about 178,000,000 t with a copper grade of 0.14 percent. The molybdenum grade is reported to be 0.1 percent.

The deposit is related to a Permian syenogranite porphyry stock with a zircon SHRIMP (sensitive high resolution ion microprobe) age of about 245 Ma (Zeng and others, 2011). Molybdenite from the deposit has a rhenium-osmium (Re-Os) date of about 258 Ma (Liu and others, 2010). Hydrothermal alteration is primarily phyllic (Zeng and others, 2011).

Propects, Mineral Occurrences, and Related Deposit Types

Information was available for six porphyry copper prospects in the tract, four of which are judged to be particularly significant (fig. 9, appendix B). The Bainaimiao prospect has been known since 1959. Its classification and age are both controversial. Jian and others (2007) interpret two distinct mineralization episodes, a Caledonian age volcanogenic massive sulfide overprinted by Permian-Triassic porphyry-style mineralization. Other workers discount the massive sulfide interpretation but disagree about the age, which has been determined variously as about 466 Ma, 429 Ma, and 396 Ma. The latter is an argon (Ar40-Ar39) age determination on hydrothermal biotite (Li and others, 2008b), which likely represents the mineralization age. Li and others (2008b) interpreted the deposit as an orogenic deposit rather than a porphyry or sedimentary exhalative deposit on the basis of fluid inclusions and an age that correlates with peak metamorphism of the host rocks.

There is a partial resource of more than 500,000 t of copper with a mean grade of 0.91 percent copper (Jian and others, 2007). The prospect is still being explored. Baihaitang, Gongpoquan, and Oblaga all appear to be small vein and (or) skarn deposits associated with porphyry-style mineralization (appendix B). Exploration at Oblaga by Ivanhoe Mines, Ltd., in 2003 described high-grade copper-gold skarns and porphyry-related quartz-chalcopyrite-molybdenite-bornite-pyrite veinlets (Ivanhoe Mines, Ltd., 2004). Oblaga had been mined on a small-scale by local Chinese operators as a porphyry-related copper-gold mine.

Grade and Tonnage Model Selection

There is only one known porphyry copper deposit in the tract, Chehugou (table 2). ANOVA tests of the tonnage and grade data for Chehugou at the 1-percent confidence level using log-transformed values for ore tonnage, as well as copper and molybdenum grades, indicate that Chehugou is not distinguishable from the general global porphyry copper model of Singer and others (2008). Also, both gold and molybdenum are reportedly associated with significant copper prospects in the tract.

Estimates of Undiscovered Deposits and Rationale

One deposit, Chehugou, and four significant prospects are known across the ~250,000 km² Solonker tract. Small-scale mining of Cu-Au skarn ore at the Oblaga prospect (1987) might be related to a deep-seated porphyry system. Bainaimiao has an estimated reserve in excess of 500,000 t copper, defined by drilling and trenching, and could achieve deposit status if ongoing exploration reveals additional resources. Baihaitang has a reported resource of 179,000 t copper. In addition, there are at least two other prospects that have been identified in the Chinese-language scientific literature (see appendix B).

The assessment team noted that some of the prospects in this tract were not unequivocally porphyry copper types and that available data for these occurrences indicates a Variscan age. This tract represents a combination of mainly Caledonian and Variscan rocks, and the team suspected that most of the undiscovered deposits within this tract would likely be associated with Variscan permissive rocks, rather than Caledonian rocks.

The level of mineral exploration was considered to be moderate to high. However, exploration in this region has
Figure 10. Map showing the distribution of permissive rocks used to delineate tract 142pCu8501, Solonker—China.
focused primarily on small high-grade, vein-type orogenic gold and rare-earth element (REE) deposits (for example, the Bayan Obo REE-Fe-Nb deposit) rather than large, low-grade porphyry deposits. Although only a few exploration and detailed mineral investigations have taken place, mainly in the eastern and central part of the tract (see maps available at China Geological Survey, 2005), the entire area has been covered by geochemical surveys and has been evaluated for mineral resources at a reconnaissance level. Maps showing the degree of mineral resource exploration and geologic research (China Geological Survey, 2012) indicate that high levels of activity have taken place mostly in the eastern part of the tract.

The team estimated a 90-percent chance for 1 or more undiscovered deposits in the tract, a 50-percent chance of 2 or more deposits, and a 10-percent chance of 15 or more deposits, for a mean of 5.5 expected undiscovered deposits (table 4.4).

In a previous assessment (Yan and others, 2007), four upper and lower Paleozoic age assessment tracts (X-2, X-3, IX-6, and III-1) are largely coincident with all but the easternmost part of the Solonker tract. Their estimate for these areas totaled 5.8 undiscovered deposits, which is similar to the estimate of 5.5 made here.

Probabilistic Assessment Simulation Results

The mean estimate of undiscovered resources was 22 Mt of copper (table 4B), far in excess of the 250,000 t of copper identified at Chehugou. Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 4B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 11).

Kazakh-Tianshan Tract (142pCu8502)

Descriptive models: Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

Grade and tonnage model: Global Cu-Au-Mo porphyry copper model (Singer and others, 2008)

Geologic Feature Assessed: A varied assemblage of Cambrian through Silurian igneous rocks in northeastern Kazakhstan and northwestern China

Location

The Kazakh-Tianshan tract is a northwest-trending belt about 1,200 km long and as much as 200 km wide in northeastern Kazakhstan and far northwestern China (Xinjiang Autonomous Area) (fig. 12). Berger and others (2014) provided a detailed discussion of the early Paleozoic tectonics and porphyry copper potential for eastern Kazakhstan, but did not assess this area.

Tectonic Setting

This area was largely formed by the early Silurian in the eastern part of the Gondwana supercontinent by accretion and collision of ribbon microcontinents and island-arc terranes (Wilhem and others, 2012) but did not arrive at its present location, relative to Eurasia, until the Triassic. The tract outlines segments of these Caledonian-age island arcs in eastern Kazakhstan and western China that formed before the Variscan-age deformation that resulted in the formation of the Kazakhstan Orocline. The arcs include Kipchak Arc segments known as the Selety, Baidulet-Akbastau, and Bozshakol-Chingiz Arcs (fig. 5) along the eastern margins of the orocline (Windley and others, 2007; Wilhem and others, 2012). The tract includes tectonically juxtaposed Early and Middle Cambrian and Late Cambrian-Early Ordovician island arcs preserved in fragments in volcanic belts (Degtyarev, 2011). These early Paleozoic arcs in the western part of the CAOB are extensively fragmented and deformed by Late Devonian and younger events. During the Triassic, large northwest- and east-west-trending strike-slip faults further segmented the arcs.

Geologic Criteria

The Kazakh-Tianshan tract was defined using calc-alkaline, intermediate-composition igneous map units with map unit ages of Cambrian, Ordovician, and Silurian as shown on a digital geologic map of Central Asia (Seltmann and others, 2012). Plutonic units are mainly granodiorite, tonalite, quartz diorite, and diorite. Volcanic units are mainly andesite and dacite. The permissive rocks include the Late Ordovician Qryqquduk Complex in the Selety Arc (fig. 5), where large volumes of granitoids were emplaced along faults and fault intersections and cut by later faults. Intrusive bodies have the form of lopoliths or intrusive sheets as much as 8 km thick with flat bottoms, as indicated by geophysical data (Degtyarev, 2011).

The tract includes four main segments (fig. 13). The southeastern segment of the tract outlines an area in the Xiemsitai Mountains in the northern West Junggar area of China (fig. 13), where Late Silurian to Early Devonian (423–411 Ma) extrusive rocks and subvolcanic, caldera-related intrusions associated with porphyry copper occurrences are described (Shen and others, 2010a; Shen and others, 2012). The tract here is based on the extent of a copper geochemical anomaly and mapping of Late Silurian extrusive rocks (andesite, tuff, and rhyolite) and subvolcanic felsite and granite porphyry (fig. 3 in Shen and others, 2012). These rocks likely represent an extension of the Bozshakol-Chingiz Arc (fig. 13) and metallogenic belt of eastern Kazakhstan (Shen and others, 2012).

The tract is bounded on the west by the core of the Kazakhstan Orocline and younger permissive tracts assessed by Berger and others (2014). The tract extends to the eastern extent of known permissive rocks of Caledonian age in western China.

Known Porphyry Deposits

There are three known porphyry copper deposits in the tract, Kyzltu, Bozshakol, and Nurkazgan, all in Kazakhstan (table 2, fig. 12). They are all Ordovician or Silurian in age, with radiometric ages ranging from 481 Ma to 410 Ma. Bozshakol is the largest. These deposits are also described by Berger and others (2014).
Table 4. Probabilistic assessment results for tract 142pCu8501, Solonker—China.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

\[ N_{xx}, \text{estimated number of deposits associated with the } xx\text{th percentile}; N_{\text{und}}, \text{expected number of undiscovered deposits}; s, \text{standard deviation}; C\%\,, \text{coefficient of variance}; N_{\text{known}}, \text{number of known deposits in the tract that are included in the grade and tonnage model}; N_{\text{total}}, \text{total of expected number of deposits plus known deposits}; \text{area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 km}^2; N_{\text{und}}, s, \text{and } C\%, \text{are calculated using a regression equation (Singer and Menzie, 2005)} \]

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density ( (N_{\text{und}}/100,000 \text{ km}^2) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_{10} )</td>
<td>( N_{50} )</td>
<td>( N_{90} )</td>
<td>( N_{95} )</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>Cu</td>
<td>0</td>
<td>190,000</td>
</tr>
<tr>
<td>Mo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Au</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rock</td>
<td>0</td>
<td>49</td>
</tr>
</tbody>
</table>

EXPLANATION

Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8501, Solonker—China. k=thousands, M=millions, B=billions, Tr=trillions.
Figure 12. Map showing the location, known deposits, and significant prospects for permissive tract 142pCu8502, Kazakh-Tianshan—Kazakhstan and China.
Figure 13. Map showing the distribution of permissive rocks used to delineate tract 142pCu8502, Kazakh-Tianshan—Kazakhstan and China.
At Bozshakol, in the northern part of Kazakhstan, a feasibility study has been completed, the mine is under construction, and mining is expected to commence by 2015 (Kazakhmys PLC, 2011). It is a large deposit, containing more than 4,000,000 t of copper. The main ore-related intrusion is a porphyritic tonalite that is the final intrusion of a suite of dioritic, quartz dioritic, and tonalitic rocks (Porter Geoconsultancy, 2004). Seltmann and Porter (2005) report an age for the deposit of 481 Ma.

**Prospects, Mineral Occurrences, and Related Deposit Types**

Information was available about only one porphyry copper prospect, the newly discovered Xiemiastai, in Xinjiang, which has a uranium-lead (U-Pb) date of 423 Ma (Shen and others, 2010a). The area hosts the younger (311 Ma) Baogutu porphyry copper-gold deposit included in the late Paleozoic Kazakh-Tarim tract. Remote sensing is in use to map alteration and small intrusions in the area (Liu and others, 2013), which when combined with field investigations and more radiometric dating may lead to further porphyry discoveries in the area.

**Probabilistic Assessment**

**Grade and Tonnage Model Selection**

The use of t-tests to compare the three porphyry copper deposits in the tract with the general global porphyry copper model of Singer and others (2008) shows that the log-transformed values for ore tonnage and copper, molybdenum, gold, and silver grades of the three deposits fit the model at the 1-percent confidence level (table 3).

**Estimates of Undiscovered Deposits and Rationale**

There are three known deposits in the tract, including one (Bozshakol) that contains more than 4 Mt of copper. The newly discovered prospect at Xiemiastai lends credence to the idea that Caledonian-age rocks in this part of China may contain porphyry copper deposits.

The proportion of volcanic to plutonic rocks of all ages indicates that the level of erosion is appropriate for the exposure and preservation of porphyry copper deposits. The level of mineral exploration was considered to be moderate to high in the northern parts of the tracts. The tract area in China is just starting to be studied in detail, and new age determinations indicate that rocks in China that were dated as Middle Devonian by fossils are older (Shen and others, 2012). Although only a few detailed mineral investigations are reported, much of the area has been covered by geochemical surveys and has been evaluated for mineral resources at the reconnaissance level.

The team estimated a 90-percent chance for 1 or more undiscovered deposits in the tract, a 50-percent chance of 2 or more deposits, and a 10-percent chance of 8 or more deposits, for a mean of 3.4 expected undiscovered deposits (table 5A).
Table 5. Probabilistic assessment results for tract 142pCu8502, Kazakh-Tianshan—Kazakhstan and China.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

[Nxx, estimated number of deposits associated with the xxth percentile; Nund, expected number of undiscovered deposits; s, standard deviation; Cv%, coefficient of variance; Nknown, number of known deposits in the tract that are included in the grade and tonnage model; Ntotal, total of expected number of deposits plus known deposits; km², area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 km²; Nund, s, and Cv% are calculated using a regression equation (Singer and Menzie, 2005)]

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density (Ntotal/100,000 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N90</td>
<td>N50</td>
<td>N10</td>
<td>N05</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>Cu</td>
<td>0</td>
<td>210,000</td>
</tr>
<tr>
<td>Mo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Au</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rock</td>
<td>0</td>
<td>51</td>
</tr>
</tbody>
</table>

Figure 14. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8502, Kazakh-Tianshan—Kazakhstan and China. k=thousands, M=millions, B=billions, Tr=trillions.
Figure 15. Map showing the location, known deposits, and significant prospects for permissive tract 142pCu8503, Gobi-Amur—Mongolia, China, and Russia.
Figure 16. Map showing the distribution of permissive rocks used to delineate tract 142pCu8503, Gobi-Amur—Mongolia, China, and Russia.
Known Porphyry Deposits

Duobaoshan

Duobaoshan, in northern China, is the only known porphyry copper deposit in the tract (fig. 15). Duobaoshan has been dated as Early Ordovician (about 485 Ma) by Ge and others (2007) using U-Pb methods, but a Re-Os age on molybdenite from the deposit is Late Cambrian (about 506 Ma; Zhao and others, 1997). Duobaoshan is a large deposit that is currently being mined that contains more than 3,000,000 t of copper (Singer and others, 2008).

Prospects, Mineral Occurrences, and Related Deposit Types

Information was available for three porphyry copper prospects in the tract (fig. 15). Tongshan, judged to be particularly significant, is located about 10 km south of Duobaoshan and is also being mined. No information was available about the resource there, and so, for the purposes of this assessment, it is considered as a prospect with a very high probability of being a deposit.

Mengxi and He’ersai are newly identified prospects nearly 2,500 km to the west; each has Devonian U-Pb and Re-Os ages (Wang and others, 2009b, 2010; Cheng and others, 2010; appendix B).

Probabilistic Assessment

Grade and Tonnage Model Selection

The general porphyry copper grade and tonnage model of Singer and others (2008) was used. The available grade and tonnage data for the single known deposit, Duobaoshan, suggest that the general model is appropriate. The results of an ANOVA test, applied at the 1-percent confidence level using log-transformed values for ore tonnage, as well as copper and molybdenum grades, indicate that Duobaoshan is not distinguishable from deposits in the global general porphyry copper model.

Estimates of Undiscovered Deposits and Rationale

The Gobi-Amur tract is the smallest of the Central Asian tracts. One deposit, Duobaoshan, and one significant prospect are known in the northeastern part of the tract. Only two additional prospects are known, identified in Chinese-language academic publications, and these are located at the opposite, western side of the tract.

Despite the presence of one large deposit, the assessment team noted the lack of other prospects throughout most of the tract, as well as some uncertainty about the age of some of the rocks that define the tract. It is possible that some of the undated prospects in the Oyu Tolgoi tract, which overlies the Gobi-Amur, could be Caledonian in age, but the Variscan rocks appear to be more prospective in this area.

The permissive units in this tract are mainly volcanic and mixed volcanogenic-sedimentary rocks, chiefly andesite, with relatively few plutons. This distribution of rock types would suggest that the level of erosion may be relatively shallow throughout much of the tract.

The level of mineral exploration was considered to be variable, ranging from well explored in Mongolia, especially in the southeast, to moderately and poorly explored in the northeastern part of the tract in China. The Mongolian part of the tract has received much interest since 1991 and most surface outcrops have likely been examined. Nearly all of Mongolia has been mapped at 1:200,000 scale, about 25 percent mapped and explored at 1:50,000 scale, and about 32 percent covered by aerial multispectral surveys at 1:50,000 and 1:25,000 map scales (Javkhlanbold, 2006). Mineral-exploration and mining-lease maps of Mongolia (Mineral Resources Authority of Mongolia (MRAM), 2003; Javkhlanbold, 2006) show nearly complete coverage of the tract region (with the exception of several large environmentally sensitive protected areas), indicating that much of the area has undergone scrutiny. However, much of the eastern part of the tract in China is remote and heavily forested. The eastern and western parts of the tract in China have been evaluated for mineral resources at the reconnaissance level, and select areas, particularly in the eastern part of the tract, have been the site of mineral-resource surveys and exploration at map scales between 1:10,000,000 and 1:2,500,000. A few detailed investigations, also mainly in the east, have been carried out (see maps available at China Geological Survey, 2005). For example, a high level of activity has taken place around the Duobaoshan deposit and nearby Tongshan prospect (China Geological Survey, 2012).

The team estimated a 50-percent chance of 1 or more deposits, a 10-percent chance of 3 or more deposits, and a 5-percent chance of 6 or more deposits for a mean of about 1.5 expected undiscovered deposits (table 6.4).

In a previous assessment (Yan and others, 2007), two tracts (VIII-4 and IX-2) are largely coincident with the western and central parts of the Gobi-Amur tract. Their estimate for these areas was about 2.3 mean undiscovered deposits.

Probabilistic Assessment Simulation Results

The mean estimate of undiscovered resources of 5.9 Mt copper is about twice the identified copper resource (3 Mt copper) at Duobaoshan. Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 6B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 17).
Figure 17. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8503, Gobi-Amur—Mongolia, China, and Russia. k=thousands, M=millions, B=billions, Tr=trillions.
Mongol-Sayan Tract (142pCu8504)

Descriptive model: Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

Grade and tonnage model: Global porphyry copper, Cu-Mo subtype model (Singer and others, 2008)

Geologic Feature Assessed: A widespread and varied assemblage of Cambrian through Silurian igneous rocks in central and northern Mongolia and bordering parts of Russia, including the Tuva-Mongol island arc and a variety of other calc-alkaline rocks

Location

The Mongol-Sayan tract, in central and northern Mongolia and adjacent parts of Russia, consists of curvilinear belts of rock that have been deformed on a large scale (fig. 18). The tract includes a very small area in China along the border with Russia. The axis of the tract measures about 2,500 km in length and 900 km at its widest.

Tectonic Setting

The southern part of the tract consists of the very large Caledonian Tuva-Mongol island arc (also known as the Lake-Kamshara Terrane), that has been tectonically deformed into a backwards S-shape (fig. 5) due to mid-Paleozoic rotation of the Siberian continental block (Seltmann and others, 2014). In the western part of the tract, the Uimen-Lebed is an accreted island arc, whereas the Gorny Altai region includes continental-arc rocks that formed on the margin of Siberia (Wilhem and others, 2012). The Caledonian rocks in the Transbaikal region that form the eastern part of the tract are poorly known and may have large crustal components in their source.

Geologic Criteria

The Mongol-Sayan tract was defined using calc-alkaline, intermediate-composition igneous map units with Cambrian, Ordovician, and Silurian map-unit ages, as well as a few units designated lower Paleozoic (fig. 19). Plutonic rock types include granodiorite, granite, quartz diorite, diorite, plagiogranite, and granosyenite, gabbrodiorite, with lesser amounts of monzogabbro, monzonite, and alkaline granitoids. Volcanic rocks include primarily andesite, with lesser amounts of dacite and rhyolite.

The Mongol-Sayan tract is bound by the Main Mongolian Lineament on the south (fig. 5) and by the margin of the Siberian Continent on the north. The eastern margin of the tract is the eastern limit of the CAOB, beyond which the magmatic history is related to Mesozoic Pacific margin subduction. The western boundary of the tract is the same as the boundary between the Mongolian Orocline and the Kazakhstan Orocline. The extent of the tract was primarily delineated by the selection of appropriate map units and the distribution of mineral deposits.

Known Porphyry Deposits

There are four known porphyry copper deposits in the tract, all in the Altai-Sayan area of southern Siberia in Russia (table 2, fig. 18). Aksug is a large porphyry copper deposit of apparent Cambrian age. Kiyalykh-Uzen, Sora, and Agaskyr are smaller, molybdenum-rich porphyry deposits. The small (30 Mt) 470-Ma Kiyalykh-Uzen deposit was classified as a porphyry copper deposit by Singer and others (2008), whereas Distanov and others (2006) list the deposit as a copper skarn associated with an early Paleozoic collisional gabbro-granitoid plutonic belt.

Aksug

Aksug (table 2, fig. 18) was discovered in 1952, and is currently in development (Berzina and Berzina, 2008). It is a large deposit, with more than 4 Mt of copper, containing about 805 Mt of ore at a copper grade of 0.52 percent, a molybdenum grade of 0.014 percent, a gold grade of 0.16 grams per metric ton (g/t), and a silver grade of 0.99 g/t (Porter Geoconsultancy, 2005; Singer and others, 2008). The deposit appears to be related to quartz diorite, tonalite, and granodiorite porphyries that have 40Ar-39Ar ages ranging from about 405 Ma to about 368 Ma, whereas a Re-Os date on molybdenite from the deposit yielded an age of about 511 Ma (Berzina and Berzina, 2008). These porphyries are interpreted to be postconvergent, with primarily mantle sources. Ore is associated with phyllic hydrothermal alteration and potassic alteration is rare. Molybdenite from the ore contains relatively high contents of rhenium (about 460 parts per million, ppm), and associated rocks contain 9–31 parts per billion (ppb) palladium and 17–34 ppb platinum (Sotnikov and others, 2001; Berzina and others, 2005a,b).

Sora

The molybdenum-rich, copper-poor Sora (also known as Sorsk or Sorskoe) porphyry copper deposit in southwestern Siberia is associated with a multiphase Cambrian-Ordovician to Devonian granitoid complex. The complex includes a number of suites ranging from early mafic (gabbro, monzogabbro, and monzonite) through intermediate (diorite, granodiorite, monzonite, syenite) to late-stage granite porphyries (Berzina and others, 2010, 2011a, b; Sotnikov and others, 2001; Seltmann and others, 2010). The age of the deposit is complex and reported ages range from 481 to 356 Ma, probably reflecting overprinting by younger events. Several porphyry bodies intruded after the main copper-molybdenum mineralization (388–389 Ma). Molybdenum- and copper-bearing stockworks are associated with quartz-biotite–potassium-feldspar alteration; high-grade molybdenum (0.5 to 1 percent) is associated with breccias. Late-stage mineralization formed quartz-fluorite-galena– sphalerite veins and late quartz-fluorite-pyrite and quartz-molybdenite veinlets.
Assessment of Tracts in the Central Asian Orogenic Belt and Eastern Tethysides

Figure 18. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8504, Mongol-Sayan—Mongolia, Russia, and China.
Figure 19. Map showing the distribution of permissive rocks used to delineate tract 142pCu8504, Mongol-Sayan—Mongolia, Russia, and China.
The deposit was discovered in 1937, and open-pit mining started in 1950 (Strikeforce Mining and Resource, Ltd., 2013). Remaining ore averages 0.058 percent molybdenum, 0.055 percent copper, 2.3 g/t silver, and some gold. Rocks associated with the Sora deposit contain less than 10 ppb platinum and 9–18 ppb palladium (Sotnikov and others, 2001).

Agaskyr
The Agaskyr deposit, reported to be Russia’s third largest molybdenum deposit, was discovered in 1953. Reserves are reported (Russian standards) as 310 Mt of category B+C1 copper-molybdenum ore containing 155.3 thousand metric tons (kt) of molybdenum, 98.7 kt of copper, 509.1 t silver, and 5.9 t rhenium. A feasibility study was scheduled for 2013 (Russia and CIS Business and Financial Newswire, 2013).

Prospects, Mineral Occurrences, and Related Deposit Types
The assessment team acquired information for about 27 porphyry copper prospects in the tract. Nine of them are considered significant, but three in Mongolia, Oyuut Ovoo, KY, and Biger, are judged to be particularly significant (fig. 18, appendix B). Oyuut Ovoo, in the central part of the tract, about 200 km west of Ulaan Baatar, the Mongolian capital, is little explored, but has yielded samples with copper grades as high as 0.6 percent (Dejidmaa and others, 2002).

KY and Biger are in the southwestern part of the tract in far western Mongolia. Exploration drilling at Biger has yielded an intersection of 0.5 percent copper over 24 meters (m) that also contained 0.1 g/t gold and palladium; exploration is ongoing (Erdene Resource Development Corp., 2007).

KY is a large area of altered Cambrian granitoid rocks that range in composition from quartz diorite to granodiorite (Lyndhurst Enterprises Pty, Ltd., 2011). U-Pb dates on these rocks range from about 500 Ma to 475 Ma, and a Re-Os date on molybdenite from the prospect is about 510 Ma. Reconnaissance drilling has intercepted subeconomic copper and gold mineralization (Altan Rio, 2012).

Probabilistic Assessment

Grade and Tonnage Model Selection
Statistical tests of the grades and tonnages of the four known deposits listed in table 3 show that the general model could be used because the tonnage and commodity grades all meet the 1-percent probability level recommended for testing models (Singer and Menzie, 2010). However, three of the four known deposits are classified as Cu-Mo subtype on the basis of average molybdenum grades (greater than 0.03 percent), and the molybdenum grade is better-described by the Cu-Mo subtype model (p value of 0.39 versus p value of 0.02 for the general model). In addition, most of the prospects in Mongolia as well as in Russia list molybdenum (appendix B). The tonnages for the four deposits bracket the median Cu-Mo subtype model tonnage of 280 Mt (Singer and others, 2008). The Cu-Mo subtype grade and tonnage model of Singer and others (2008) was used, although either model could apply.

Estimates of Undiscovered Deposits and Rationale
The Mongol-Sayan tract is one of the largest of the Central Asia tracts, making up a little more than 11 percent of the total area of all the tracts combined (table 1). Four deposits are known in the northwestern part of the tract, and 27 prospects, nine of them significant, are scattered throughout the tract.

Despite the large tract area, the assessment team noted that many of the prospects have inadequate descriptions, and it is not certain that all are porphyry copper prospects—some may be polymetallic vein, skarn, or massive sulfide-related (appendix B). Age information is also uncertain. The Aksug deposit, for example, has conflicting information indicating that it could be Caledonian (Berzina and Berzina, 2008), transitional between Caledonian and Variscan (Sotnikov and others, 2003), or Variscan (Sotnikov and others, 2003). Thus, some of the undated prospects also could be Variscan in age. The assessment team also observed that prospects are noticeably scarce in the Russian part of the tract. Given the uncertainty in deposit type and age, the prospectivity for undiscovered porphyry copper deposits of Caledonian age in this region may not be as favorable as it appears.

The proportion of extrusive to intrusive rock types is noticeably different between the Mongolian and Russian geologic maps. The permissive units on the Russian geologic map show mainly plutonic types, with very few volcanic rocks. The permissive units on the Mongolian geologic map show a more balanced mix between plutonic and volcanic types (fig. 19). The Mongolian map has a wide variety of volcanic unit compositions, whereas the Russian map has only one volcanic rock type, rhyolite. Because of these inconsistencies between the geologic maps, it is difficult to make a general determination about the level of erosion.

The level of mineral exploration was considered to be variable, ranging from well-explored in Mongolia, to moderately and poorly explored in the northern parts of the tract, which are rugged and remote. Most of the 1,200,000 geologic research and mapping in the Russia region of the tract was done before 1979 (Tikhomirova, S.R., written commun., 2011). The south-central (Mongolian) part of the tract has been well mapped and investigated. The Mongolian part of the tract has received a lot of interest since 1991, and most surface outcrops have likely been examined. Nearly all of Mongolia has been mapped at 1:200,000 scale, about 25 percent mapped and explored at 1:50,000 scale. Mineral-exploration and mining-lease maps of Mongolia (MRAM, 2003; Javkhlanbold, 2006) show that most of the tract has received targeted study, with the exception of some protected areas in central and western Mongolia.
Porphyry Copper Assessment of the Central Asian Orogenic Belt and Eastern Tethysides

The team estimated a 90-percent chance for 1 or more undiscovered deposits in the tract, a 50-percent chance of 6 or more deposits, and a 10-percent chance of 24 or more deposits, for a mean of about 10 expected undiscovered deposits (table 7.4).

Probabilistic Assessment Simulation Results

The mean estimate of undiscovered resources of 100 Mt copper on the basis of the Cu-Mo subtype model greatly exceeds the 6 Mt of identified copper resources. Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 7B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 20). To show the effects of model selection on assessment results for the tract, the undiscovered resources also were estimated using the general porphyry copper model (table 7C). The general model predicts a much smaller mean amount of copper (38 Mt) and 2.8 Mt of molybdenum in contrast to the 12 Mt of molybdenum using the Cu-Mo subtype model.

Late Paleozoic Tracts in the Central Asia Orogenic Belt

The three tracts that include primarily late Paleozoic rocks are shown on figure 6. The tracts are described from south to north.

Table 7. Probabilistic assessment results for tract 142pCu8504, Mongol-Sayan—Mongolia, Russia, and China.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

$N_{90}$, estimated number of deposits associated with the 90th percentile; $N_{50}$, expected number of undiscovered deposits; $s$, standard deviation; $C_v$, coefficient of variance; $N_{known}$, number of known deposits in the tract that are included in the grade and tonnage model; $N_{total}$, total of expected number of deposits plus known deposits; $km^2$, area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 km²; $N_{und}$, $s$, and $C_v$, are calculated using a regression equation (Singer and Menzie, 2005).

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density $(N_{und}/100,000 km^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{90}$ $N_{50}$ $N_{45}$ $N_{45}$ $N_{90}$</td>
<td>$N_{und}$ $s$ $C_v$% $N_{known}$ $N_{total}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 6 24 24 24</td>
<td>9.8 8.4 86 4 14</td>
<td>575,100</td>
<td>5</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources using the Cu-Mo subtype model.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probability of</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Mean or greater</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

C. Results of Monte Carlo simulations of undiscovered resources using the general model.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probability of</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Mean or greater</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Figure 20. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8504, Mongol-Sayan—Mongolia, Russia, and China. k=thousands, M=millions, B=billions, Tr=trillions.

Kazakh-Tarim Tract (142pCu8505)

Descriptive model: Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

Grade and tonnage model: Global Cu-Au-Mo porphyry copper model (Singer and others, 2008)

Geologic Feature Assessed: An assemblage of Devonian through Early Triassic igneous rocks in Kazakhstan and China that include parts of the Balkash-Ili continental arc and a few younger rocks related to the Indosinian orogeny

Location

The Kazakh-Tarim tract consists of two arcuate belts (fig. 21). The northerly belt (about 1,200 by 200 km) trends southeast through northeastern Kazakhstan into the Junggar region of Xinjiang Autonomous Region in China. The southerly belt (about 1,400 by 200 km) extends eastward from the Kazakh border through the Tien Shan Mountains (fig. 1) eastward to the northern tip of Gansu Province and the Nei Mongol Autonomous Region in China.

Tectonic Setting

This tract is the result of the assembly of several separate island-arc and continental-arc systems by a complex series of events in late Paleozoic time about which there is little consensus regarding timing, position, and orientation of the disparate parts during assembly into modern Central Asia. The Zharma-Saur island arc (fig. 6) that is host to two of the porphyry copper deposits in the tract was apparently accreted on to Asia sometime after the Carboniferous (Wilhem and others, 2012). The Dananhu-Tousuquan and Bogdo Shan are also apparently small island-arc fragments that were incorporated between the Tarim and Junggar Basin Craton blocks during the late Paleozoic continental assembly of Asia (Xiao and others, 2004; Wilhem and others, 2012). The Dananhu-Tusuquan Arc hosts the Tuwu-Yandong-Yanxi porphyry copper deposit (Han and others, 2006a, b). See Xiao and others (2010) for details about the myriad and contrasting possibilities for the paleotectonic history of this region.
Figure 21. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8505, Kazakh-Tarim—Kazakhstan and China.
Geologic Criteria

Calc-alkaline, intermediate-composition igneous map units with Devonian, Carboniferous, and Permian map-unit ages define the Kazakh-Tarim tract (fig. 22). A few Early Triassic igneous rocks (probably collision related) were also included. Plutonic rock types include granite and granite porphyry, granodiorite, diorite and quartz diorite, plagiogranite, granosyenite and syenite, and monzonite, with lesser amounts of gabbro-diorite, alkaline granitoids, and monzodiorite. Volcanic rock types include primarily rhyolite and rhyolite-dacite, andesite, and dacite, with lesser amounts of trachyrhyolite and, a few tuffaceous units and mixed units of volcano-sedimentary assemblages.

The Kazakh-Tarim tract is bounded on the northeast by the Altai Mountains (fig. 1), whose rocks define the Mongol-Altai tract (142pCu8507). The western margin is the cluster of assessment tracts that include the majority of the rocks of the Balkash-Ili Arc that were assessed by Berger and others (2014). The southern boundary of the tract is the Tarim Craton and continental block. Most of the tract is surrounded by fault-bounded basins filled with thick (1 to 2 km or more) sequences of Mesozoic and Cenozoic sedimentary rocks.

Known Porphyry Deposits

There are four known porphyry copper deposits in the Kazakh-Tarim tract (fig. 21). Two are in Kazakhstan—Koktaszhal and Kyzklkain. Two deposits with Carboniferous ages are in China—Baogutu and Tuwu-Yandong-Yanxi.

Koktaszhal

Koktaszhal is a small porphyry copper deposit in the core of an anticline. The deposit is hosted in granitoids of the Koktaszhalsky igneous complex composed of early peripheral gabbro-diorite, a core of quartz diorites, tonalite and granodiorite, and late plagiogranite and granodiorite porphyries and dikes. Faults have broken the deposits into several blocks, and ore bodies dip steeply. Ore (chalcopyrite and bornite) is present in lenses on the order of 10 to 100 m thick. A 20–50-m oxide zone (malachite, azurite, chrysacolla, native copper, goethite) is present, but no well-developed supergene enrichment zone is observed. The deposit has been known since the 1800s and was explored by drilling that encountered ore to depths of 440–560 m. Copper, gold, and silver reserves were determined by the State Committee for Reserves but the deposit was categorized as a subeconomic property (Zhukov and others, 1998). Molybdenum is reported, but grades are not available.

Kyzklkain

The Kyzylkain porphyry deposit in eastern Kazakhstan is hosted in middle Carboniferous basic and intermediate porphyries, diorite, quartz diorite, granodiorite, granite, and granosyenite of the Saur igneous complex that intruded a 1 km-thick Carboniferous volcano-sedimentary sequence (tuffaceous sandstones, tuffs). The deposit occupies the central uplifted part of a circular depression that has a diameter of 2–3 km. Rocks within the depression are highly altered (albite, chlorite, sericite, carbonates, pyrite). Copper ore in the form of quartz stockworks with chalcopyrite, molybdenite, chalcocite, and covellite is localized in zones along faults. A third of the deposit area is covered by alluvium. The deposit was drilled, but overall low metal grades (average 0.3 percent at a cutoff grade of 0.2 percent) halted continued development of the property (Zhukov and others, 1998; Singer and others, 2008; D.P. Cox, USGS, written commun., 2001; Shevchenko, 1973; Pavlova, 1978).

Baogutu

Baogutu was discovered during regional exploration in 1985–1990. Drilling during 2002–2008 delineated the deposit, which contains 225 Mt of ore with a copper grade of 0.28 percent, molybdenum grade of 0.011 percent, gold grade of 0.1 g/t, and silver grade of 1.8 g/t (Shen and others, 2009, 2010b). Mineralized rock is exposed at the surface in an area of about 1,100 by 800 m and persists to a depth of more than 700 m. The highest grades are in deeper parts of the deposit. The deposit remains undeveloped pending development of infrastructure and water availability for open pit mining (Shen and others, 2009).

The intrusive rocks related to the deposit are predominantly diorites and quartz diorites, both equigranular and porphyritic. Zircon U-Pb ages from these rocks range from about 349 to 292 Ma (Shen and others, 2010b), whereas a Re-Os date on molybdenite is about 310 Ma (Song and others, 2007). Mineralized rock is predominantly found within the pluton and occurs both as disseminated minerals and stockwork veinlets. Alteration assemblages include potassic (biotite dominated), phyllic, and propylitic.

Tuwu-Yandong-Yanxi

Tuwu-Yandong-Yanxi, discovered in 1997, is one of the largest copper deposits in China. The Tuwu and Yandong deposits are about 6 km apart, but drilling between them has encountered additional mineralization. Yanxi is immediately adjacent to the Yandong deposit. Thus, the three of them were treated as a single deposit that exhibits mineralization over a strike length of nearly 14 km. The magnitude of the resource at the deposit is problematic, as only Yanxi has a published resource that conforms to National Instrument 43-101.13 Singer and others (2008) give figures for Tuwu of 280 Mt at 0.75 percent copper and for Yandong of 372 Mt at 0.58 percent copper. The resource at Yanxi is 22.3 Mt at 0.74 percent copper (Roscoe Postle Associates, Inc., 2011). Combining these data, for the purposes of this assessment, the resource at Tuwu-Yandong-Yanxi was taken to be 674.3 Mt of ore at a copper grade of 0.61 percent, a gold grade of 0.1 g/t and a silver grade of 1.3 g/t. Molybdenum content of the ore appears to be generally less than 0.01 percent (Roscoe Postle Associates, Inc., 2011). This estimate yields a combined

13A national instrument for Standards of Disclosure for Mineral Projects within Canada. These standards define criteria for reserve and resource categories.
Figure 22. Map showing the distribution of permissive intrusive and extrusive rocks used to delineate tract 142pCu8505, Kazakh-Tarim—Kazakhstan and China.
copper content of 4.4 Mt. Both Mao and others (2006) and Han and others (2006a) state that the resource is 4.7 Mt at a grade of 0.67 percent copper, but neither gives the source of their estimate nor indicate exactly which deposits it includes. The Tuwu deposit is being mined; Yandong and Yanxi are being developed. The deposits have been explored to depths of more than 500 m and are still open at depth.

The deposits are hosted in Carboniferous age granodiorite and plagiogranite porphyry that has been dated at Tuwu to be about 333 Ma by U-Pb methods. A Re-Os age on molybdenite is about 323 Ma (Han and others, 2006b). Most of the ore is in phyllically altered rock, which is surrounded by a propylitic alteration zone; potassic alteration is not prominent in the deposit (Han and others, 2006b).

Prospects, Mineral Occurrences, and Related Deposit Types

There are 26 porphyry copper prospects in the tract, and 11 of them are judged to be particularly significant because they have some measured amounts of mineralized rock. Sanchakou, Chihu, Da Hong Shan, Dananhu Nan, and Kalatage are significant prospects (fig. 21, appendix B) that, along with the large Tuwu-Yandong-Yanxi deposit, define the East Tienshan metallogenic belt in the Dananhu-Tusuquan Arc (fig. 6) in the eastern part of the tract. To the west, near the Kazakhstan border, Lamasu, Beidabate, Lalisigaoer-3571, Qiuxing, and Kendengaoer are also in the East Tienshan belt but are in the Balkash-Ili Arc (fig. 6). To the north, the Sawuer prospect (includes Hanzheganeng, Taketakulasi, and Xiyakesiato) is in the eastern part of the Zharma-Saur Arc where it extends into China (fig. 21, appendix B). See appendix B and the spatial database for names, locations, and characteristics of the less significant prospects.

Probabilistic Assessment

Grade and Tonnage Model Selection

The general porphyry copper grade and tonnage model of Singer and others (2008) was used. Statistical tests comparing the log-transformed tonnage and grade data for the four deposits show that the general porphyry copper model is appropriate for assessing undiscovered resources within the tract (table 3).

Estimates of Undiscovered Deposits and Rationale

The Kazakh-Tarim tract covers more than 300,000 km². The discoveries to date confirm that this tract is prospective for porphyry copper deposits. In recent years, the level of geologic understanding of the area has increased dramatically, and modern exploration methods have resulted in the discovery of numerous porphyry copper prospects, especially in the Chinese part of the tract. However, the multiple, mostly fault bounded, tectonic entities that make up the area continue to prevent precise understanding of the tectonic and metallogenic history. The fragmented and discontinuous nature of the exposures has also made it challenging to decide if the level of erosion is appropriate for preservation of porphyry copper deposits, but the proportion of volcanic to plutonic rocks in many parts of the tract does seem appropriate.

The known Variscan-age deposits in adjacent parts of Kazakhstan, where exploration has been more thorough (see Berger and others, 2014), is a favorable indicator. The level of mineral exploration was considered to be thorough in the parts of the tract in Kazakhstan and moderate in China.

The geology of Kazakhstan was not studied in depth before World War II, but since then, it has been well mapped. All the parts of the country that are characterized by magmatic activity have been mapped at 1:200,000 scale, and large parts of the country are covered by 1:50,000-scale mapping, particularly the mineralized areas. The parts of the tract in China are all covered at 1:200,000 scale, but 1:50,000-scale mapping is a more recent phenomenon. Although only a few exploration and detailed mineral investigations have taken place (see maps available at China Geological Survey, 2005), the entire area has been covered by geochemical surveys and has been evaluated for mineral resources at the reconnaissance level. Maps showing the degree of mineral-resource exploration and geologic research (China Geological Survey, 2012) indicate that high levels of activity have taken place recently in a few parts of the tract.

The team estimated a 90-percent chance for 3 or more undiscovered deposits in the tract, a 50-percent chance of 5 or more deposits, and a 10-percent chance of 25 or more deposits, for a mean of about 10 undiscovered deposits (table 8A).

Three upper Paleozoic assessment tracts (VIII-1, VIII-3, and IX-1) and four upper and lower Paleozoic tracts (IX-2, IX-3, IX-4, and IX-5) from Yan and others (2007) correlate well in space and time with the parts of the Kazakh-Tarim tract that extend into China. For those tracts, Yan and others (2007) estimated a mean number of undiscovered porphyry copper deposits of about 10.3, which corresponds very well to the estimate of about 10 made here.

Probabilistic Assessment Simulation Results

The mean estimate of undiscovered resources of 39 Mt copper is about six times the identified copper resources (6.7 Mt copper). Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 8B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 23).

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

\[N_{x}\text{, estimated number of deposits associated with the }x\text{th percentile; } N_{\text{und}}\text{, expected number of undiscovered deposits; } s,\text{ standard deviation; } C_v\%,\text{ coefficient of variance; } N_{\text{known}}\text{, number of known deposits in the tract that are included in the grade and tonnage model; } N_{\text{total}}\text{, total of expected number of deposits plus known deposits; km}^2\text{, area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 km}^2\text{; } N_{\text{und}}, s, \text{ and } C_v\%,\text{ are calculated using a regression equation (Singer and Menzie, 2005)}\]

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density (N_{\text{total}}/100,000) km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{90})</td>
<td>(N_{50})</td>
<td>(N_{10})</td>
<td>(N_{05})</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>Cu</td>
<td>600,000</td>
<td>2,200,000</td>
</tr>
<tr>
<td>Mo</td>
<td>0</td>
<td>7,800</td>
</tr>
<tr>
<td>Au</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rock</td>
<td>140</td>
<td>530</td>
</tr>
</tbody>
</table>

Figure 23. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8505, Kazakh-Tarim—Kazakhstan and China. k=thousands, M=millions, B=billions, Tr=trillions.
Oyu Tolgoi Tract (142pCu8506)

**Descriptive model:** Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

**Grade and tonnage model:** Global Cu-Au-Mo porphyry copper model (Singer and others, 2008)

**Geologic Feature Assessed:** An assemblage of Devonian through Triassic igneous rocks primarily in Mongolia and China that includes the Devonian Kazakh-Mongol island arc, as well as younger rocks related to the Indosinian orogeny (collision of China with Asia)

**Location**

The Oyu Tolgoi tract consists of an arculate belt that measures about 2,500 km in length and 200–300 km wide (fig. 24). The tract extends from northeastern Xinjiang Autonomous Region in China, near the Mongolian border, eastward across the length of southern Mongolia, terminating just across the Chinese border in Nei Mongol Autonomous Region.

**Tectonic Setting**

The Oyu Tolgoi tract is named for one of the largest and richest porphyry copper deposits in the world, the Late Devonian Oyu Tolgoi deposit in the eastern part of the tract (fig. 24, table 2). The major part of the tract is defined by the Devonian through Permian igneous rocks of the Kazakh-Mongol island arc (Seltmann and others, 2010). In the westernmost part of the tract, a few of the rocks are known locally in China as the Yemaquan island arc and the Dulate-Baytag continental arc (Han and others, 2010). In the eastern part of the tract, there are a few Triassic (probably collision related) plutons that are contiguous with the arc, and which are included in the tract.

**Geologic Criteria**

The tract is defined by calc-alkaline, intermediate composition igneous map units of Devonian, Carboniferous, and Permian age. In addition, a few early Mesozoic plutons, some possibly as young as Jurassic, are included. Plutonic rock types include granite, granite-leucogranite, diorite, granodiorite, plagiogranite, and granosyenite, with lesser amounts of syenite, monzonite, gabbrrodiortite, and alkaline granitoids. Volcanic rock types include andesite, dacite, and rhyolite, with lesser amounts of trachyte, trachydacite, and trachyandesite.

The Oyu Tolgoi tract is bounded on the south by the Solonker Suture and on the north by the Main Mongolian Lineament (fig. 5). The eastern end of the tract is limited by the eastern margin of the CAOB, beyond which the magmatic history is related to Mesozoic Pacific-margin subduction. The western end of the tract is defined by the Junggar Basin, where no igneous rocks are found (fig. 25).

**Known Porphyry Deposits**

There are three known porphyry copper deposits in the tract, all of them in Mongolia (fig. 24, table 2). They are, from west to east, Zuun Mod, Oyu Tolgoi, and Tsagaan-Suvarga.

**Zuun Mod**

Zuun Mod was discovered in 2002. It has subequal grades of copper and molybdenum and is a classic example of a deposit that is difficult to classify—the copper grade is higher, but the molybdenum is more valuable, because of the price differential. At a cutoff grade of 0.03 percent molybdenum, the resource at Zuun Mod is 650 Mt with a copper grade of 0.063 percent and a molybdenum grade of 0.046 percent. This translates into about 406 kt of copper and 302 kt of molybdenum (Clark and Baudry, 2011).

**Oyu Tolgoi**

Oyu Tolgoi (Mongolian for “Turquoise Hill”) is a 22-km-long district that contains at least 8 Late Devonian porphyry copper-gold centers (fig. 26) in the Gobi Desert of southern Mongolia (Perelló and others, 2001; Khasgerel and others, 2009). Oyu Tolgoi is the largest known porphyry copper deposit in the study area. It is one of the largest porphyry copper deposits in the world and contains more than 36 Mt of copper. The Oyu Tolgoi deposits are all related to high-potassium calc-alkaline quartz monzodiorite intrusions hosted by augite basalt lavas described as primitive basaltic island-arc rocks (Khashgerel and others, 2009). The region preserves a record of the Paleozoic accretion of continental arcs and island arcs to the southern margin of Mongolia. Postmineral Carboniferous alkaline rocks intruded the area during a time when the Oyu Tolgoi deposits were buried. Regional uplift in the Cretaceous brought the deposits near to the surface.

The main mineralization was initially described within a 2.5- by 1.5-km area as three zones known as North (renamed Hugo Dummett in 2003), Central, and South Oyu (Perelló and others, 2001). Subsequent exploration identified additional pipelike and elongate ore bodies along the same north to northeast trend (fig. 26). The deposits have similar ages (four deposits in the central part of the district have U/Pb zircon ages of 372 ± 3 Ma) and are all distributed along a thrust fault and bounded by steeper faults. Individual ore bodies vary in geometry, dominant hypogene ore mineralogy (chalcopyrite or bornite), dominant host rock (quartz monzodiorite, breccia, basalt), and alteration (Khasgerel and others, 2009). Some ore bodies are partly exposed at the surface; others are concealed beneath poorly consolidated Cretaceous sedimentary rocks and alluvium.

Regional synmineral Silurian-Devonian uplift contributed to telescoping of epithermal alteration over deeper, higher temperature porphyry copper alteration. Advanced argillic alteration characterizes ore bodies in the Hugo Dummett and Central areas but is absent (or not preserved) in the southern ore bodies, where high-sulfidation epithermal parts of the system are eroded exposing deeper levels of porphyry. The Central ore body preserves a 25- to 50-m leached cap over
Figure 24. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8506, Oyu Tolgoi—Mongolia and China.
Figure 25. Map showing the distribution of permissive intrusive and extrusive rocks used to delineate tract 142pCu8506, Oyu Tolgoi—Mongolia and China.
Porphyry Copper Assessment of the Central Asian Orogenic Belt and Eastern Tethysides

Figure 26. Map showing the distribution of porphyry copper deposits and exploration targets at Oyu Tolgoi, Mongolia (figure 1 on p. 1089 of Khashgerel and others, 2009).


The deposit was discovered in 1995 and is being developed for both open-pit and underground mining (block caving). Open-pit mining at the near-surface southern ore bodies began in 2013 (Turquoise Hill Resources, 2013). An underground block-cave mine is planned to access the Hugo Dummett/North ore body.

Tsagaan-Suvarga

The Tsagaan Suvarga porphyry copper-molybdenum deposit lies within the late Paleozoic Kazakh-Mongol Arc about 150 km northeast of Oyu Tolgoi. The deposit is hosted in a multistage intrusive complex (gabbro, diorite, syenite, syenogranite, granodiorite). Mineralization is associated with late-stage porphyry intrusions. Chalcopyrite-bearing quartz stockworks are developed over a 1 km by 300 m area, and ore has been traced to depths of 600 m. Molybdenites from the deposit were dated at 370.1 ±1.2 and 370.6±1.2 by Re-Os dating (Watanabe and Stein, 2000).

Tsagaan Suvarga contains about 1.3 Mt of copper. Copper and molybdenum are the major commodities (Seltmann and Porter, 2005; Perelló and others, 2001; Weixuan and others, 2007). The mine has not been developed, but plans were underway to construct a concentration plant to begin operation in 2015.

Prospects, Mineral Occurrences, and Related Deposit Types

There are at least 60 porphyry copper prospects in the Oyu Tolgoi tract, 52 of them in Mongolia and 8 in China. Of these, some 17 are considered significant because they have some measured amounts of mineralized rock, 14 in Mongolia and three in China. The 330 Ma-old Kharmagtai prospect, which shows all the geologic features of a porphyry copper deposit, is a good example. About 130 km north-northwest of Oyu Tolgoi, the Kharmagtai area has been explored by numerous drill holes and has a preliminary resource determined at 229 Mt at a copper grade of 0.35 percent. Because of uncertainties surrounding the mining laws in Mongolia, further development and exploration at Kharmagtai has been suspended for years.

Probabilistic Assessment

Grade and Tonnage Model Selection

The general porphyry copper grade and tonnage model of Singer and others (2008) was used to estimate undiscovered porphyry copper resources in the tract. There are three known porphyry copper deposits in the tract, the most significant of which is Oyu Tolgoi (table 2). Available grade and tonnage data suggest that the general model is appropriate on the basis of results of a t-test, applied at the 1-percent confidence level using log-transformed values for ore tonnage and grades of copper, molybdenum, silver, and gold. Test results indicate that data for these deposits are not distinguishable from the general model (table 3).

Estimates of Undiscovered Deposits and Rationale

The Oyu Tolgoi tract covers about 330,000 km². Three known deposits and 17 significant prospects are within the tract, with a concentration in the central part of the tract in Mongolia (fig. 24). The three deposits include the Oyu Tolgoi deposit, one of only a few deposits supergiant worldwide that contain more than 20 Mt of copper (Singer, 1995). Most of the significant prospects (those with some estimates of tonnage and (or) grade) are clustered in the central part of the tract, within about 400 km of Oyu Tolgoi.

The assessment team was influenced by the large number of extensively explored prospects in this tract. A large amount of copper was discovered in Mongolia between 1991 and 2010, and the team expects more discoveries will be made if and when exploration resumes.

The proportion of volcanic to plutonic rock types (fig. 25) and the presence of a few epithermal precious-metal deposits and prospects both indicate that the level of erosion is quite appropriate for the exposure and preservation of porphyry
copper deposits. A large part of the tract is covered with thin surficial sediments that may conceal undiscovered deposits.

The level of past mineral exploration is quite variable. Much of the Mongolian part of the tract, particularly in the vicinity of Oyu Tolgoi, is relatively well explored, whereas the eastern and western ends of the tract in China have not received so much attention. Mineral-exploration and mining-lease maps of Mongolia (MRAM, 2003; Javkhlanbold, 2006) show coverage of the tract is nearly complete (with the exception of some large environmentally sensitive protected areas), indicating that much of the area has undergone scrutiny. The eastern and western parts of the tract in China have been evaluated for mineral resources at the reconnaissance level, and select areas, particularly in the eastern part of the tract, have been the site of mineral-resource surveys and exploration at map scales between 1:10,000,000 and 1:2,500,000. A few detailed investigations, also mainly in the east, have been carried out (see maps available at China Geological Survey, 2005).

The team estimated a 90-percent chance for 6 or more undiscovered deposits in the tract, a 50-percent chance of 14 or more deposits, and a 10-percent chance of 48 or more deposits, for a mean of 21 undiscovered deposits (table 9A). Four assessment tracts (II-1, II-2, II-4, VIII-4, and IX-2) from Yan and others (2007) are largely coincident with the Chinese parts of the Oyu Tolgoi tract. The total mean expected number of undiscovered deposits in those tracts is about 8.3, but the numbers are not directly comparable with this assessment, as they cover only the Chinese part of the tract and also because part of the estimated deposits are Caledonian or Yanshanian in age.

### Probabilistic Assessment Simulation Results

The mean estimate of undiscovered resources of 80 Mt copper is about twice the identified copper resources (38 Mt copper). Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 9B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 27).

### Mongol-Altai Tract (142pCu8507)

**Descriptive model:** Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

**Grade and tonnage model:** Global Cu-Au-Mo porphyry copper model (Singer and others, 2008)

**Geologic Feature Assessed:** An assemblage of Devonian through Permian calc-alkaline continental-arc rocks in Mongolia, China, Kazakhstan, and Russia

### Location

The Mongol-Altai tract consists of numerous semicontinuous linear and curvilinear belts that as a whole are arcuate in shape (fig. 28), largely as a result of postemplacement deformation. The tract axis measures about 3,000 km in length and is nearly 1,000 km at its widest. The tract covers large parts of central and northern Mongolia. The eastern part of the tract straddles the border between China and Russia, whereas the western part covers large parts of southern Russia, as well as smaller areas in easternmost Kazakhstan and the northern part of Xinjiang Autonomous Region in China.

### Tectonic Setting

The rocks that define the Mongol-Altai tract all appear to be related to continental arcs, along with some collision-related rocks. The widespread rocks in the western half of the tract, which are primarily in Russia and Kazakhstan and mainly Devonian in age, do not appear to have been assigned to named arcs. They may represent the end stages of the Kipchak and Tuva-Mongol Arcs. The central part of the tract includes igneous rocks of Devonian to Permian age (mainly Carboniferous), which are presumed to correspond to the Sayan-Transbaikal Arc (fig. 6; see Seltmann and Porter, 2005, fig. 2). The eastern extensions of the tract are defined by rocks of the Permian-Triassic Selenga-Gobi-Khanka Arc (fig. 6; see Seltmann and Porter, 2005, fig. 2), which are products of the last subduction-related igneous activity in the history of the CAOB.

### Geologic Criteria

Calc-alkaline, intermediate-composition igneous map units with Devonian, Carboniferous, and Permian ages define the tract (fig. 29). Devonian and Permian rocks are the most abundant. Plutonic rock types include granite, granite-leucogranite, granodiorite, plagiogranite, granosyenite, quartz diorite, syenite, tonalite, and diorite, with lesser amounts of gabbrodiorite, quartz monzonite, monzodiorite, and alkaline granitoids. Extrusive rock types include dacite, rhyolite, and andesite, with lesser amounts of trachyte, trachydacite, and trachyandesite.

The Mongol-Altai tract is bound on the south by the Main Mongolian Lineament (fig. 6) and by the Altai Mountains. The rocks to the south help define the Kazakh-Tarim (142pCu8505) and Mongol-Altai (142pCu8506) tracts. On the north, the boundary is the southern margin of the Siberian Craton. The eastern margin of the tract is the eastern limit of the CAOB, beyond which the magmatic history is related to Mesozoic Pacific-margin subduction. The western boundary of the tract is an amagmatic region between Central Asia and the Ural Mountains.

### Known Porphyry Deposits

There are no known porphyry copper deposits in the tract.

### Prospects, Mineral Occurrences, and Related Deposit Types

Information was compiled for 56 porphyry copper prospects in the tract—2 in China, 1 in Kazakhstan, 6 in Russia, and 47 in Mongolia. Sixteen prospects, 1 in Kazakhstan, 4 in Russia, and 11 in Mongolia, are judged to be particularly significant (fig. 28). All prospects are described in appendix B and in the GIS database.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

\[ N_{xx}, \text{estimated number of deposits associated with the xxth percentile}; N_{und}, \text{expected number of undiscovered deposits}; s, \text{standard deviation}; C_{\%}, \text{coefficient of variance}; N_{\text{known}}, \text{number of known deposits in the tract that are included in the grade and tonnage model}; N_{\text{total}}, \text{total of expected number of deposits plus known deposits}; \text{km}^2, \text{area of permissive tract in square kilometers}; \text{deposit density reported as the total number of deposits per 100,000 km}^2; N_{und}, s, \text{and } C_{\%}, \text{are calculated using a regression equation (Singer and Menzie, 2005)}\]

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density (N_{und}/100,000 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_{90} )</td>
<td>( N_{50} )</td>
<td>( N_{10} )</td>
<td>( N_{05} )</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( 0.95 )</td>
<td>( 0.9 )</td>
</tr>
<tr>
<td>Cu</td>
<td>3,400,000</td>
<td>8,900,000</td>
</tr>
<tr>
<td>Mo</td>
<td>26,000</td>
<td>110,000</td>
</tr>
<tr>
<td>Au</td>
<td>53</td>
<td>170</td>
</tr>
<tr>
<td>Ag</td>
<td>150</td>
<td>1,100</td>
</tr>
<tr>
<td>Rock</td>
<td>820</td>
<td>1,900</td>
</tr>
</tbody>
</table>

Figure 27. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8506, Oyu Tolgoi—Mongolia and China. k=thousands, M=millions, B=billions, Tr=trillions.
Figure 28. Map showing the location, significant prospects, and prospects for permissive tract 142pCu8507, Mongol-Altai—Mongolia, Russia, China, and Kazakhstan.
Figure 29. Map showing the distribution of permissive rocks used to delineate tract 142pCu8507, Mongol-Altai—Mongolia, Russia, China, and Kazakhstan.
Probabilistic Assessment

Grade and Tonnage Model Selection

The general porphyry copper grade and tonnage model of Singer and others (2008) was used, as there are no known deposits in the tract, and thus, no reliable information to guide the choice of a grade and tonnage model. There is no compelling geologic or metallogenic reason to suggest that either the porphyry Cu-Au or Cu-Mo grade and tonnage models would be more appropriate.

Estimates of Undiscovered Deposits and Rationale

The Mongol-Altai tract is the largest of the 11 Central Asia tracts and covers nearly 800,000 km². The 56 prospects in the tract are unevenly distributed, with approximately half of them in the south-central part of the tract in Mongolia in the Selenga Arc. The majority are in Mongolia, although large parts of the tract are in China, Russia, and Kazakhstan. This is probably mostly a function of the mineral database of Dejidmaa and others (2002), which tabulates many minor mineral occurrences, has no available counterpart in the other countries. Few of these Mongolian prospects have been dated radiometrically, and it is possible that some of them are older and might equally as likely be assigned to the Mongol-Sayan tract (142pCu8504). It is expected that more prospects exist in Russia and Kazakhstan than were identified.

Similarly, the proportion of extrusive to intrusive rock types is noticeably different between the various digital geologic maps. The permissive map units in Russia and China appear to be mostly plutons, with very few associated volcanic rocks. The permissive map units on the Mongolian map (and to a lesser degree on the Kazakh map) shows a more balanced mix between plutonic and volcanic types (fig. 29). The plutonic units on the Russian map also show more compositional variety than the Mongolian map, which has many units lumped into two classes, granite and leucogranite. Conversely, the Mongolian map has a wide variety of volcanic compositions, whereas the Russian map has only one volcanic rock type, rhyolite. Because of these inconsistencies, it was difficult to decide whether the level of erosion was appropriate for the exposure and preservation of porphyry copper deposits, but overall, the erosion level seems appropriate. Some regions, mainly in the northeastern area of the tract, were considered too deeply eroded and were excluded.

The level of mineral exploration was considered to be very uneven, ranging from well explored in parts of Mongolia to moderately and poorly explored in the Kazakh, Chinese, and Russian parts of the tract. The western part of the tract, particularly the Altai Mountains, is rugged, remote, and difficult to access.

In Russia, the entire area is covered by geologic maps at 1:200,000 scale, but most of this mapping was completed before 1979, with the exception of a few areas in the northeast and northwest, which were mapped between 1996 and 2004 (Tikhomirova, S.R., written commun., 2011). Nearly all of Mongolia has been mapped at 1:200,000 scale (Javkhlanbold, 2006), and mineral-exploration and mining-lease maps of Mongolia (MRAM, 2003; Javkhlanbold, 2006) show that coverage of the Mongolian part of the tract is nearly complete, indicating that much of the area has undergone scrutiny. The Chinese part of the tract has been evaluated for mineral resources at the reconnaissance level, and select areas have been the site of mineral-resource surveys and exploration at map scales between 1:10,000,000 and 1:2,500,000.

The team estimated a 90-percent chance for 3 or more undiscovered deposits in this very large, long-lived tract, a 50-percent chance of 8 or more deposits, and a 10-percent chance of 36 or more deposits, for a mean of 15 undiscovered deposits (table 10.4). It should be noted that this expected number of undiscovered deposits is about half the number of deposits (34) predicted using a deposit-density model based on tract area (Singer and Menzie, 2010) and may be conservative. However, the difficulty of identification of truly permissive lithologies from the map units undoubtedly inflates the tract area because some nonpermissive rocks are probably included.

Probabilistic Assessment Simulation Results

The mean estimate of undiscovered copper resources of is 53 Mt. Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 10B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 29).

Indosinian Tracts in the Central Asia Orogenic Belt

The youngest tract in the CAOB is the Erdenet tract (fig. 7). The oldest rocks in the tract are middle Permian, and the tract spans the late Variscan through Indosinian (also known as the Late Hercynian) orogenic stages.

Erdenet Tract (142pCu8508)

Descriptive model: Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

Grade and tonnage model: Global Cu-Au-Mo porphyry copper model (Singer and others, 2008)

Geologic Feature Assessed: An assemblage of Middle Permian through Triassic igneous rocks in Russia and Mongolia that formed during and after closure of the Mongol-Okhotsk Ocean, possibly in a postconvergent environment

Location

The Erdenet tract consists of two sub-tracts, each about 800 by 200 km (fig. 31). The Erdenet Southwest sub-tract (142pCu8508a) is in north-central Mongolia and is the northern arm of the Selenga Arc. The Erdenet Northeast sub-tract (142pCu8508b) is in eastern Russia, about 300 km east of Lake Baikal. There is a gap of about 500 km between the two areas, characterized by middle to upper Permian metamorphic core complexes, where permissive rocks are absent and may have been removed by erosion.
Table 10. Probabilistic assessment results for tract 142pCu8507, Mongol-Altai—Mongolia, Russia, China, and Kazakhstan.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

\[ N_{x\%}, \] estimated number of deposits associated with the x\%th percentile; \( N_{\text{und}} \), expected number of undiscovered deposits; \( s \), standard deviation; \( C_v \% \), coefficient of variance; \( N_{\text{known}} \), number of known deposits in the tract that are included in the grade and tonnage model; \( N_{\text{total}} \), total of expected number of deposits plus known deposits; \( \text{km}^2 \), area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 \( \text{km}^2 \); \( N_{\text{und}}, s, \) and \( C_v \% \), are calculated using a regression equation (Singer and Menzie, 2005).

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (( \text{km}^2 ))</th>
<th>Deposit density ( (N_{\text{total}}/100,000 \text{ km}^2) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>36</td>
<td>36</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{Cu} ), ( \text{Mo} ), ( \text{Au} ), ( \text{Ag} ), ( \text{Rock} )</td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>Cu</td>
<td>860,000</td>
<td>3,100,000</td>
</tr>
<tr>
<td>Mo</td>
<td>0</td>
<td>22,000</td>
</tr>
<tr>
<td>Au</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>83</td>
</tr>
<tr>
<td>Rock</td>
<td>240</td>
<td>720</td>
</tr>
</tbody>
</table>

Figure 30. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in 142pCu8507, Mongol-Altai—Mongolia, Russia, China, and Kazakhstan. \( k=\text{thousands}, M=\text{millions}, B=\text{billions}, Tr=\text{trillions} \).
Figure 31. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8508, Erdenet—Mongolia and Russia. Sub-tracts 142pCu8508a and 142pCu8508b are shown on the map.
Tectonic Setting

The tectonic history of this area is complex, and there is some significant contradictory evidence. The area, including the gap between the two parts of the tract, corresponds quite closely to the Mongolian-Transbaikalian Belt, as discussed by Jahn and others (2009) and Reichow and others (2010). It is also known as the Mongolian-Transbaikalian Rift (Zanvillevich and others, 1985). The rocks here are described as a group of more than 35 peralkaline, syenitic, and A-type granite plutons, with associated bimodal (basalt-rhyolite) volcanism, and are thought to have formed by partial melting of the mantle in response to deep continental rifting. This environment is affirmed by the study of Hegner and others (2006), who call this belt the Selenga-Vitim magmatic belt.

This is not a tectonic environment that is commonly associated with porphyry copper deposits. Nevertheless, the digital geologic maps of both Mongolia and Russia depict numerous permissive rock types, including diorite, tonalite, quartz diorite, and granodiorite plutons, along with exposures of andesite and dacite. Parfenov and others (2009) describe the area as the Permain through Jurassic Selenga continental arc that formed due to north-directed oblique subduction of Mongol-Okhotsk oceanic crust. The occurrence of the Erdenet porphyry copper deposit in Triassic intermediate-composition volcanic and plutonic rocks (Gerel and others, 2006; Munkhtsengel and others, 2007), along with numerous porphyry copper prospects in the area, also indicates that not all the rocks are peralkaline and (or) A-type. Although Munkhtsengel and others (2007) describe the intrusions at Erdenet as part of a continental arc, the Sr-isotope compositions of about 0.704 suggest that there was a minimal crustal component to the magmas and that they may have a postconvergent origin.

Geologic Criteria

The tract was divided into two sub-tracts on the basis of differences in available information and the presence of middle to upper Permian metamorphic core complexes, which form the gap between the northeastern and southwestern sub-tracts. The southwest part of the tract (142pCu8508a) contains all the known deposits and prospects. Undiscovered resources were estimated for this part but not for the northeast part (142pCu8508b), which contains no known porphyry copper prospects, although the igneous rocks appear to be permissive. The tract (both parts) was defined using primarily middle to upper Permian calc-alkaline, intermediate-composition igneous map units, as well as Early Triassic (transitional from Variscan to Indosinian; uppermost Paleozoic to lowermost Mesozoic) units (fig. 32). Plutonic units include granodiorite, granite, granite-leucogranite, quartz diorite, diorite, plagiogranite, tonalite, monzonite, monzodiorite, granosyenite, and syenite, with lesser amounts of alkaline granitoids. Extrusive units include primarily dacite, andesite, and rhyolite closely associated with permissive intrusive units, with lesser amounts of various trachytes. Also included are mixed volcanic-sedimentary units that were determined to be mainly composed of volcanic rocks, which in a few cases consist of mafic units spatially and temporally associated with intermediate and felsic units (gabbrodiorite, basalt-andesite, and basalt-dacite), that host (or are associated with units that host) numerous small porphyry copper prospects.

The Erdenet Southwest sub-tract tract is bound along its southern margin by the Jurassic-Cretaceous Mongol-Okhotsk Suture (fig. 7). Along its northern and northeastern margin, the tract is bound by Precambrian-Cambrian sutures and related structures along the southern margin of the Siberian Craton. The southwestern end of the tract is bound by Cambrian-Ordovician sutures and structures among cratonal terranes and arc and accretionary complexes within the core of the Mongolian Orocline.

Parts of the Erdenet Northeast sub-tract142pCu8508b are overlapped by the younger Jurassic and Cretaceous (Yanshanian) rocks included in the Manchuride tract (142pCu8509), which is described in the porphyry copper assessment of the Mesozoic of East Asia (Ludington and others, 2012b).

Known Porphyry Deposits

The only known porphyry copper deposit in the tract is the large (9 Mt of copper) Erdenet deposit in the Erdenet Southwest sub-tract in Mongolia. Erdenet, a site known since prehistoric time, was recognized as a major copper deposit in 1941, was intensively explored during the 1960s, and began production in 1978 (Japan International Cooperation Agency and Japan Oil, Gas and Metals National Corporation [JICA-JOGMEC], 2004). The estimated total resource is 2,370 Mt at a copper grade of 0.38 percent and a molybdenum grade of 0.013 percent (Singer and others, 2008; Gerel and Munkhtsengel, 2005; Gerel and others, 2005). There are no significant gold-bearing ores. The recent discovery of porphyry copper mineralization at depth at a site midway between the known, but undeveloped, Erdenet Central and Erdenet Southeast ore bodies, along with drilling results on the northwestern margins of the existing mine, demonstrate that there is nearly continuous mineralization that extends more than 10 km along a northwest-southeast trend.

The deposit is related to a suite of late Permian to Early Triassic (about 250 Ma to about 210 Ma) intrusions that range in composition from diorite through granodiorite to granite (Gerel, 1999; Gerel and Munkhtsengel, 2005). Watanabe and Stein (2000), using Re-Os methods, determined a mineralization age on molybdenite from the deposit of about 241 Ma. The mineralized veins and veinlets in the deposit contain chalcopyrite, bornite, and molybdenite as the main ore minerals. The most abundant alteration assemblages are phyllic and peripheral intermediate argillic, which overprint an earlier potassic zone characterized by potassium feldspar, biotite, and magnetite (Gerel and Munkhtsengel, 2005).
Figure 32. Map showing the distribution of permissive rocks used to delineate tract 142pCu8508, Erdenet—Mongolia and Russia. Sub-tracts 142pCu8508a and 142pCu8508b are shown on the map.
Prospects, Mineral Occurrences, and Related Deposit Types

Thirteen of the 63 documented porphyry copper prospects in the Erdenet Southwest sub-tract in Mongolia are considered to be significant. The majority of these are in north central Mongolia, within about 150 km of Erdenet (fig. 31, appendix B). This probably reflects the intense exploration that has been done in the vicinity of Erdenet. The lack of important prospects in the Erdenet Northeast sub-tract in Russia, where there are several molybdenum vein occurrences, may reflect deeper erosion levels or lower quality information.

Probabilistic Assessment

Grade and Tonnage Model Selection

The general porphyry copper grade and tonnage model of Singer and others (2008) was used to assess the Erdenet Southwest sub-tract (142pCu8508a). On the basis of ANOVA for the tonnage, copper grade, and molybdenum grade reported for the Erdenet deposit, the model is appropriate (table 3). Gold and silver grades are not reported. There is no compelling geologic or metallogenic reason to suggest that either the porphyry Cu-Au or Cu-Mo grade and tonnage models would be more appropriate.

Estimates of Undiscovered Deposits and Rationale

Estimates of numbers of undiscovered porphyry copper deposits were made only for the Erdenet Southwest sub-tract. The assessment team concluded that although the Erdenet Northeast sub-tract is broadly permissive on the basis of geology, insufficient information was available to warrant a quantitative assessment.

One world-class porphyry copper deposit, Erdenet, and 13 significant prospects are known in the Erdenet Southwest sub-tract (fig. 31). The significant prospects are distributed across the southwestern part of the tract, and most have detailed exploration sample grades and other metallogenic information. In addition, at least 56 other prospects have been identified (Nokleberg and others, 1999; Dejidmaa and others, 2002). The distribution of all these deposits, significant prospects, and prospects stands in marked contrast to the Erdenet Northeast sub-tract (fig. 31), where no porphyry copper-related occurrences were found in any of the datasets used for this assessment (although a few porphyry molybdenum occurrences and gold in quartz-sulfide veins associated with granitoid intrusions were noted).

The assessment team noted that the Erdenet Southwest sub-tract contains one of the largest porphyry copper deposits in Central Asia, Erdenet, which continues to be enlarged through extensions to the south, the result of continued exploration. The team also recognized the large number of significant and other prospects in this sub-tract but was cautious in interpreting this as an indicator of undiscovered deposits because such prospects are noticeably absent in the Erdenet Northeast sub-tract in Russia. Questions remain as to whether these prospects in Mongolia represent overzealous mineral-site cataloging, classification or nomenclature problems, or some other database artifact. It was also observed that mineral deposits in the Erdenet Northeast sub-tract in Russia are classified as molybdenum porphyry and other Mo-bearing mineralization, resulting in an unusual southwest-to-northeast metallogenic zoning pattern in this tract.

The unusual distribution of mineral occurrences and metallogenic zoning from southwest-northeast across the tract also appears in the Mongolian and Russian geologic map units. The permissive units on the Russian geologic map show mainly plutonic types, with very few volcanic rocks. The permissive units on the Mongolian geologic map show a more balanced mix between plutonic and volcanic types (see fig. 32). The intrusive units on the Russian map show wider compositional variety than the Mongolian map, which has many units lumped into a “granite, leucogranite” category. Conversely the Mongolian map has a wide variety of volcanic unit compositions, whereas the Russian map has only one volcanic rock type, “dacite.” Because of these inconsistencies among the geologic maps, it was difficult to determine whether the level of erosion was appropriate for the exposure and preservation of porphyries, but if the Mongolian map is used as an indicator, the level of erosion would be deemed appropriate (as it would appear is borne out by the presence of many deposits, significant prospects, and prospects). The Erdenet Northeast sub-tract is either more deeply eroded or, more likely, represents an artifact of mapping style, intent, or rock classification. The presence of molybdenum porphyry suggests that the area is not too deeply eroded. Those regions considered too deeply eroded, such as the rocks of the Barzugin Batholith to the northeast, were excluded from the tract.

The level of mineral exploration is considered to be high (for the Erdenet Southwest sub-tract in Mongolia) to moderate (for the Erdenet Northeast sub-tract in Russia) relative to other regions in Central Asia. In the Erdenet Northeast sub-tract, maps showing geologic research in the 1910s and 1930s (Tikhomirova, S.R., written commun., 2011) indicate that the part of the tract near the Russian-Mongolian border had undergone study by 1917 and that by 1938 most of the tract had some level of exploration, with the exception of the central-northeast region. The degree to which the area has been mapped at large scales (for example, 1:50,000 scale) is not known, but it appears that nearly all of the 1:200,000 geologic research and mapping in the tract region (carried out by the A.P. Karpinsky Russian Geological Research Institute (VSEGEI)) was done before 1979, with the exception of a few places in the south-central and western part of the tract, which was done between 1996 and 2004 (Tikhomirova, S.R., written commun., 2011). The Erdenet Southwest sub-tract in Mongolia has been thoroughly mapped and investigated. Some of the central-south and central-north regions of the sub-tract, as well as few areas in the west, have been mapped at 1:50,000 scale. Mineral-exploration and mining-lease maps of Mongolia.
Assessment of Tracts in the Tethyside Region

The tectonically active Tethyside (Alpine-Himalayan) orogenic belt extends from southern Europe across parts of the Middle East through the Himalayas to the Pacific Ocean. The eastern Tethysides are bordered on the north by the Tarim and North China Cratons (fig. 2). Three permissive tracts are described within the eastern Tethysides in the study area (figs. 4, 7, and 8). As shown in figure 4, parts of these tracts in China are overlapped by younger (Mesozoic and Cenozoic) tracts that are assessed in a report on the Mesozoic of East Asia (Ludington, and others, 2012b) and a report that covers the Tibetan Plateau (Ludington and others, 2012a).

Early Paleozoic Through Indosinian in the Tethyside Region

Magmatic belts in East Asia generally young from the CAOB in the north to the Himalayas in the south. Whereas the tectonic development of the CAOB is related to Paleozoic through Indosinian subduction, collision, and terrane amalgamation associated with the evolution of the Paleo-Asian Ocean, the geodynamics of East Asia (from central China and southwards) are related to Cambrian through Triassic subduction and evolution of the Paleotethys and Neotethys Oceans and subsequent and ongoing collision as India subducts under the Tibetan Plateau (Pirajno, 2013). In central China, the east-west-trending Qinling-Dabie orogen records a series of collisions between the North China and South China Cratons and the southern Tarim Craton and Tibetan fold belt.

Qinling-Dabie Tract (142pCu8701)

Descriptive model: Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)
Grade and tonnage model: Global Cu-Au-Mo porphyry copper model (Singer and others, 2008)
Geologic Feature Assessed: Paleozoic through Triassic island arcs and continental arcs in central China

Location

The Qinling-Dabie tract extends for about 4,200 km from eastern Hubei Province in China westward through central China along the border with Pakistan to the Tajikistan-Afghanistan border (fig. 34). The tract is long and narrow and corresponds approximately to the Kunlun and Qinling mountain ranges and includes the northern part of the Pamir Mountains (fig. 1).

Tectonic Setting

The tract outlines an assemblage of Paleozoic through Triassic igneous rocks in central China and westward that includes a Cambrian-Ordovician island arc, a Devonian continental arc related to north-directed subduction of the Paleotethys Ocean beneath the North China and Tarim Cratons (fig. 2), and Permian-Triassic rocks formed as a result of the collision of the North China and Tarim Cratons (Manchurides) with the Eurasian Continent (Altaiids). The Qinling-Dabie orogen lies between crustal blocks of northern and southern China, and consists of the complex suture(s) by which they are joined (Meng and Zhang, 2000). A Cambrian-Ordovician island arc was formed offshore of the southern margin of the northern blocks and then accreted in middle Paleozoic time (Meng and Zhang, 2000; Ratschbacher and others, 2003). This was overprinted by a Devonian Andean-style continental arc related to subduction on the northern margin of the Paleotethys Ocean (Lerch and others, 1995; Stampfli and Borel, 2002). The lower Paleozoic rocks were then overprinted by a Permian-Triassic continental arc during the closure of the Paleotethys Ocean (Ratschbacher and others, 2003) and final accretion of northern and southern blocks (Meng and Zhang, 2000). Some of these rocks are postconvergent and are probably related to Triassic slab breakoff (Sun and others, 2002). At the western end, the tract is made up of the North Kunlun and Northern Pamir Terranes (Robinson and others, 2004), northeast of the Karakoram lateral fault.

Geologic Criteria

Igneous rocks that define the tract are Paleozoic through Triassic in age and mostly I-type (Schwab and others, 2004). All of the dated porphyry copper deposits and prospects are Indosinian (Permian-Triassic) in age, but the intimate mixture of Caledonian, Variscan, and Indosinian permissive rocks throughout the tract dictates the inclusion...
Table 11. Probabilistic assessment results for sub-tract 142pCu8508a, Erdenet Southwest—Mongolia.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

[Nix, estimated number of deposits associated with the xth percentile; Nund, expected number of undiscovered deposits; s, standard deviation; Cv%, coefficient of variance; Nknown, number of known deposits in the tract that are included in the grade and tonnage model; Ntotal, total of expected number of deposits plus known deposits; km², area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 km²; Nix, s, and Cv%, are calculated using a regression equation (Singer and Menzie, 2005)]

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density (Nund/100,000 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N90 N50 N10 N05 N01</td>
<td>Nund s Cv% Nknown Ntotal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 6 20 20 20</td>
<td>8.9 6.7 75 1 9.9</td>
<td>61,430</td>
<td>16</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
<th>Material, in metric tons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95 0.9 0.5 0.1 0.05 Mean</td>
<td>Mean or greater None</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>280,000 1,700,000 20,000,000 81,000,000 120,000,000 34,000,000</td>
<td>0.35 0.04</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>0 3,400 380,000 2,300,000 3,600,000 920,000</td>
<td>0.29 0.09</td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td>0 14 480 2,100 2,900 850</td>
<td>0.35 0.08</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>0 0 4,300 27,000 42,000 11,000</td>
<td>0.27 0.13</td>
<td></td>
</tr>
<tr>
<td>Rock</td>
<td>62 410 4,200 17,000 23,000 6,800</td>
<td>0.37 0.04</td>
<td></td>
</tr>
</tbody>
</table>

Figure 33. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8508a, Erdenet Southwest—Mongolia. k=thousands, M=millions, B=billions, Tr=trillions.
Figure 34. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8701, Qinling-Dabie—China and Tajikistan.
of all of these rocks in the tract definition. The eastern and western parts of the tract contain principally intrusive rocks (fig. 35); monzonites are more common in the east, and syenites are more common in the west. Volcanic rocks are much more widespread in the central third of the area.

During the Mesozoic and Cenozoic, vertical tectonics resulted in the formation of a number of basins that are interspersed within the tract and help form its margins. Many of the igneous rocks that make up the tract have been subjected to regional metamorphism of varying grades. It seems likely that many of these arc rocks are exposed at paleodepths exceeding those at which porphyry copper deposits are likely to be found. However, it was not practical to delineate these areas at the scale of this assessment. Some of the known mineral deposits are Paleozoic volcanogenic massive-sulfide deposits, which implies that some of the arc volcanism was submarine and not highly prospective for porphyry copper deposits (Sillitoe, 1980).

The tract was defined using primarily calc-alkaline, intermediate-composition plutonic and volcanic map units of Paleozoic and early Mesozoic age (fig. 35). Plutonic units include monzonite and granodiorite which are related to diorite. Volcanic units include primarily trachyte, andesite, and rhyolite closely associated with permissive intrusive units.

The Qinling-Dabie tract is bounded on the north by structures along the southern margins of the Tarim and North China Craton blocks and to the south by structures along the northern margins of the South China Craton block and the younger orogenic fold belts of the Tibetan Plateau. These structures mainly include various Caledonian and Variscan sutures and faults on the north side of the tract and Caledonian and Indosinian sutures and younger faults on the south side of the tract. The nature, location, orientation, extent, and component parts of these structural features, and the regions they enclose, varies tremendously from map to map and journal article figure to figure (particularly as depicted at regional scales). Because these bounding features are not well constrained, the tract boundaries were not truncated or clipped to any one dataset of tectonic contacts. The extent of the tract was primarily controlled and adjusted by the selection of appropriate map units and the distribution of mineral deposits.

Because of overly generalized map unit descriptions and the overall lack of attribution of texture or alteration, it was often impossible to unequivocally discriminate or subdivide permissive from nonpermissive units. The assessment team is aware that some of the arc rocks are exposed at paleodepths exceeding those at which porphyry copper deposits are likely to be found. However, it was not practical to delineate these areas at the scale of this assessment. Some of the known mineral deposits are Paleozoic volcanogenic massive-sulfide deposits, which implies that some of the arc volcanism was submarine and not highly prospective for porphyry copper deposits (Sillitoe, 1980).

There is only one porphyry copper deposit, Saishitang, known within the tract (fig. 34). Saishitang

Saishitang, in eastern Qinghai Province, is listed as a porphyry copper deposit by Singer and others (2008). The deposit has recently gone into production, and the mine site is clearly visible on Google Earth imagery. Saishitang is referred to by several other authors, however, as a skarn deposit (Chen and others, 2007; Zhao and Lin, 1993). It is apparently Indosinian in age (226 Ma) (Wu and others, 2010), but no description of the deposit was found. It is large (greater than 100 Mt) but has copper and gold grades that are consonant with it being a skarn deposit. It is retained and considered as a deposit because of its size and active mining status.

**Prospets, Mineral Occurrences, and Related Deposit Types**

There are 11 identified prospects in the tract, five of which are considered significant (fig. 34, appendix B). The only prospect for which detailed information is available is the Huangnan project. Dunbar (2008) describes copper-gold porphyry-type and skarn mineralization in this area in easternmost Qinghai Province. The porphyry-style mineralization there appears to be related to the peripheral parts of a Triassic granodiorite pluton.

Liangshuisimiaoping is reported by Yan and others (2007) to be Paleozoic in age. It has a reported copper resource of 134,000 t at 1 percent copper, small and quite atypical for a porphyry deposit. The copper grade would indicate that this, too, is likely to be a skarn deposit.

**Probabilistic Assessment**

**Grade and Tonnage Model Selection**

The general porphyry copper grade and tonnage model of Singer and others (2008) was used. Because Saishitang, the only known deposit in the tract, is primarily a skarn deposit, no reliable grade information was available to guide the choice of a grade and tonnage model. The high average-reported copper grade at Saishitang (1.13 percent copper) is much higher than the median copper grade of 0.44 percent copper in the general porphyry copper model and supports the interpretation of a skarn or a porphyry copper, skarn-related deposit. There is no other compelling geologic or metallogenic reason to suggest that either the porphyry Cu-Au or Cu-Mo grade and tonnage models would be more appropriate.

**Estimates of Undiscovered Deposits and Rationale**

The Qinling-Dabie tract contains one deposit, Saishitang, and at least 11 known significant prospects. The significant prospects are distributed across the entire east-west extent of the tract, and most have some basic exploration and metallogenic information. One significant prospect, Liangshuisimiaoping, has reported resources 134,000 t of copper, but this may be associated with skarn mineralization. Much of the tract, however, is characterized by volcanogenic massive-sulfide deposits.
Figure 35. Map showing the distribution of permissive rocks used to delineate tract 142pCu8701, Qinling-Dabie—China and Tajikistan.
Most of the tract region, particularly in the west, is at high altitudes, in steep terrain, and extremely remote. This region has been the site of repeated magmatic activity for more than 300 million years, and deep structures have provided easy paths for ascent of magmas and fluids. At the local scale, the geology is likely less studied and understood and relatively underexplored for minerals.

Deposit-model based prospecting for porphyry copper deposits in China began only in the 1960s. Most of the tract has been evaluated for mineral resources at small map scales (1:10,000,000 or larger), and in the central and eastern half of the tract, mineral-resource surveys, exploration, and detailed investigations have been undertaken (see maps available at China Geological Survey, 2005). Physical examinations of the surface geology have been extensive, and it is probable that any outcropping deposits would have been found. Based on available information and the experience of the assessment team, the history and level of mineral exploration was considered to be moderate to high.

The team estimated a 50-percent chance of 3 or more deposits, a 10-percent chance of 20 or more deposits, and a 5-percent chance of 30 or more deposits, for a mean of 8 undiscovered deposits (table 12.4). Uncertainty related to the level of erosion is reflected in the large uncertainty in the number of deposits estimated ($C_r = 118$ percent).

A previous assessment (Yan and others, 2007) covered part of the most favorable parts of this tract with five tracts (X-1, X-4, X-5, X-6, and X7) and estimated 6.7 mean undiscovered deposits, compared with the estimate of 8 made here (table 12.4).

Probabilistic Assessment Simulation Results

The mean estimate of undiscovered resources was 32 Mt of copper, about 20 times the copper resources reported for Saishihitan. Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 12.B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 36).

Late Paleozoic, Mesozoic, and Early Cenozoic Tracts

The southernmost tracts included in the study area are the Jinsajiang and Tethyan Gangdese tracts, which represent the easternmost part of the Tethysides (fig. 8), the superorogenic collage that borders the Eurasian Continent on the south (Şengör and others, 1988). Permissive tracts for Tethyan porphyry copper deposits west of the Tethyan-Gangdese tract are described by Zürcher and others (in press). Permissive tracts for Yanshanian (mostly Jurassic and Cretaceous) and Cenozoic, porphyry copper deposits that formed after the amalgamation of the Asian Continent in postconvergent settings in East Asia are described in Ludington and others (2012b) and a report that covers the Tibetan Plateau (Ludington and others, 2012a).

Jinsajiang Tract (142pCu8702)

**Descriptive model:** Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

**Grade and tonnage model:** Global porphyry copper model, Cu-Au subtype (Singer and others, 2008)

**Geologic Feature Assessed:** An assemblage of Carboniferous, Permian, and Triassic igneous rocks in southwestern China that formed both as island arcs and continental arcs during subduction of the Paleotethys Ocean below the South China Craton and Qiangtang Terrane

**Location**

The Jinsajiang tract is semifragmented and arcuate in shape, extending for about 2,100 km from the Xizang Autonomous Region in China (western Tibet) through Qinghai, Sichuan, and Yunnan Provinces (fig. 37). The eastern part of the tract is about 1,200 km long and as much as 500 km wide, whereas the western part is about 400 km long and 100 km wide. With the exception of southeastern part, the tract is located on the Tibetan Plateau.

**Tectonic Setting**

There is no real consensus about the tectonic history of this area. Plate-tectonic reconstructions (Stampfli, 2010; Stampfli and Borel, 2002) suggest that the following is a plausible scenario. The Paleotethys Ocean was established by the end of Devonian time. Subsequent subduction of that ocean beneath the South China Craton resulted in continental-arc rocks in Carboniferous and early Permian time. At the same time, the Qiangtang Terrane was drifting north across the Paleotethys Ocean, and south-directed subduction resulted in the emplacement of continental-arc rocks there. In the Late Triassic, the Yidun island arc developed in mid-ocean before being accreted to the Songpan-Ganzi fold belt and South China during the Indosinian orogeny, at the close of the Triassic (fig. 8).

Hou and others (2007) delineate a similar history, and name the arcs that constitute the tract as the Yidun, Jiaodong-Wei, Zugong-Jinghong (see their fig. 2). Porphyry copper deposits can be linked with certainty only to the Yidun (also called Zhongdian) Arc. Until these rock suites can be delineated spatially at an appropriate scale, it is not possible to further refine the tract area. As such, it was necessary to use all felsic and intermediate-composition rocks of Carboniferous through Triassic age to define the tract.

**Geologic Criteria**

The tract was defined using primarily calc-alkaline, intermediate-composition igneous map units Variscan through Indosinian age (fig. 38). Intrusive units are primarily Indosinian, with lesser amounts of Variscan, and include granite, quartz monzonite, granodiorite, diorite, quartz diorite, monzonite, and syenite. The isolated area in the western part of the tract contains only diorite intrusions, and very little is known about these rocks. Extrusive units are primarily andesite.

**Geologic Feature Assessed**

An assemblage of Carboniferous, Permian, and Triassic igneous rocks in southwestern China that formed both as island arcs and continental arcs during subduction of the Paleotethys Ocean below the South China Craton and Qiangtang Terrane.
Table 12. Probabilistic assessment results for tract 142pCu8701, Qinling-Dabie—China and Tajikistan.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

\[N_{xx},\text{ estimated number of deposits associated with the } xx\text{th percentile}; N_{\text{und}},\text{ expected number of undiscovered deposits}; s,\text{ standard deviation}; C_v,\text{ coefficient of variance}; N_{\text{known}},\text{ number of known deposits in the tract that are included in the grade and tonnage model}; N_{\text{total}},\text{ total of expected number of deposits plus known deposits}; km^2,\text{ area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 km}^2; N_{\text{und}}, s, \text{ and } C_v, \text{ are calculated using a regression equation (Singer and Menzie, 2005)}\]

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density (N_{\text{und}}/100,000 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{95})</td>
<td>(N_{50})</td>
<td>(N_{10})</td>
<td>(N_{05})</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver, in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>Cu</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Au</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rock</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 36. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8701, Qinling-Dabie—China and Tajikistan. k=thousands, M=millions, B=billions, Tr=trillions.
Figure 37. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8702, Jinsajiang—China.
Figure 38. Map showing the distribution of permissive rocks used to delineate tract 142pCu8702, Jinsajiang—China.
The eastern part of the Jinsajiang tract is bounded on the west and southwest by Variscan and early Mesozoic sutures separating major orogenic belts and terranes of the Tibetan Plateau, to the northeast by early Mesozoic sutures, and to the southeast by early Mesozoic sutures and structures along the western margin of the South China Craton block. The isolated western part of the tract has no clear bounding structures but is generally flanked to the north by a major Caledonian suture and to the south by early Mesozoic intraterrane structures. Areas where Tertiary basins were judged to be deeper than 1 km and areas intruded by post-Triassic intrusions were excluded.

The Songpan-Ganzi fold belt includes closely spaced Late Triassic granitoid rocks that include ~224-Ma adakite-like I-type plutons, ~215-Ma shoshonitic and high Ba-Sr granites, and ~205-Ma monzonites (Yuan and others, 2010). Rapid crustal uplift associated with formation of the monzonites and the lack of coeval volcanic rocks mapped in this area indicate levels of exposure below those at which porphyry copper deposits might occur, so the plutons in this area were excluded as nonpermissive.

The southern extension of the arc assemblage was included in the Sukhothai tract in a report on Southeast Asia (Hammarstrom and others, 2013). The Sukhothai tract delineates a similar assemblage of Carboniferous through Triassic rocks that were formed as both island arcs and continental arcs by subduction of oceanic crust of the Paleotethys Ocean below the South China Craton block in Yunnan and below Indochina (the Loei and Truongson volcanic arcs).

**Known Porphry Deposits**

There are two porphyry copper deposits in the Jinsajiang tract, Xuejiping and Pulang (fig. 37, table 2). Both deposits are in the Yidun (or Zhongdian) island arc.

**Pulang**

Pulang is west of Pulang, in the western Zhongdian, or inner belt (Li and others, 2011b; Leng and others, 2007). Hou and others (2007) call it a “large” deposit. Rui and others (2005) give an age of 225 Ma for Xuejiping, similar to Pulang. Xuejiping has a reported resource of about 300,000 t of copper (Hou and others, 2007), who described the deposit as six ore bodies of veins with disseminated chalcopyrite, pyrite, and magnetite in dioritic and monzonitic porphyry in the Sanjiang igneous district. They also quoted a grade of 0.60 percent copper. Other sources reported 60 Mt of ore at 0.5 percent copper and 1.4 g/t silver (Kirkham and Dunne, 2000). In 2003, production was reported to be 200 t/day from 30- to 80-m-thick ore zones with grades of 0.63 percent copper and 0.06 g/t gold (China Gold International, 2003). Li and others (2011b) give a resource, based on more recent development work, of 240 Mt at a copper grade of 0.5 percent, indicating a copper content of 1.2 Mt (table 2).

Cao and others (2006) mention that Pulang, Hongshan, and Xuejiping are the main porphyry copper deposits in Zhongdian County, confirming that Xuejiping and Pulang are discrete deposits. They also mention two new prospects without giving locations (Pushang and Disuga). Leng and others (2007) make clear that Xuejiping (medium-scale) and Pulang (super-large) are distinct deposits, with similar geochemical signatures (light-REE enriched, heavy-REE depleted, large-ion lithophile element enriched, high field strength element depleted), interpreted to be due to partial melting of the Ganzi-Litang oceanic slab, which may have been contaminated with some crustal material.

**Prospects, Mineral Occurrences, and Related Deposit Types**

Eleven prospects, including two prospects primarily defined as skarns, are present within the tract. Ten of them are in the Yidun Arc near Pulang and Xuejiping, and one is much farther north (fig. 37, appendix B).

Langdu, Qiansui, Songnou, Chundu, Hongshan, and Zhujiding are in the eastern Yidun porphyry belt. Langdu (about 0.5 Mt), Qiansui (about 0.5 Mt), Chundu (about 0.8 Mt), and Hongshan (about 1 Mt) have inferred copper resources (Li and others, 2011b). Yaza (about 0.2 Mt) is also noted by Li and others (2011b), but it is unclear whether it
The Cu-Au porphyry copper grade and tonnage model of Singer and others (2008) was used. Pulang, the largest known deposit in the tract, is a porphyry Cu-Au deposit (table 1). The reported gold grade for Xuejiping is 1.4 g/t, but no molybdenum is reported. Although the results of a Student’s t-test rejected the porphyry Cu-Au model, the porphyry Cu-Au grade and tonnage model of Singer and others (2008) was chosen for the following reasons: (1) the gold grade reported for Xuejiping may not be representative of the average grade for the whole deposit; (2) the Yidun Arc that makes up much of the tract is an island arc, with mostly mafic rocks, and island arcs tend to produce gold-rich porphyry deposits; and (3) the 250 Ma Phu Kham deposit in the Sukhothai tract in Laos is a gold-rich porphyry. In addition, statistical tests of Phu Kham and Pulang, excluding Xuejiping, are compatible with the Cu-Au grade and tonnage model, and the Sukhothai tract (142pCu7021) was assessed using the Cu-Au model (Hammarstrom and others, 2013). To be consistent, it was decided that the Cu-Au porphyry copper grade and tonnage model would be used for the Jinsajiang tract as well.

Estimates of Undiscovered Deposits and Rationale

The Jinsajiang tract includes two porphyry copper deposits and at least 11 known significant prospects (fig. 37, appendix B). All of the significant prospects, except for the Changdagou, are clustered around the two deposits in the southern part of the tract, and seven of the prospects contain partially delineated resources ranging from 0.5 to 1 Mt of copper.

The deposits and prospects are all associated with the Yidun Arc in the Zhongdian region, which has been recognized by Leng and others (2008) as an important copper-producing area. Extensive hydrothermal alteration is present in the Yidun Arc, and the relative proportions of extrusive and intrusive rock mapped suggests that much of the area appears to be exposed at an appropriate erosion level to preserve porphyry deposits.

With the exception of the western and southernmost parts, the tract has been evaluated for mineral resources at small map scales (1:10,000,000 or larger; see maps available at China Geological Survey, 2005). In the eastern part of the tract, and particularly the southeastern area, mineral-resource surveys, exploration, and detailed investigations have been undertaken (see maps available at China Geological Survey, 2005) but not as extensively as in regions to the north of the Jinsajiang tract. The history and level of mineral exploration is considered to be moderate to low and limited.

The team estimated a 90-percent chance for 2 or more undiscovered deposits in the tract, a 50-percent chance of 4 or more deposits, and a 10-percent chance of 14 or more deposits, for a mean of 6 expected undiscovered deposits (table 13A). A previous assessment (Yan and others, 2007) covered a small part of this tract (tract XI-4b) and estimated 4.2 mean undiscovered deposits.

Probabilistic Assessment Simulation Results

The mean estimate of undiscovered resources of 20 Mt copper far exceeds the identified copper resources (~4.5 Mt copper). Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 13B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 39).
Table 13. Probabilistic assessment results for tract 142pCu8702, Jinsajiang—China.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

[A, estimated number of deposits associated with the xth percentile; N_{und}, expected number of undiscovered deposits; s, standard deviation; C\%\%, coefficient of variance; N_{known}, number of known deposits in the tract that are included in the grade and tonnage model; N_{total}, total of expected number of deposits plus known deposits; km², area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 km²; N_{und}, s, and C\%\%, are calculated using a regression equation (Singer and Menzie, 2005)]

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density (N_{total}/100,000 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{95}</td>
<td>N_{50}</td>
<td>N_{05}</td>
<td>N_{01}</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources using the Cu-Au subtype model.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>Probability of at least the indicated amount</th>
<th>Probability of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td>Cu</td>
<td>300,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Mo</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Au</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rock</td>
<td>74</td>
<td>240</td>
</tr>
</tbody>
</table>

Figure 39. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8702, Jinsajiang—China. k=thousands, M=millions, B=billions, Tr=trillions.
Tethyan-Gangdese Tract (142pCu8706)

**Descriptive model:** Porphyry copper (Cox, 1986a; Berger and others, 2008; John and others, 2010)

**Grade and tonnage model:** Global Cu-Au-Mo porphyry copper model (Singer and others, 2008)

**Geologic Feature Assessed:** Late Triassic, Yanshanian (Jurassic and Cretaceous), and early Tertiary igneous rocks in southwestern China that were formed during subduction of the Tethys Ocean below the southern margin of Asia

**Location**

The Tethyan-Gangdese tract extends for about 3,000 km, from northern Yunnan Province through western Sichuan, southwestern Qinghai, most of Xizang (Tibet), and into northern India and Pakistan (fig. 40). At the widest part, it is nearly 700 km from north to south. The tract is entirely within the Himalayas and the Tibetan Plateau, and most of it is at altitudes exceeding 4,000 m.

**Tectonic Setting**

Arc magmatism was continuous in the Tethyan–Gangdese area from the Late Triassic until the final closure of Neotethys Ocean in the early Tertiary. Magmatism apparently first migrated north (many of the plutons in the northern part of the tract are Jurassic), then retreated back south due to steepening of the subducting slab, culminating in emplacement of the large composite Gangdese batholith in the Late Cretaceous and early Tertiary in the southern part of the tract (Ji and others, 2009). The very youngest of these rocks, whose ages may extend to as young as 40 Ma (Wen and others, 2008), can probably be considered collision related and probably resulted from a composite process of subduction, slab roll back, and subsequent break off (Ji and others, 2009). Some of the rocks along the Bangong-Nujiang Suture, between the Qiangtang and Lhasa Terranes (fig. 8), may have formed as a result of south-directed subduction of the Paleo-Tethys Ocean below the Lhasa Terrane, just before its accretion to Qiangtang in Late Cretaceous time (Qi and others, 2004; Li and others, 2011a). Isotopic (Sr, Sm-Nd and Hf) data from Mesozoic rocks of the Gangdese batholith (Ji and others, 2009; Chu and others, 2009) show little or no evidence of incorporation of old crustal material.

West of China, a similar history is preserved in the high Himalaya of northern India and Pakistan. The Kohistan-Ladakhi island-arc terrane formed during Early Cretaceous to Eocene time as a mid-Tethyan ocean subduction zone (Petterson, 2010; Ravikant and others, 2009; Schaltegger and others, 2002), and Hildebrand and others (2001). This part of the tract likely includes large nonpermissive areas due to metamorphism, deep erosion, and the presence of some collision-related peraluminous granites (Petterson, 2010).

**Known Porphyry Deposits**

**Xietongmen/Newtonmen**

The Xietongmen/Newtonmen deposit, with a U-Pb age of 176–171 Ma and a Re-Os age on molybdenite of 174 Ma (Tafti and others, 2009, 2014), belongs to this tract. However, at the time of completion of the assessment of the Tibetan Plateau, this deposit was believed to be Cenozoic in age, and was assessed in that study (Ludington and others, 2012a), where a description of the deposit can be found. Thus the Tethyan Gangdese tract was assessed as if there were no fully delineated porphyry copper deposits in the tract, although the Duolong prospect area is reported to contain a preliminary inferred resource of more than 5 Mt of copper.

**Prospects, Mineral Occurrences, and Related Deposit Types**

There are only four documented porphyry copper prospects within the tract, Garqiong, Duolong, Ri’a, and Shesuo, all discovered since 2000. They are all Cretaceous in age and are near the Bangong-Nujiang Suture (fig. 8). However, one of them (Duolong) is an important discovery and may contain as much as 5 Mt of copper.
Figure 40. Map showing the location, known deposits, significant prospects, and prospects for permissive tract 142pCu8706, Tethyan-Gangdese—China, India, and Pakistan.
Figure 41. Map showing the distribution of permissive rocks used to delineate tract 142pCu8706, Tethyan-Gangdese—China, India, and Pakistan.
Duolong (Li and others, 2011a; Xin and Qu, 2006; She and others, 2006) is located in western Tibet, about 800 km west of Lhasa. The ore-bearing rocks are described as being calc-alkaline quartz diorite and granodiorite, with samarium-neodymium (Sm-Nd) isotopic characteristics that suggest origin in an island arc. The age of the volcanic host rocks and barren and mineralized porphyries ranges from about 122 to 106 Ma (Li and others, 2008a; Li and others, 2011a). On the other hand, Qu and Xin (2006), who suggest an age of about 128 Ma, characterize the rocks as shoshonitic high-potassium calc-alkaline and suggest a postconvergent origin on the basis of trace-element characteristics. The age of mineralization was determined to be about 118 Ma (Re-Os age on molybdenite; She and others, 2006), whereas ⁴⁰Ar-³⁹Ar dates on alteration minerals are about 115 Ma (Li and others, 2011a). The altered rocks at Duolong can be clearly seen on Google Earth imagery.

Tse (2008) cited a resource of 2 Mt of copper for Duolong as reported in a 2005 bulletin of the China Ministry of Land and Resources. Another resource estimate of about 15 Mt of copper was reported by Rui and others (2005), but the basis for this estimate was not given. If this speculative resource is accurate, this would make Duolong one of the larger deposits in the world. The most recent grade and tonnage information are those in Li and others (2011a) (see appendix B), which indicates a tonnage of nearly 750 Mt, a copper grade of 0.72 percent, and a gold grade of 0.23 g/t. Because the Duolong deposit is not fully characterized, it is considered to be a prospect, albeit one that will certainly become a deposit once drilling is concluded.

Probabilistic Assessment

Grade and Tonnage Model Selection

Because there are no known porphyry copper deposits in the tract, the general porphyry grade and tonnage model of Singer and others (2008) was used. There is no compelling geologic or metallogenic reason to suggest that either the porphyry Cu-Au or Cu-Mo grade and tonnage models would be more appropriate.

Estimates of Undiscovered Deposits and Rationale

There are no known deposits and four known porphyry copper prospects, and very little is known of the exploration history. The tract is large (~290,000 km²), remote, and difficult to access, and it seems likely that this is relatively undere xplored. However, mean estimates of undiscovered deposits within a tract (table 15) range from about 2 to 21, with coefficients of variation ranging from a low of 73 (relatively certain) to a high of 118 (relatively uncertain). Most of the undiscovered deposits (21) are associated with the large Oyu Tolgoi tract (142pCu8506), which contains the supergiant porphyry copper deposit Oyu Tolgoi.

Probabilistic Assessment Simulation Results

The mean estimate of undiscovered resources for the tract is 28 Mt copper. Estimated amounts of copper, molybdenum, gold, silver, and the total volume of mineralized rock are reported in table 14B. Results of the Monte Carlo simulation are also presented as cumulative frequency plots (fig. 42).

Summary of Probabilistic Assessment Results

Simulation results are summarized in table 15. The quantile estimates (for example the median, which represent the 50-percent quantile) are linked to each tract simulation and, therefore, should not be added. However, mean estimates can be added to obtain total amounts of metal and mineralized rock that can be compared between tracts.

The assessment indicates that 97 undiscovered deposits could be present in 11 of the permissive tracts (which were quantitatively assessed) that host 20 known porphyry copper deposits (table 2). Mean estimates of numbers of undiscovered deposits within a tract (table 15) range from about 2 to 21, with coefficients of variation ranging from a low of 73 (relatively certain) to a high of 118 (relatively uncertain). Most of the undiscovered deposits (21) are associated with the large Oyu Tolgoi tract (142pCu8506), which contains the supergiant porphyry copper deposit Oyu Tolgoi.

A. Undiscovered deposit estimates, deposit numbers, tract area, and deposit density.

\[ N_\text{xth} \], estimated number of deposits associated with the \( x \)th percentile; \( N_\text{und} \), expected number of undiscovered deposits; \( s \), standard deviation; \( C_\% \), coefficient of variance; \( N_\text{known} \), number of known deposits in the tract that are included in the grade and tonnage model; \( N_\text{total} \), total of expected number of deposits plus known deposits; \( \text{km}^2 \), area of permissive tract in square kilometers; deposit density reported as the total number of deposits per 100,000 \( \text{km}^2 \); \( N_\text{und} \), \( s \), and \( C_\% \) are calculated using a regression equation (Singer and Menzie, 2005).

<table>
<thead>
<tr>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area</th>
<th>Deposit density</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_{95} )</td>
<td>( N_{90} )</td>
<td>( N_{95} )</td>
<td>( N_{95} )</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

B. Results of Monte Carlo simulations of undiscovered resources.

[Cu, copper; Mo, molybdenum; Au, gold; and Ag, silver; in metric tons; Rock, in million metric tons]

<table>
<thead>
<tr>
<th>Material</th>
<th>0.95</th>
<th>0.9</th>
<th>0.5</th>
<th>0.1</th>
<th>0.05</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0</td>
<td>320,000</td>
<td>13,000,000</td>
<td>73,000,000</td>
<td>110,000,000</td>
<td>28,000,000</td>
</tr>
<tr>
<td>Mo</td>
<td>0</td>
<td>0</td>
<td>260,000</td>
<td>2,000,000</td>
<td>3,200,000</td>
<td>770,000</td>
</tr>
<tr>
<td>Au</td>
<td>0</td>
<td>0</td>
<td>310</td>
<td>1,900</td>
<td>2,700</td>
<td>710</td>
</tr>
<tr>
<td>Ag</td>
<td>0</td>
<td>0</td>
<td>2,700</td>
<td>22,000</td>
<td>38,000</td>
<td>8,800</td>
</tr>
<tr>
<td>Rock</td>
<td>0</td>
<td>73</td>
<td>2,900</td>
<td>15,000</td>
<td>22,000</td>
<td>5,700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probability of Mean or</th>
<th>Probability of</th>
</tr>
</thead>
<tbody>
<tr>
<td>at least the indicated amount</td>
<td>greater</td>
</tr>
<tr>
<td>Cu</td>
<td>0.33</td>
</tr>
<tr>
<td>Mo</td>
<td>0.28</td>
</tr>
<tr>
<td>Au</td>
<td>0.32</td>
</tr>
<tr>
<td>Ag</td>
<td>0.27</td>
</tr>
<tr>
<td>Rock</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Figure 42. Cumulative frequency plot showing the results of Monte Carlo computer simulation of undiscovered resources in porphyry copper deposits in tract 142pCu8706, Tethyan-Gangdese—China, India, and Pakistan. 
\( k \)=thousands, \( M \)=millions, \( B \)=billions, \( Tr \)=trillions.
Table 15. Summary estimates of numbers of undiscovered porphyry copper deposits for the Central Asian Orogenic Belt and eastern Tethysides.

<table>
<thead>
<tr>
<th>Tract</th>
<th>Tract Name</th>
<th>Consensus undiscovered deposit estimates</th>
<th>Summary statistics</th>
<th>Tract area (km²)</th>
<th>Deposit density (N_{total}/100,000 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N_{50} N_{5s} N_{10} N_{5s} N_{1s} N_{und} s C_v % N_{known} N_{total}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142pCu8501</td>
<td>Solonker</td>
<td>1 2 15 15 15 5.5 5.383 97 1 6.5</td>
<td>250,100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>142pCu8502</td>
<td>Kazakh-Tianshan</td>
<td>1 2 8 8 8 3.4 2.7 80 3 6.4</td>
<td>89,610</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>142pCu8503</td>
<td>Gobi-Amur</td>
<td>0 1 3 6 6 1.5 1.8 115 1 2.5</td>
<td>56,090</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>142pCu8504</td>
<td>Mongol-Sayan</td>
<td>1 6 24 24 24 9.8 8.4 86 4 14.0</td>
<td>575,100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>142pCu8505</td>
<td>Kazakh-Tarim</td>
<td>3 5 25 25 25 10.0 8.4 83 4 14.0</td>
<td>344,290</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>142pCu8506</td>
<td>Oyu Tolgoi</td>
<td>6 14 48 48 48 21.0 16.0 73 3 24.0</td>
<td>329,850</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>142pCu8507</td>
<td>Mongol-Altai</td>
<td>3 8 36 36 36 15.0 12.0 84 0 15.0</td>
<td>785,570</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>142pCu8508a</td>
<td>Erdenet</td>
<td>2 6 20 20 20 8.9 6.7 75 1 9.9</td>
<td>61,430</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>142pCu8701</td>
<td>Qinling-Dabie</td>
<td>0 3 20 30 30 8.0 9.4 118 1 9.0</td>
<td>403,220</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>142pCu8702</td>
<td>Jinsajiang</td>
<td>2 4 14 14 14 6.0 5.0 73 2 8.0</td>
<td>111,690</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>142pCu8706</td>
<td>Tethyan-Gangdese</td>
<td>1 4 18 18 18 7.2 6.3 88 0 7.2</td>
<td>289,650</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0</td>
<td>3,296,600</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Mean estimated copper in undiscovered deposits, 370 Mt, represents about five times the 77 Mt of copper in identified resources (table 16). Mean estimates for other commodities that may be present in undiscovered porphyry copper deposits in the assessed area are as follows: 10,000 t of gold, 9.7 Mt of molybdenum, and 120,000 t of silver. Mean, median, and identified copper, molybdenum, and gold resources are compared on a tract-by-tract basis in figure 43.

No porphyry copper resources have been identified in two tracts, Mongol-Altai (142pCu8507) and Tethyan Gangdese (142pCu8706). Mean and median estimated undiscovered copper resources exceed identified resources in all of the other tracts (table 16, fig. 43A). Identified molybdenum resources exceed both mean and median estimated undiscovered molybdenum resources for the Jinsajiang (142pCu8702) tract (table 16, fig. 43B). Gold resources reported for the Duobaoshan deposit (164t) in the Gobi-Amur tract (142pCu8503) exceed the estimated undiscovered gold resources for that tract (table 16). For all the other tracts, mean estimated gold resources exceed identified gold resources (fig. 43C).

Discussion

The CAOB and eastern Tethysides incorporate ancient examples of all known environments of porphyry copper formation—subduction related island arcs, continental arcs, and back-arc extensional and (or) other postconvergent settings. These geologic environments for porphyry copper formation are more readily recognized in modern settings where plate boundaries are more obvious, such as the continental arcs of the Andes of South America and the island arcs of the South Pacific. The CAOB and eastern Tethysides record the complex and now fragmented evolution of two of the planet’s major ancient oceans, the Paleo-Asian and Tethys Oceans, respectively. Compared to most porphyry copper belts in more modern settings, these areas are generally less thoroughly explored.

The 2001 discovery of the Oyu Tolgoi porphyry copper deposit in Mongolia prompted further extensive exploration in Mongolia within the Oyu Tolgoi tract. Many of the other tracts apparently have also recently started to be explored for porphyry copper deposits. The remoteness, harsh terrain, and lack of infrastructure have impeded exploration in many areas. The increasing use of remote-sensing techniques, such as surface-alteration mapping using ASTER or other hyperspectral data, will likely identify many new near-surface target areas for porphyry copper deposits for follow-up field-based studies in the assessment region (see, for example, Zhang and others, 2007; Liu and others, 2013). In addition, geophysical studies are needed to target buried deposits. In the past few years, an enormous amount of geochronological and geochemical data has been published for China. These topical studies, combined
Table 16. Summary of simulations of undiscovered resources in porphyry copper deposits and comparison with identified copper and gold resources in porphyry copper deposits within each permissive tract in the Central Asian Orogenic Belt and eastern Tethysides.

<table>
<thead>
<tr>
<th>Tract</th>
<th>Tract name</th>
<th>Identified copper resources (t)</th>
<th>Estimate of undiscovered copper resources (t)</th>
<th>Identified molybdenum resources (t)</th>
<th>Estimate of undiscovered molybdenum resources (t)</th>
<th>Identified gold resources (t)</th>
<th>Estimate of undiscovered gold resources (t)</th>
<th>Mean estimate of undiscovered silver resources (t)</th>
<th>Mean estimate of rock (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>142pCu8501</td>
<td>Solonker</td>
<td>250,000</td>
<td>22,000,000</td>
<td>7,600,000</td>
<td>125,020</td>
<td>0</td>
<td>540</td>
<td>180</td>
<td>7,500</td>
</tr>
<tr>
<td>142pCu8502</td>
<td>Kazakh-Tianshan</td>
<td>8,700,000</td>
<td>14,000,000</td>
<td>5,500,000</td>
<td>261,170</td>
<td>370,000</td>
<td>330</td>
<td>4,300</td>
<td>2,700</td>
</tr>
<tr>
<td>142pCu8503</td>
<td>Gobi-Amur</td>
<td>3,300,000</td>
<td>5,900,000</td>
<td>1,100,000</td>
<td>128,800</td>
<td>170,000</td>
<td>150</td>
<td>8</td>
<td>2,000</td>
</tr>
<tr>
<td>142pCu8504</td>
<td>Mongol-Sayan</td>
<td>5,100,000</td>
<td>38,000,000</td>
<td>21,000,000</td>
<td>470,596</td>
<td>1,100,000</td>
<td>950</td>
<td>13,000</td>
<td>7,700</td>
</tr>
<tr>
<td>142pCu8505</td>
<td>Kazakh-Tarim</td>
<td>6,710,000</td>
<td>39,000,000</td>
<td>21,000,000</td>
<td>119,280</td>
<td>1,100,000</td>
<td>980</td>
<td>13,000</td>
<td>7,900</td>
</tr>
<tr>
<td>142pCu8506</td>
<td>Oyu Tolgoi</td>
<td>39,000,000</td>
<td>80,000,000</td>
<td>54,000,000</td>
<td>717,660</td>
<td>2,200,000</td>
<td>1,447</td>
<td>26,000</td>
<td>16,000</td>
</tr>
<tr>
<td>142pCu8507</td>
<td>Mongol-Altai</td>
<td>0</td>
<td>53,000,000</td>
<td>29,000,000</td>
<td>0</td>
<td>1,500,000</td>
<td>1,300</td>
<td>18,000</td>
<td>11,000</td>
</tr>
<tr>
<td>142pCu8508a</td>
<td>Erdenet Southwest</td>
<td>9,000,000</td>
<td>34,000,000</td>
<td>20,000,000</td>
<td>308,100</td>
<td>920,000</td>
<td>850</td>
<td>11,000</td>
<td>6,800</td>
</tr>
<tr>
<td>142pCu8701</td>
<td>Qinling-Dabie</td>
<td>1,400,000</td>
<td>32,000,000</td>
<td>11,000,000</td>
<td>0</td>
<td>850,000</td>
<td>800</td>
<td>10,000</td>
<td>6,400</td>
</tr>
<tr>
<td>142pCu8702</td>
<td>Jinsajiang</td>
<td>4,500,000</td>
<td>20,000,000</td>
<td>10,000,000</td>
<td>122,900</td>
<td>110,000</td>
<td>1,400</td>
<td>6,700</td>
<td>4,000</td>
</tr>
<tr>
<td>142pCu8706</td>
<td>Tethyan-Gangdese</td>
<td>0</td>
<td>28,000,000</td>
<td>13,000,000</td>
<td>0</td>
<td>770,000</td>
<td>710</td>
<td>8,800</td>
<td>5,700</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>77,000,000</td>
<td>370,000,000</td>
<td>NA</td>
<td>2,300,000</td>
<td>9,700,000</td>
<td>2,300</td>
<td>NA</td>
<td>120,000</td>
</tr>
</tbody>
</table>

[t, metric tons; Mt, million metric tons; NA, not applicable]
Figure 43. Bar charts comparing identified resources in known deposits (table 16) with mean and median estimates of undiscovered resources (table 16) for each tract in the Central Asian Orogenic Belt and eastern Tethysides. A, Copper. B, Molybdenum. C, Gold.
Figure 43.—Continued
Figure 43—Continued
with detailed field mapping, will provide data to refine, and probably decrease and subdivide, the areas of permissive rocks for porphyry copper deposits in the CAOB.

The estimate of undiscovered copper resources of about 370 Mt is more than 20 times as large as current world copper production. Several major discoveries have been made in the region in recent years (Oyu Tolgoi, Bozshakol, Aksug, Tuwu, Pulang). Continued expansion of exploration in the region should lead to continued discoveries.

Acknowledgments

USGS colleagues Klaus J. Schulz and Joseph A. Briskey initiated the global mineral resource assessment and participated in the first workshop, in Kunming, Yunnan, China, in 2002. Stephen G. Peters and Warren Nokleberg coordinated and led the initial assessment activities, prepared preliminary reports, and represented the USGS to our Chinese counterparts at several meetings. Jack H. Medlin, as USGS international specialist for Asia and the Pacific, facilitated joint project activities. Kathleen M. Johnson, former USGS Mineral Resources Program Coordinator, provided spirited and constant support over the life of the project.

Scientists from the China Geological Survey and the Chinese Academy of Geological Sciences generously participated in assessment meetings and provided data that would not have otherwise been available. We would especially like to thank Drs. Qiu Ruizhao and other colleagues from the China Geological Survey and Yunnan Geological Survey, who accompanied author Steve Ludington on field trips in western North America and hosted him for repeated visits to copper deposits in China.

USGS colleagues David M. Sutphin, Peter Vikre, and Michael L. Zientek served on an assessment oversight committee to evaluate the assessment results before publication. Technical reviews of the manuscript and spatial database were provided by USGS colleagues Jeff L. Doebrich, Stephen E. Box, and Pamela Dunlap.

References Cited


Berzina, A.P., Sotnikov, V.I., Economou-Eliopoulos, M., and Eliopoulos, D.G., 2005a, Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia: Ore Geology Reviews, v. 26, p. 91–113.


References Cited

87

Bureau of Geology and Mineral Resources of the Sichuan Province, 1991, Regional Geology of Sichuan Province: Beijing, Geological Publishing House, People’s Republic of China, Ministry of Geology and Mineral Resources Geological Memoirs, ser. 1, 730 p. (includes geological maps at 1:1,000,000 scale, magmatic rock maps at 1:1,000,000 scale, metamorphic maps at 1:2,000,000 scale, and geological structure maps at 1:2,000,000 scale). [In Chinese and English.]

Bureau of Geology and Mineral Resources of the Xizang Autonomous Region, 1993, Regional Geology of Xizang (Tibet) Autonomous Region: Beijing, Geological Publishing House, People’s Republic of China, Ministry of Geology and Mineral Resources Geological Memoirs, ser. 1, no. 31, 707 p. (includes geological maps at 1:500,000 scale, magmatic rock maps at 1:2,000,000 scale, and tectonic maps at 1:2,000,000 scale). [In Chinese and English.]

Bureau of Geology and Mineral Resources of the Yunnan Province, 1990, Regional Geology of Yunnan Province: Beijing, Geological Publishing House, People’s Republic of China, Ministry of Geology and Mineral Resources Geological Memoirs, ser. 1, no. 21, 728 p. (includes geological maps at 1:1,000,000 scale, magmatic maps at 1:1,000,000 scale, metamorphic maps at 1:2,000,000 scale, and geological structure maps at 1:1,000,000 scale). [In Chinese and English.]

Cao, Dian Hua, Wang, An Jian, Guan, Ye, and Chen, Jiang, 2006, Position prediction of porphyry copper deposits in Zhongdian island arc based on fuzzy logic: Mineral Deposits, v. 2006, no. 2. [In Chinese, English abstract.]


Committee for Mineral Reserves International Reporting Standards, 2004, Definition standards on mineral resources and mineral reserves: Canadian Institute of Mining, Metallurgy and Petroleum, Standing Committee on Reserve Definition, 10 p.


Gerel, O., 1999, Geochemical characteristics of the magmatic systems of porphyry-copper deposit Erdenetiin Ovoo, Mongolia: Mongolian Geoscientist, no. 13, p. 26–33.


Han, C., Xiao, W., Zhao, G., Mao, J., Yang, J., Wang, Z., Yan, Z., and Mao, Q., 2006b, Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, Central Asia: Ore Geology Reviews, v. 29, no. 1, p. 77–94.


Li, J., Li, G., Qin, K., and Xiao, B., 2008a, Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet—Constraints on metallogenic tectonic settings: Acta Petrologica Sinica, v. 24, p. 531–543. [In Chinese, with English summary.]


Porphyry Copper Assessment of the Central Asian Orogenic Belt and Eastern Tethysides


Pavlova, I.G., 1978, Porphyry copper deposits: Leningrad, Nedra, 275 p. [In Russian.]

Perelló, José, Cox, Dennis, Garamjав, Дондог, Sanjدورж, Саманд, Диakov, Сергеи, Скилсель, Доналд, Мункбат, Тумур-Очир, and Оюн, Гончиг, 2001, Ою Толгоi, Mongolia—Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket: Economic Geology, v. 96, no. 6, p. 1407–1428.


Petrov, O.V., and Streinikov, S.I., eds., 2008, Geological Map of Russia and CIS countries: Saint Petersburg, Russia, A.P. Karpinsky All-Russia Geological Research Institute (VSEGEI), 3 sheets, scale 1:2,500,000.
References Cited


Rundkvist, D.V., ed., 2001, Mineragenetic map of Russian Federation and adjacent states (within the boundaries of former USSR): Ministry of Natural Resources of Russian Federation, State Research and Development Enterprise (Aerogeologica), 1 map on 18 sheets, scale 1:2,500,000, CD-ROM.


Xin, H.B., and Qu, X.M., 2006, Geological characteristics and ore-forming epoch of Ri’a copper deposit related to bimodal rock series in Coqen County, western Tibet: Mineral Deposits, v. 28, no. 1, p. 73–82. [In Chinese, English summary.]


Xin, H.B., and Qu, X.M., 2006, Geological characteristics and ore-forming epoch of Ri’a copper deposit related to bimodal rock series in Coqen County, western Tibet: Mineral Deposits, v. 25, no. 4, p. 477–482. [In Chinese, English summary.]


## Appendix A. Principal Sources of Information Used for the Porphyry Copper Assessment of the Central Asian Orogenic Belt and Eastern Tethysides

Table A1. Geologic maps used for the porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides.

<table>
<thead>
<tr>
<th>Name or title</th>
<th>Scale or resolution</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>China</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological map of the People’s Republic of China</td>
<td>1:2,500,000</td>
<td>China Geological Survey (2004a)</td>
</tr>
<tr>
<td>Regional geology of Anhui Province</td>
<td>1:500,000</td>
<td>Bureau of Geology and Mineral Resources of the Anhui Province (1987)</td>
</tr>
<tr>
<td>Regional geology of Gansu Province</td>
<td>1:1,000,000</td>
<td>Bureau of Geology and Mineral Resources of the Gansu Province (1989)</td>
</tr>
<tr>
<td>Regional geology of Henan Province</td>
<td>1:500,000</td>
<td>Bureau of Geology and Mineral Resources of the Henan Province (1989)</td>
</tr>
<tr>
<td>Regional geology of Hubei Province</td>
<td>1:500,000</td>
<td>Bureau of Geology and Mineral Resources of the Hubei Province (1990)</td>
</tr>
<tr>
<td>Regional geology of Jiangsu Province and Shanghai Municipality</td>
<td>1:500,000</td>
<td>Bureau of Geology and Mineral Resources of the Jiangsu Province (1984)</td>
</tr>
<tr>
<td>Regional geology of Nei Mongol (Inner Mongolia) Autonomous Region</td>
<td>1:500,000</td>
<td>Bureau of Geology and Mineral Resources of the Nei Mongol Autonomous Region (1990)</td>
</tr>
<tr>
<td>Regional geology of Ningxia Hui Autonomous Region</td>
<td>1:350,000</td>
<td>Bureau of Geology and Mineral Resources of the Ningxia Hui Autonomous Region</td>
</tr>
<tr>
<td>Regional geology of Shaanxi Province</td>
<td>1:500,000</td>
<td>Bureau of Geology and Mineral Resources of the Shaanxi Province (1989)</td>
</tr>
<tr>
<td>Regional geology of Xinjiang Uygur Autonomous Region</td>
<td>1:500,000</td>
<td>Bureau of Geology and Mineral Resources of the Xinjiang Uygur Autonomous Region (1993)</td>
</tr>
<tr>
<td>Map of igneous rocks of the Pamir region</td>
<td>~1:10,000,000</td>
<td>Schwab and others (2004)</td>
</tr>
<tr>
<td>Regional geology of Qinghai Province</td>
<td>1:1,000,000</td>
<td>Bureau of Geology and Mineral Resources of the Qinghai Province (1991)</td>
</tr>
<tr>
<td>Regional geology of Sichuan Province</td>
<td>1:1,000,000</td>
<td>Bureau of Geology and Mineral Resources of the Sichuan Province (1991)</td>
</tr>
<tr>
<td>Regional geology of Xizang (Tibet) Autonomous Region</td>
<td>1:500,000</td>
<td>Bureau of Geology and Mineral Resources of the Xizang Autonomous Region (1993)</td>
</tr>
<tr>
<td>Regional geology of Yunnan Province</td>
<td>1:1,000,000</td>
<td>Bureau of Geology and Mineral Resources of the Yunnan Province (1990)</td>
</tr>
<tr>
<td><strong>Mongolia</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological map of Mongolia</td>
<td>1:1,000,000</td>
<td>Mineral Resources Authority of Mongolia and others (1998)</td>
</tr>
<tr>
<td><strong>Russian Federation</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geological Map of Russia and CIS</td>
<td>2,500,000</td>
<td>Petrov and Streimikov (2008)</td>
</tr>
<tr>
<td>State geological map of the Russian Federation, new series, sheet N-46,(47) Abakan, map of mineral resources</td>
<td>1:1,000,000</td>
<td>Zuev and others (2000)</td>
</tr>
<tr>
<td>Geological and mineral resource maps of the USSR, sheet N-49 Chita</td>
<td>1:1,000,000</td>
<td>Kalinina and Malykh (1956), Kalinina (1956)</td>
</tr>
<tr>
<td>State Geological Map of the USSR, new series, sheet N-(-44),45 Novosibirsk</td>
<td>1:1,000,000</td>
<td>Grigor’ev and others (1987)</td>
</tr>
<tr>
<td><strong>Other areas</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tectonic map of China and adjacent regions</td>
<td>5,000,000</td>
<td>Ren (1999)</td>
</tr>
<tr>
<td>Russia, Mongolia, China</td>
<td>various</td>
<td>Naumova and others (2006); Nokleberg and others (2004)</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>various</td>
<td>Peters and others (2007)</td>
</tr>
<tr>
<td>Geological map of India</td>
<td>1:1,000,000</td>
<td>Orr and Associates (2007)</td>
</tr>
<tr>
<td>Geological map of Pakistan</td>
<td>1:1,000,000</td>
<td>Qureshi and others (1993)</td>
</tr>
</tbody>
</table>
### Table A2. Mineral occurrences used for the porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides.

<table>
<thead>
<tr>
<th>Name or Title</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral deposits database and thematic maps of Central Asia</td>
<td>Seltmann and others (2010)</td>
</tr>
<tr>
<td>Geological features of major ore deposits in the Sanjiang Tethyan Metallogenic Domain</td>
<td>Hou and others (2007)</td>
</tr>
<tr>
<td>Porphyry copper deposits of the world: database, map, and grade and tonnage models</td>
<td>Singer and others (2008)</td>
</tr>
<tr>
<td>MMAJ mineral deposit database</td>
<td>Metal Mining Agency of Japan (1997)</td>
</tr>
<tr>
<td>World Minerals Geoscience database</td>
<td>Natural Resources Canada (2010); Kirkham and Dunne (2000)</td>
</tr>
<tr>
<td>Porphyry copper and molybdenum deposits of the USSR</td>
<td>Laznica (1976)</td>
</tr>
<tr>
<td>Mineral resources of the western part of the Mongol-Okhotsk foldbelt</td>
<td>Gerel (1999)</td>
</tr>
<tr>
<td>Mongolian commodities: Cu location map series</td>
<td>Mineral Resources Authority of Mongolia (2003)</td>
</tr>
<tr>
<td>Distribution map of mineral deposits and occurrences in Mongolia</td>
<td>Dejidmaa and others (2002)</td>
</tr>
<tr>
<td>Mineral resources data system (MRDS)</td>
<td>U.S. Geological Survey (2011)</td>
</tr>
<tr>
<td>GSJ Mineral Resources Map of East Asia</td>
<td>Kamitani and others (2007)</td>
</tr>
</tbody>
</table>

### Table A3. Other maps used for the porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides.

[NA, not applicable]

<table>
<thead>
<tr>
<th>Name or title</th>
<th>Scale or resolution</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic anomaly map of the People’s Republic of China</td>
<td>1:5,000,000</td>
<td>China Geological Survey (2004b)</td>
</tr>
<tr>
<td>Magnetic anomaly map of the USSR</td>
<td>1:10,000,000</td>
<td>A.P. Karpinsky Russian Geological Research Institute (1978)</td>
</tr>
<tr>
<td>Magnetic anomaly data in the Former Soviet Union</td>
<td>1:2,500,000</td>
<td>Racey and others (1996)</td>
</tr>
<tr>
<td>Copper geochemical map</td>
<td>1:12,000,000</td>
<td>China Geological Survey (2010)</td>
</tr>
<tr>
<td>EMAG2— Earth magnetic anomaly grid</td>
<td>2-arc minute</td>
<td>National Geophysical Data Center (2009)</td>
</tr>
</tbody>
</table>

**Appendix B. Excel Workbook for Deposits, Significant Prospects, and Prospects for the Porphyry Copper Assessment of the Central Asian Orogenic Belt and Eastern Tethysides**

[Available online only as an Excel workbook at http://pubs.usgs.gov/sir/2010/5090/X/]
Appendix C. Spatial Data

A file geodatabase (.gdb) and an Esri map document (.mxd) are included with this report. The file geodatabase contains three feature classes. These may be downloaded from the USGS Web site at http://pubs.usgs.gov/sir/2010/5090/X/ as zipped files SIR2010-5090-X_database.zip.

The file geodatabase is 142pCu_CAOB_Tethys and contains the following three feature classes:

- tracts_142pCu_CAOB_Tethys—A polygon feature class that represents permissive tracts for East and South East Asia. Attributes include the tract identifiers, tract name, a brief description of the basis for tract delineation, and assessment results. Attributes are defined in the metadata that accompanies the feature class.

- mineral_sites_142pCu_CAOB_Tethys—A point feature class for locations of known deposits (identified resources that have well-defined tonnage and copper grade), significant prospects, and prospects. Feature-class attributes include the assigned tract, alternate site names, information on grades and tonnages, age, mineralogy, associated igneous rocks, site status, comments fields, data sources, and references. Attributes are defined in the metadata that accompanies the feature class.

- boundary_142pCu_CAOB_Tethys—A polygon feature class showing countries within and adjacent to the assessment region. The feature class is extracted from the country and shoreline boundaries maintained by the U.S. Department of State (2009).

These three feature classes are included in an Esri map document (version 10.1 Service Pack 1): 142pCu_CAOB_Tethys.mxd.

Reference Cited


Appendix D. Assessment Team

Dmitriy V. Alexeiev, Senior Scientist with the Geological Institute of the Russian Academy of Sciences (RAS) in Moscow, Russia. He received M.A. and Ph.D. degrees in geology from Moscow State University in 1985 and 1993, respectively. He worked as a mapping geologist in the Karatau area of southern Kazakhstan between 1985 and 1993. From 1993 to 2005 he was with RAS Institute of Oceanology and has been with RAS Geological Institute from 2006 to the present. His studies focus on the tectonic evolution of the Paleozoic Kazakhstan Tian-Shan region and the Mesozoic to Cenozoic Russian Far East. His work with the USGS has included regional tectonic syntheses, terrane models, and the evolution of arc systems through time for Kazakhstan, Central Asia, and the western circumpacific.

Arthur A. Bookstrom, Research geologist, USGS Geology, Minerals, Energy, and Geophysics Science Center, Spokane, Washington, United States. He received a B.A. in geology from Dartmouth College (1961), an M.S. in geology from the University of Colorado (1964), and a Ph.D. in geology from Stanford University (1975). He worked as a mine geologist at the Climax molybdenum mine in Colorado, El Romeral magnetite mine in Chile, and the Rochester silver mine in Nevada. He has done exploration-project work at sites in Colorado, Nevada, and Montana, as well as regional exploration for molybdenum in Colorado and regional exploration for gold in Nevada, Montana, and Saudi Arabia. His work with the USGS has included regional geologic studies, metallogenic studies, mineral-environmental studies, and mineral-resource assessments.

Deborah A. Briggs, GIS Specialist, USGS Geology, Minerals, Energy, and Geophysics Science Center, Spokane, Washington, United States. She received a B.S. in Geotechnical Engineering at the University of Idaho (1988) and a Geographic Information System (GIS) certificate at Eastern Washington University (2006). She has spent the past 7 years data-mining, synthesizing, and validating geoscientific data from the literature and existing databases for global- and regional-scale assessments of copper, potash, and platinum-group metal-mineral resources.


Andrei F. Chitalin, Consultant, Moscow, Russia. Consultant in exploration geology throughout the world, with a focus on Russia. Presented a talk on porphyry copper deposits of Russia at the 2009 annual meeting of the Geological Society of America and participated in a postmeeting assessment workshop hosted by the U.S. Geological Survey in Vancouver, Washington.

Thomas P. Frost, Research geologist, USGS Geology, Minerals, Energy, and Geophysics Science Center, Spokane, Washington, United States. He completed his B.A. in Geology in 1975 at U.C. Santa Barbara and his Ph.D. at Stanford in 1987. He has experience as a marine geologist working on environmental hazards associated with oil leasing in the Gulf of Alaska and Cook Inlet, a petrologist working on rheologic modeling of mafic and felsic magma interaction in granitic plutons in the Sierra Nevada, and a geochemist doing...
geochemical surveys and geologic mapping. Recent work includes the Interior Columbia Basin Ecosystem Management Project, which was charged with assessing forest-landscape–aquatic-social-economic conditions in the Columbia Basin and developing adaptive management plans for Federal lands in the basin. He has participated in porphyry copper mineral resource assessments of Russia, Mongolia, northern China, and Kazakhstan.


Jane M. Hammarstrom, Research geologist, USGS Eastern Mineral and Environmental Resources Science Center, Reston, Virginia, United States. She received a B.S. in geology from George Washington University in 1972 and an M.S. in geology from Virginia Polytechnic Institute and State University in 1981. She is Co-chief of the USGS Global Mineral Resource Assessment project and the task leader for the porphyry copper assessment. Jane has more than 30 years of research experience in igneous petrology, mineralogy, geochemistry, economic geology, and mineral resource assessment.


Steve Ludington, Research geologist, USGS, Geology, Minerals, Energy, and Geophysics Science Center, Menlo Park, Calif., United States. He received a B.A. in geology from Stanford University (1967) and a Ph.D. in geology from the University of Colorado (1974). He worked as an exploration geologist in Colorado, New Mexico, and Arizona before joining the USGS in 1974. His work with the USGS has included regional geologic studies, metallogenic and geochemical studies, wilderness studies, and mineral-resource assessments. He has done mineral-resource assessment work in the United States, Costa Rica, Bolivia, Mongolia, Afghanistan, and Mexico and was a coordinator for the 1998 USGS National Mineral Resource Assessment.

Mark J. Mihalasky, Research geologist, USGS, Geology, Minerals, Energy, and Geophysics Science Center, Spokane, Wash., United States. He received a B.S. in geology in 1984 from Stockton State College, a M.S. in 1988 from Eastern Washington University in Geology, and a Ph.D. in Earth Sciences in 1999 from the University of Ottawa. He has worked as an exploration geologist and GIS consultant, Assistant Professor of Earth and Marine Geology and Coastal Research and Center Director of Research at Stockton University, New Jersey, and, since joining the USGS in 2008, a geospatial analyst and resource assessment scientist. He has experience in economic geology, mineral and interdisciplinary natural-resource assessments, and quantitative analysis and modeling of geospatial data. He has been involved with metallic mineral resource assessments (gold, silver, copper) in Nevada, China, Afghanistan, and western Asia (eastern Russia, Mongolia, northern China, Kazakhstan), diamond resources in Mali and the Central African Republic, and interdisciplinary natural resource assessments in Madagascar, Gabon, and the United States.


Andre Panteleyev, an economic geologist, formerly with the British Columbia Department of Mines the British Columbia Geological Survey. He received his B.Sc. (Honours, 1964), M.Sc. (1969), and Ph.D. (1976) from the University of British Columbia. He specialized in economic geology studies at Queen’s University from 1967 to 1969, and is registered as a Professional Engineer (P.Eng.) with the Association of Professional Engineers and Geoscientists of British Columbia. He specializes in intrusion-related and subvolcanic mineralized environments, conceptual mineral deposit modeling, the genetic interrelationships of mineral deposits, regional metallogeny, methodologies and applications of regional mineral potential assessments, and multisector land-use negotiations. His work experience includes nine field seasons in the Canadian Cordillera with Kennco Explorations (Western), Ltd., (a Canadian subsidiary of Kennecott Copper Corporation) doing porphyry copper exploration. He has worked and lectured extensively in Canada, Mongolia, China, Argentina, Bolivia, Chile, and Peru, as well as the United States, El Salvador, Fiji, Mexico, and Sweden.

Gilpin R. Robinson, Jr., Research geologist, USGS Eastern Mineral and Environmental Resources Science Center, Reston, Virginia, United States. He received a B.S. in geology from Tufts University (1973) and a Ph.D. in geology from Harvard University (1979). He is a geologist, geochemist, and mineral resources specialist working on mineral-resource assessments and other projects, including geologic mapping, studies of the origin and genesis of metal and industrial mineral deposits, and geochemical modeling.

Reimar Seltmann, Director, Centre for Russian and Central EurAsian Mineral Studies (CERCAMS) at the Natural History Museum, London, United Kingdom. He is an economic geologist focused on mineral deposit case studies mainly related to ore-bearing granitoids and metallogeny of central Asia. He coordinates an industry-funded research network “Metallogeny of the Altaids: Terrane reconstructions leading to new target regions,” where he contributed ore-deposits research on deposits including Oyu Tolgoi, Almalyk, Dzhezkazgan, Udokan. He has produced a number of original research papers, monographs, metallogenic maps and reference guidebooks on metal provinces of the former Soviet Union, Mongolia, and China.

John C. Wallis, USGS Geology, Minerals, Energy, and Geophysics Science Center, Spokane, Washington, United States. Wallis is a GIS and illustrator/graphics specialist. He received a B.S. in Geology (1997) and a B.S. in Biology (1998) from Eastern Washington University. He has been working in mineral assessments for the past 7 years by providing research, GIS and graphics/illustrations support used in this and other global- and regional-scale assessments of copper, potash, and platinum-group metal-mineral resources.

Appendix E. Geologic Time Correlation Charts

Description

Geologic maps prepared using Russian, Chinese, and Mongolian standards employ stratigraphic charts that differ slightly from one another and from standards used in other parts of the world (see fig. E1). The charts show correlations among series-epoch map symbols and durations for Phanerozoic and Precambrian Eons as used in Russia (Katalog Mineralov, 2005), China (Ma and others, 2002) and Mongolia (Mineral Resources Authority of Mongolia and others, 1998).

The time-stratigraphic boundaries shown are not definitive. The original sources should be consulted for each region in question. For comparisons with the International Stratigraphic Chart, see International Commission on Stratigraphy (2010).

References Cited


### Divisions of geologic time, as used in Russia, Mongolia, and China.

<table>
<thead>
<tr>
<th>Eon</th>
<th>Era</th>
<th>System - Period</th>
<th>Series - Epoch (Russia)</th>
<th>Series - Epoch (Mongolia)</th>
<th>Series - Epoch (China)</th>
<th>Magmatic stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Color</td>
<td>Sym.</td>
<td>Name</td>
<td>Start date</td>
<td>Sym.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q</td>
<td>Q</td>
<td>Holocene</td>
<td>0.01</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q.1</td>
<td>Q.3</td>
<td>Pleistocene</td>
<td>1.6</td>
<td>Q.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>Pleocene</td>
<td>6.7</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.2</td>
<td>N.4</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q1-3</td>
<td>Q1-3</td>
<td>Pleistocene</td>
<td>1.6</td>
<td>Q1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>N2</td>
<td>Pleiocene</td>
<td>6.7</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1</td>
<td>N1</td>
<td>Miocene</td>
<td>24.6</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.1</td>
<td>N.3</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.2</td>
<td>N.4</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q1-3</td>
<td>Q1-3</td>
<td>Pleistocene</td>
<td>1.6</td>
<td>Q1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>N2</td>
<td>Pleiocene</td>
<td>6.7</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1</td>
<td>N1</td>
<td>Miocene</td>
<td>24.6</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.1</td>
<td>N.3</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.2</td>
<td>N.4</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q1-3</td>
<td>Q1-3</td>
<td>Pleistocene</td>
<td>1.6</td>
<td>Q1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>N2</td>
<td>Pleiocene</td>
<td>6.7</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1</td>
<td>N1</td>
<td>Miocene</td>
<td>24.6</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.1</td>
<td>N.3</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.2</td>
<td>N.4</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q1-3</td>
<td>Q1-3</td>
<td>Pleistocene</td>
<td>1.6</td>
<td>Q1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>N2</td>
<td>Pleiocene</td>
<td>6.7</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1</td>
<td>N1</td>
<td>Miocene</td>
<td>24.6</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.1</td>
<td>N.3</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.2</td>
<td>N.4</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q1-3</td>
<td>Q1-3</td>
<td>Pleistocene</td>
<td>1.6</td>
<td>Q1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2</td>
<td>N2</td>
<td>Pleiocene</td>
<td>6.7</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1</td>
<td>N1</td>
<td>Miocene</td>
<td>24.6</td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.1</td>
<td>N.3</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N.2</td>
<td>N.4</td>
<td>Miocene</td>
<td>24.6</td>
<td>N.2</td>
</tr>
</tbody>
</table>

*References:*
- Ma and others (2002)
- Katalog Mineralov (2005)
Figure E1. Correlations among geologic time division duration and symbols as used in Russia (Katalog Mineralov, 2005), China (Ma and others, 2002), and Mongolia (Mineral Resources Authority of Mongolia and others, 1998). Start dates are millions of years ago (Ma).
### Division of Geologic time, as used in Russia, Mongolia, and China

<table>
<thead>
<tr>
<th>Eon</th>
<th>Color</th>
<th>Epoch - Period - Stage (Russia)</th>
<th>Epoch - Period - Stage (Mongolia)</th>
<th>Epoch - Period - Stage (China)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sym.</td>
<td>Name</td>
<td>Color</td>
</tr>
<tr>
<td>Eon</td>
<td>Color</td>
<td>Sym.</td>
<td>Name</td>
<td>Color</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proterozoic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR₁</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>References:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure E1.—Continued**

- **References:**
  - Katalog Mineralov (2005)
  - Ma and others (2002)