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Conversion Factors, Abbreviations, and Datums

Multiply By To obtain

Length
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
inch (in) 2.54 centimeter (cm)

Area

square mile (mi?) 259.0 hectare (ha)
square mile (mi?) 2.590 square kilometer (km?)

Volume
gallon (gal) 3.785 liter (L)
million gallons (Mgal) 3,785 cubic meter (m®)
cubic foot (ft’) 0.02832 cubic meter (m?)

Flow rate

cubic foot per second (ft/s) 0.02832 cubic meter per second (m?/s)
gallon per day (gal/d) 0.003785 cubic meter per day (m?/d)
million gallons per day (Mgal/d) 0.04381 cubic meter per second (m*/s)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:
°F=(1.8x°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C=(°F-32)/1.8

Vertical coordinate information is referenced to the North American Vertical Datum of 1988
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983
(NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (uS/cm
at 25°C).

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L),
micrograms per liter (pg/L), nanograms per liter (ng/L), nanograms per milliliter (ng/mL).

Concentrations of chemical constituents in bed sediment are given in nanograms per gram
(ng/g).



Abbreviations and Acronyms

AHTN acetyl-hexamethyl-tetrahydronaphthalene
BPA bisphenol A

EAC endocrine active chemical

GnRH gonadotropin-releasing hormone

GtH gonadotrophins

HHCB hexahydrohexamethyl-cyclopenta-benzopyran
MPCA Minnesota Pollution Control Agency

NP 4-nonylphenol

NP1EC 4-nonylphenolmonoethoxycarboxylate
NP2EC 4-nonylphenoldiethoxycarboxylate

NP1EQ 4-nonylphenolmonoethoxylate

NP2EO 4-nonylphenoldiethoxylate

OP1EO 4-tert-octylphenolmonoethoxylate

OP2EOQ 4-tert-octylphenoldiethoxylate

SCSU St. Cloud State University

TOP 4-tert-octylphenol

USEPA U.S. Environmental Protection Agency
USGS U.S. Geological Survey

WWTP wastewater-treatment plant
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Abstract

The U.S. Geological Survey, in cooperation with St.
Cloud State University, Minnesota Department of Health,
Minnesota Pollution Control Agency, Minnesota Department
of Natural Resources, Metropolitan Council Environmental
Services, and the University of Minnesota, has conducted field
monitoring studies and laboratory research to determine the
presence of endocrine active chemicals and the incidence of
endocrine disruption in Minnesota streams and lakes during
1994-2008. Endocrine active chemicals are chemicals that
interfere with the natural regulation of endocrine systems, and
may mimic or block the function of natural hormones in fish
or other organisms. This interference commonly is referred to
as endocrine disruption. Indicators of endocrine disruption in
fish include vitellogenin (female egg yolk protein normally
expressed in female fish) in male fish, oocytes present in
male fish testes, reduced reproductive success, and changes in
reproductive behavior.

The results from a series of studies during 1994-2008
demonstrate that endocrine active chemicals are present in
Minnesota surface waters, indicating that aquatic organism
exposure is likely. Endocrine active chemicals have been iden-
tified in wastewater-treatment plant effluent and surface waters
downstream from discharge of wastewater-treatment plant
effluent throughout Minnesota at low concentrations.

Biological indicators of endocrine disruption have been
detected in wild fish throughout Minnesota at sites directly
downstream from wastewater-treatment plant effluent, indicat-
ing that endocrine active chemicals in effluent contribute to
endocrine disruption in fish. This finding was confirmed in a
controlled study exposing fathead minnows to wastewater-
treatment plant effluent at an onsite fish exposure laboratory.
During this controlled study, changes in biological responses
coincided with changes in wastewater-treatment plant efflu-
ent composition demonstrating that effluent effects on fish

''U.S. Geological Survey
2 St. Cloud State University

3 Minnesota Pollution Control Agency

endocrine systems are temporally variable. Although chemi-
cals contributing to endocrine disruption in fish are complex,
several laboratory studies have further confirmed that certain
classes of chemicals, such as hormones and alkylphenols,
which are components of wastewater-treatment plant efflu-
ent, affect the endocrine systems of fish through biochemical,
structural, and behavioral disruption.

Although these studies indicate that wastewater-
treatment plant effluent is a conduit for endocrine active
chemicals to surface waters, endocrine active chemicals also
were present in surface waters with no obvious wastewater-
treatment plant effluent sources. Endocrine active chemicals
were detected and indicators of endocrine disruption in fish
were measured at numerous sites upstream from discharge
of wastewater-treatment plant effluent. These observations
indicate that other unidentified sources of endocrine active
chemicals exist, such as runoff from land surfaces, atmo-
spheric deposition, inputs from onsite septic systems, or other
groundwater sources. Alternatively, some endocrine active
chemicals may not yet have been identified or measured.

The presence of biological indicators of endocrine disruption
in male fish indicates that the fish are exposed to endocrine
active chemicals. However indicators of endocrine disruption
in male fish does not indicate an effect on fish reproduction or
changes in fish populations.

Introduction

Concern that selected chemicals in aquatic environments
may act as endocrine active chemicals (EACs) is widespread
(Colburn and Clement, 1992; Ankley and others, 1998; Kime,
1998). EACs interfere with the natural regulation of fish endo-
crine systems by either mimicking or blocking the function of
natural hormones (Kime, 1998; National Research Council,
1999). This interference is commonly referred to as endocrine
disruption.

Numerous lists of EACs have been created for various
purposes (Illinois Environmental Protection Agency, 1997;
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Table 1. Descriptions of commonly used indicators of endocrine disruption in fish.
Indicator Description
Vitellogenin Vitellogenin is a protein that is the precursor to egg yolk proteins. In male fish, vitellogenin produc-

tion is stimulated in the liver when they are exposed to various natural and synthetic estrogens.

Sex steroid hormones

Chemical messengers that stimulate vitellogenin production, secondary sex characteristics, develop-

ment of gametes, and spawning.

Gonado-somatic index
exposure.

Gonad histopathology

Secondary sexual characteristics
male fish.

Behavioral indicators

Reproductive success

Percentage of body weight composed of gonad tissue, indicating reproductive status and chemical

Microscopic examination for the presence of abnormalities such as oocytes in male testes.

Development of secondary sexual characteristics such as tubercles, dorsal pads, and coloration in

Courtship behavior including the ability of male fish to construct and defend nesting sites.

Number of surviving offspring that carry genes derived from parents into the next generation.

Colborn and others, 1993); however, no definitive regulatory-
based list of EACs is available. The U.S. Environmental
Protection Agency (USEPA) is in the process of evaluating
chemicals for their potential to disrupt estrogen, andro-
gen, and thyroid systems through the Endocrine Disruption
Screening Program (U.S. Environmental Protection Agency,
2009). Although no single list exists, laboratory studies have
confirmed that certain classes of chemicals including natural
and synthetic hormones, pesticides, metals, alkylphenols,
alkylphenol ethoxylates, plastic components, phthalates, and
phytoestrogens affect the endocrine systems of fish through
biochemical, structural, and behavioral disruption (Jobling
and Sumpter, 1993; Jobling and others, 1996; Ankley and
others, 1998; Kime, 1998; Miles-Richardson and others,
1999; Bistodeau and others, 2006; Barber and others, 2007;
Schoenfuss and others, 2008). EACs have been identified in
wastewater-treatment plant (WWTP) effluents and surface
waters worldwide (Ahel, Giger, and Koch, 1994; Ahel, Giger,
and Schaffner, 1994; Desbrow and others, 1998; Kolpin and
others, 2002), and more specifically in Minnesota (Barber and
others, 2000, 2007; Lee and others, 2004; Lee, Yaeger, and
others, 2008; Lee, Schoenfuss, and others, 2008; Martinovic
and others, 2008). EACs can enter the environment through
many pathways including WWTP effluent, industrial effluent
discharge, runoff from agricultural and urban land surfaces,
application of human and animal waste, and septic system
discharge and subsequent movement to groundwater or sur-
face water. In addition, EACs are not completely removed by
wastewater-treatment systems (Richardson and Bowron, 1985;
Stumpf and others, 1996; Ternes, 1998), resulting in poten-
tially continuous sources of EACs to groundwater, surface
water, and drinking water.

Aquatic organisms including fish are exposed directly
to EACs on a potentially continual basis through dermal
and gill surface contact and food consumption. Signaling
within the endocrine system can be modified or disrupted
by EACs at many levels. Fish reproduction includes a com-
plex chain of hormonal events (fig. 1). In female fish, exter-
nal signals stimulate the hypothalamus gland to produce

gonadotropin-releasing hormone (GnRH) that stimulates the
pituitary gland to produce gonadotropins (GtH), which then
stimulate the synthesis of sex steroids hormones (testosterone
and 17B-estradiol) in the ovaries (Kime, 1998). A primary role
of 17B-estradiol in females is to stimulate the liver to produce
vitellogenin, which is a protein that is the precursor to egg
yolk proteins. In male fish, vitellogenin production is stimu-
lated in the liver when they are exposed to various natural and
synthetic estrogens (Jobling and Sumpter, 1993). Concentra-
tions of measurable amounts of plasma vitellogenin in male
fish usually are low (nanograms per milliliter) or undetectable,
thus making the presence of vitellogenin in male fish an indi-
cator of the presence of estrogen or estrogenic chemicals in the
environment (Purdom and others, 1994; Sumpter and Jobling,
1995; Folmar and others, 1996).

EACs may disrupt normal function of the endocrine
system in a variety of ways including direct cellular damage to
organs, damage to neurons or the nervous system that control
the organs, modification of hormone or enzyme synthesis, or
interference with the feedback regulation of hormones (Kime,
1998). In normal endocrine system operation, hormones bind

Ovaries

Hypothalamus

Testosterone

7
vt | G 1T esadio
0 et

Vitellogenin

Pituitary
GnRH Gonadotropin-releasing hormone
GtH Gonadotropins
Figure 1. Endocrine system control of vitellogenin induction in
female fish.
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Figure 2. The mechanism of action for hormones and endocrine active chemicals (modified from Streets and others, 2008).

to receptors to elicit reactions within a cell (fig. 2). An EAC
that acts as a hormone mimic can modify the reaction so that it
is stronger or weaker than normal, or occurs at an inappropri-
ate time. An EAC also may bind with the receptor and block
the reaction.

A variety of receptor binding assays and whole-organism
methods can determine whether or not a chemical is interact-
ing with the endocrine system. For example, estrogen receptor
binding assays are designed to identify chemicals that bind to
an estrogen receptor and, therefore, might result in changes to
normal function (National Institute of Environmental Health
Sciences, 2003; Bolger and others, 1993). Some commonly
used receptor binding methods include the yeast estrogen
screen reporter gene assay (Routledge and Sumpter, 1996) and
the human estrogen receptor positive MCF-7 breast cancer
cell line (E-screen) proliferation test (Soto and others, 1991;
Koerner and others, 1999). Numerous whole-organism indica-
tors of endocrine disruption in fish also are available ranging
from those that indicate exposure to EACs but not necessarily
a negative effect on reproduction such as vitellogenin, to those
that indicate a physical, behavioral, or reproductive alteration
(table 1).

The U.S. Geological Survey (USGS), in cooperation with
St. Cloud State University, Minnesota Department of Health,
Minnesota Pollution Control Agency, Minnesota Department
of Natural Resources, Metropolitan Council Environmental
Services, and the University of Minnesota, have completed
a series of studies to determine the presence of EACs and
endocrine disruption in Minnesota streams and lakes during
1994-2008. Combinations of field monitoring and controlled
laboratory studies have been completed by this interdisciplin-
ary group. The long-term goals of the cooperative studies are
to determine the occurrence and distribution of EACs and
endocrine disruption in Minnesota surface waters, factors con-
tributing to EAC occurrence and fate in surface waters, factors
related to endocrine disruption occurrence, source pathways
of EACs to organisms, and population-level effects on fish
and other organisms. The purpose of this report is to summa-
rize the findings of the cooperative studies completed during
1994-2008.

Approach and Methods

A series of individual cooperative studies were completed
during 1994-2008 by the USGS and one or more research
partners (appendix 1). A combination of water, bed sediment,
and fish was sampled at 135 stream or lake sites in Minnesota,
and treated effluent was sampled from 12 WWTPs that dis-
charge to streams in Minnesota (figs. 34 and 3B; appendix 2).

General Approach

Initial studies were broadly focused on the occurrence of
biological responses or the occurrence of EACs and other con-
taminants in surface water, groundwater, wastewater, or drink-
ing water in Minnesota. The focus developed into integrated
studies of chemistry, hydrology, and biological responses to
better understand the fate and effects of EACs. The increased
attention on more narrowly focused studies to investigate spe-
cific chemical classes and specific environmental settings has
provided additional information on sources and occurrence of
EACs and on the biological responses to EACs.

Datasets from each study were combined into three data-
sets based on sampling media (water, bed sediment, and fish)
for the analyses in this report (appendixes 3, 4, and 5, respec-
tively). Data for appendixes 3—5 are available in Microsoft
Excel format on the report’s Web page at Pzttp://pubs. usgs. gov){
. Measurements made for each study varied
with the study objectives. Analyses were done at multiple
laboratories, which introduces variability. Site selection was
not random, and many of the sites were chosen specifically
because they were downstream from a WWTP discharge or
represented a specific land-use category.

Chemical analyses were performed at two USGS labo-
ratories and the detection limits and methods varied between
laboratories. Chemical identification for all methods had to
meet qualitative and quantitative criteria including positive
identification based on elution within expected retention times
and sample spectra and ion abundance had to match reference
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Figure 3.

analytes (Barber and others, 2000, 2003, 2007; Lee and others,
2000, 2004; Lee, Yaeger, and others, 2008; Lee, Schoenfuss,
and others, 2008). Concentrations were coded as estimated
values when average recoveries were less than acceptable
limits, when they were routinely found in blanks, when con-
centrations were above or below a calibration curve, or when
standards were prepared from a technical mixture. There is
more uncertainty in estimated concentrations (Zaugg and oth-
ers, 2000); however, reporting the concentrations as estimated

128=  Site where bed sediments were sampled from
streams or lakes—Number is sampling site
identifier shown in appendix 2

Locations where A, water, bed sediment, or B, fish were sampled during 1994-2008.

does not decrease confidence in the qualitative identification
of a chemical.

Differences in detection limits and estimated values
provide challenges to making comparisons among sites.
Censored concentrations (those with a less than symbol and
a concentration, for example “<0.05”), does not necessarily
indicate that the chemical was not in the water sample but
rather that the concentration was less than quantitation limits.
For the purpose of this report, data were not censored at one
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detection limit, but rather concentrations (estimated or not)
were counted as detections. This approach is somewhat con-
servative as there may be more true environmental detections
(that occurred at concentrations less than detection limits) than
summarized in this report. Although these limitations pro-
vide challenges to interpretations, the combined datasets are
satisfactory for analyses of general trends as presented in this

report.

Sample Collection and Analytical Methods

All sampling was conducted using established protocols
and described in detail in Goodbred and others (1997), Barber
and others (2000, 2003, 2007), Lee and others (2000, 2004),
Lee, Yaeger, and others (2008), and Lee, Schoenfuss, and oth-
ers (2008). Streamflow was measured using USGS protocols
(Rantz and others, 1982a, 1982b; Morlock and others, 2002).

5
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Water samples were collected by wading, by drilling
through ice, from boats, or from bridges depending on the
flow conditions at the time of sampling. Water samples were
collected using integrated width-and-depth sampling tech-
niques (Edwards and Glysson, 1988; U.S. Geological Survey,
variously dated) to obtain representative samples. Automatic
samplers were used for sites where more frequent collection
was required. Water samples were processed immediately and
sent to USGS laboratories for analyses.

Bed-sediment samples were collected according to estab-
lished USGS protocols (U.S. Geological Survey, variously
dated). Bed-sediment samples were collected with stainless-

a N

\_ /

Stream flow measurement at the Grindstone River below
Hinckley, Minn. (USGS station number 05337005, photograph
by John Greene (USGS) on September 27, 2007).

steel sampling equipment from the top 20 centimeters of bed
sediment. Samples were collected from 5 to 10 locations
within a stream reach and composited to obtain a represen-
tative sample. Following collection, chilled samples were
processed within 1 to 2 hours after collection before they were
shipped to USGS laboratories.

To avoid sample contamination, personnel who collected
and processed water and bed-sediment samples wore powder-
less, disposable gloves during sample collection. All samples
were collected with inert materials such as Teflon, glass, or
stainless steel. All collection and processing equipment was
cleaned between samples with a succession of native water,
soapy tap water, tap water, deionized water, methanol, and
organic-free water rinses (U.S. Geological Survey, variously
dated).

Among all studies, water and bed-sediment samples were
analyzed for a wide variety of chemicals including fragrances,

pesticides, metal complexing agents, surfactant degradation
products, plastic components, fire retardants, antioxidants,
caffeine, antimicrobials, and steroids that are indicators of
industrial, domestic, and agricultural wastewaters. These
chemicals were selected for these studies on the basis of
usage, toxicity, potential endocrine activity, and persistence in
the environment (Barnes and others, 2002; Kolpin and others,
2002). Water samples were analyzed at the USGS National
Water Quality Laboratory in Denver, Colo., and at the USGS
National Research Laboratory in Boulder, Colo., as described
in Barber and others (2000, 2003, 2007); Kolpin and others
(2002); Zaugg and others (2002); Lee, Yaeger, and others
(2008); and Lee, Schoenfuss, and others (2008). Bed-sediment
samples were analyzed at the USGS National Water Quality
Laboratory and at the USGS National Research Laboratory
as described in Burkhardt and others (2006) and Barber and
others (2000), respectively. The chemicals analyzed were not
identical among studies because of differences in study scopes
and purposes. Analytical detection limits varied between the
laboratories and varied with time within one laboratory. The
chemicals summarized in this report have been shown to be
EAC:s in laboratory studies, and were analyzed in water and
bed-sediment samples for most of the studies (table 2).

Quality-assurance samples were collected for water and
bed-sediment analyses and discussed in detail in other reports
(Goodbred and others,1997; Barber and others, 2000; Barber
and others, 2003; Barber and others, 2007; Lee and others,
2000; Lee and others, 2004; Lee, Yaeger, and others, 2008;
and Lee, Schoenfuss, and others, 2008). Quality-assurance
samples included field blanks (water analyses) and field
replicates (water and bed-sediment analyses). Field blanks
were prepared at the sampling sites before the collection of
the corresponding environmental sample. Blank samples were
prepared by processing high-performance liquid-chromatogra-
phy-grade organic-free water (Baker Analyzed, J.T. Baker Co.)
through the same equipment used to collect and process field
samples. Field replicate samples were used to determine vari-
ability of detections and concentrations that result from sample
processing techniques (sample splitting, filtration, and trans-
port). Replicate samples consist of a split of the environmental
sample, so the environmental and replicate samples should be
nearly equal in composition. Replicate samples measure the
combined precision of sampling and laboratory analyses.

The quality-assurance data are included in appendixes
3 and 4 for water and bed-sediment samples, respectively.
Among all the studies, 20 blank samples for water analyses
were collected (appendix 3). In general, detections in blank
samples were infrequent and almost all were at estimated
concentrations. A few EACs were detected in the blank
samples: 4-nonylphenol (4 detections at estimated concentra-
tions), 4-nonylphenolmonoethoxylate (NP1EO; 2 detections),
4-tert-octylphenolmonoethoxylate (OP1EO; 1 detection at
an estimated concentration), 4-fert-octylphenoldiethoxylate
(OP2EO; 1 detection at an estimated concentration), acetyl-
hexamethyl-tetrahydronaphthalene (AHTN; 1 detection at
an estimated concentration), bisphenol A (1 detection at an



Table 2.

List of endocrine active chemicals summarized.

Approach and Methods

Chemical name

Abbreviation

Possible chemical uses

or sources

Sources

4-Nonylphenol NP Surfactant metabolite
4-Nonylphenolmonoethoxylate (total) NP1EO Surfactant metabolite
4-Nonylphenoldiethoxylate (total) NP2EO Surfactant metabolite
4-Nonylphenoltriethoxylate (total) NP3EO Surfactant metabolite
4-Nonylphenoltetraethoxylate (total) NP4EO Surfactant metabolite
4-Nonylphenolmonoethoxycarboxylate NPI1EC Surfactant metabolite
4-Nonylphenoldiethoxycarboxylate NP2EC Surfactant metabolite
4-Nonylphenoltriethoxycarboxylate NP3EC Surfactant metabolite
4-Nonylphenoltetracthoxycarboxylate NP4EC Surfactant metabolite
4-normal-Octylphenol NOP Plasticizer
4-tert-Octylphenol TOP Surfactant metabolite
4-tert-Octylphenolmonoethoxylate (total) ~ OP1EO Surfactant metabolite
4-tert-Octylphenoldiethoxylate (total) OP2EO Surfactant metabolite
4-tert-Octylphenoltriethoxylate (total) OP3EO Surfactant metabolite
4-tert-Octylphenoltetracthoxylate (total) OP4EO Surfactant metabolite
4-tert-Octylphenolpentaethoxylate (total) ~ OP5EO Surfactant metabolite
Acetyl-hexamethyl-tetrahydronaphthalene =~ AHTN Polycyclic musk fra-
grance
Bisphenol A BPA In polycarbonate resins
Hexahydrohexamethyl-cyclopenta-benzo- HHCB Polycyclic musk fra-
pyran grance

Van den Belt and others, 2004; Brian and oth-
ers, 2005; Preuss and others, 2006.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Routledge and Sumpter, 1996.
Routledge and Sumpter, 1996.
Routledge and Sumpter, 1996.
Routledge and Sumpter, 1996.
Bonefeld-Jorgensen and others, 2007.

Bonefeld-Jorgensen and others, 2007; Soto and
others, 1995; Jobling and Sumpter, 1993;
Routledge and Sumpter, 1996.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Jobling and Sumpter, 1993; Routledge and
Sumpter, 1996.

Schreurs and others, 2005; Yamauchi and oth-
ers, 2008.

Bonefeld-Jorgensen and others, 2007; Brian
and others, 2005; Schultz and others, 2000;
Terasaki and others, 2005.

Schreurs and others, 2005; Yamauchi and oth-
ers, 2008.

estimated concentration), and hexahydrohexamethyl-cyclo-
penta-benzopryan (HHCB; 1 detection at an estimated con-
centration). Many of the detections in blank samples occurred
during one study in 2005 indicating sources of contamination
in the laboratory or in the field during that study. Among all
the studies, 15 replicate samples were collected for analyses of
water and one replicate sample was collected for analyses of
bed sediment. In general, the analytical results of the replicate
samples agreed well (mean relative percent difference of 21
percent) with the results of the paired environmental samples.
Fish were collected from streams and rivers using elec-
trofishing techniques (Moulton and others, 2002). Fish were
processed immediately after collection (Goodbred and others,

1997; Lee and others, 2000; Lee, Yaeger, and others, 2008;
Lee, Schoenfuss, and others, 2008). Fathead minnows used for
laboratory and caged fish studies were obtained from Environ-
mental Consulting and Testing Laboratory (Superior, Wisc.)
and from the USEPA (Duluth, Minn.). Fish were exposed at
the Aquatic Toxicology Laboratory at St. Cloud State Univer-
sity (SCSU; St. Cloud, Minn.). Fish plasma and tissues were
analyzed at St. Cloud State University and the University of
Florida according to established protocols (Lee and others,
2000; Bistodeau and others, 2006; Barber and others, 2007;
Schoenfuss and others, 2008) and guidelines established by
the USEPA (U.S. Environmental Protection Agency, 2006).
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_ /

Stream flow measurement at the South Fork Crow River
at Highway 22 near Biscay, Minn. (USGS station number
05337005, photograph taken by John Greene (USGS)
February 28, 2007).

Endocrine Active Chemicals
and Endocrine Disruption

The data summarized in this report provide informa-
tion on the distribution and temporal variability of EACs in
Minnesota WWTP effluent, streams, lakes, and bed sediment.
Information on biological responses, fate, and transport of
EACs; endocrine disruption responses in wild-caught and
caged fish in Minnesota streams; and the results of controlled
laboratory studies to define endocrine disruption responses
also are provided.

Distribution of Endocrine Active Chemicals in
Wastewater-Treatment Plant Effluent

EAC:s can enter the environment through many pathways
including WWTP effluent. EACs are not completely removed
by wastewater-treatment systems (Richardson and Bowron,
1985; Stumpf and others, 1996; Ternes, 1998), resulting in
potentially continuous sources of EACs to surface water.
More than 400 WWTPs discharge effluent to surface waters
throughout Minnesota (Minnesota Pollution Control Agency,
oral and written commun., 2008; fig. 4). Most of the WWTPs
have periodic releases (generally twice per year during the

spring and fall) of less than 1 million gallons per day (Mgal/d).

Approximately 60 WWTPs with average design flows greater
than 1 Mgal/d discharge continually to receiving streams
(Minnesota Pollution Control Agency, oral and written com-
mun., July 14, 2006).

Twelve WWTPs that discharge to Minnesota waters were
sampled from 1997 to 2008 for several studies (Barber and
others, 2000, 2007; Lee and others, 2004; Lee, Schoenfuss,
and others, 2008; Ferrey and others, 2009; Abigail Tomasek,
U.S. Geological Survey, written commmun., 2009). Not all
EACs were measured at each site because of differences in

study objectives, so sample sizes were not equal. The 12
WWTPs discharging to Minnesota streams that were sampled
were located in the Minnesota cities of Shakopee, Rochester,
Hinckley, East Grand Forks, Duluth, Taylors Falls, St. Paul,
Hutchinson, Eagan, Marshall, and Two Harbors, and the Wis-
consin city of St. Croix Falls (sites 136 W—147W) from 1997
through 2008 (fig. 4, appendix 3).

WWTP effluent is a complex mixture of multiple EACs
and other organic and inorganic contaminants. On average,
six EACs were detected per WWTP effluent sample, although
this average may be low because the full suite of EACs was
not analyzed for samples from each site. The chemicals
4-nonylphenoldiethoxycarboxylate (NP2EC), hexahydrohexa-
methyl-cyclopenta-benzopyran (HHCB), acetyl-hexamethyl-
tetrahydronaphthalene (AHTN), 4-nonylphenolmonoethoxy-
carboxylate (NP1EC), and 4-nonylphenol (NP) were the five
most frequently detected EACs in WWTP effluent samples
(fig. 5). EAC concentrations varied among WWTPs (Barber
and others, 2000, 2007; Lee and others, 2004). Most of the
EAC:s that were measured occurred in more than 30 percent of
the samples with detectable concentrations ranging from 0.003
to 183.7 micrograms per liter (ug/L). NP1EC and NP2EC had
the greatest average concentrations of 41.8 and 54.3 pg/L,
respectively. Concentrations of EACs for the WWTP effluents
summarized in this study are similar to concentrations reported
by Glassmeyer and others (2005) for effluent samples from 10
WWTPs across the United States.

Concentrations of EACs varied among WWTPs. For
example, NP was detected in the treated effluent from 10 of
the 12 WWTPs sampled at concentrations that varied by more
than one order of magnitude, from 0.1 to 18.2 pug/L among
all samples (fig. 6). In most of the WWTP effluent sampled,
concentrations of EACs also varied with time. For example,
detectable concentrations of NP at site 143W ranged from
0.19 to 1.9 pg/L during 2000-2002. Differences in the types
and concentrations of EACs among WWTP effluent samples
and among sampling periods at each WWTP are likely due to
influent differences that each WWTP receives or processing
technique differences.

The 12 WWTPs sampled for the various studies summa-
rized in this report represent a small fraction of the WWTPs in
Minnesota, and thus may not be representative of all WWTPs
in Minnesota. The number of samples per WWTP generally
was low with the exception of a few WWTPs (fig. 6).

Distribution of Endocrine Active Chemicals in
Minnesota Stream Water

EACs were detected in water samples collected during
1997-2008 from streams throughout Minnesota. EACs were
detected in streams (fig. 7) draining different land uses, with
different drainage areas, and with different contributions of
point sources such as WWTP effluent discharge (Barber and
others, 2000; Lee and others, 2004; Lee, Schoenfuss, and
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137WO Efflluent sample collected—Number is sampling site identifier

Figure 4. Location of wastewater-treatment plants that discharge to surface waters in Minnesota

(modified from Lee, Schoenfuss, and others, 2008)

9



10 Endocrine Active Chemicals and Endocrine Disruption in Minnesota Streams and Lakes

Number of
samples
analyzed

4-Nonylphenoldiethoxycarboxylate
Hexahydrohexamethyl-cyclopenta-benzopyran
Acetylhexamethyl-tetrahydronaphthalene
4-Nonylphenolmonoethoxycarboxylate
4-Nonylphenol
4-Nonylphenolmonoethoxylate

Bisphenol A

4-tert-Octylphenol
4-tert-Octylphenolmonoethoxylate
4-Nonylphenoldiethoxylate
4-Nonylphenol-triethoxycarboxylate
4-Nonylphenoltetraethoxycarboxylate
4-tert-Octylphenoldiethoxylate
4-Nonylphenoltriethoxylate

4-tert Octylphenoltriethoxylate
4-Nonylphenoltetraethoxylate

4-normal-Octylphenol

31
21 |
21 |
31|

30 40 50 60 70 80 90 100

FREQUENCY OF DETECTION, IN PERCENT

Figure 5. Detection frequencies of endocrine active chemicals among all effluent samples
collected during 1997-2008 from 12 wastewater-treatment plants that discharge to surface waters in

Minnesota.

others, 2008; Lee, Yaeger, and others, 2008; Ferrey and others,
2009; U.S. Geological Survey, 2009).

A wide variety of EACs were detected in Minnesota
stream samples. The most frequently detected EACs (fig. 8)
among all stream samples were an alkylphenol (NP), a plastic
component (bisphenol A; BPA), and two synthetic musk
fragrances (AHTN and HHCB). Streams contained unique
mixtures of EACs (0—11 detected per sample). More than
80 percent of the detected EAC concentrations were less than
1 pg/L. Some concentrations of NP, 4-nonylphenoldiethoxyl-
ate (NP2EO), NP1EC, and NP2EC were greater than 1 pg/L
(appendix 3).

The detection frequencies and median concentrations of
BPA, NP, 4-nonylphenolmonoethoxylate (NP1EO), NP2EO,
4-tert-octylphenolmonoethoxylate (OP1EO), and 4-tert-
octylphenoldiethoxylate (OP2EO) found in Minnesota streams
summarized in this report were less than those reported by
Kolpin and others (2002) in a study of 139 streams throughout
the United States. This pattern may be due to differences in
the types of sites sampled because Kolpin and others (2002)
sampled more streams that were considered susceptible to
point and nonpoint source contamination.

In general, more EACs were detected in water at sites
directly downstream from WWTPs than at sites with no
obvious source of effluent, confirming that WWTP effluent

is a source of EACs to surface waters (Lee and others, 2004;
Lee, Yaeger, and others, 2008; Lee, Schoenfuss, and others,
2008). EACs were detected in water samples collected from

Number of samples with analyses
100 T 1 | U

T
2 2 8 1 1 4 3 13 8 2
nd = Not detected

T T T
-
—_
[N NET]

8
o]
[0 T

4-NONYLPHENOL CONCENTRATION,
MICROGRAMS PER LITER

0.1

SAMPLING SITE IDENTIFIER

Figure 6. Concentrations of 4-nonylphenol in wastewater-
treatment plant effluent samples collected during 1997-2008
from 12 facilities that discharge to Minnesota surface waters.
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Figure 7. Locations where endocrine active chemicals were analyzed in stream water samples, 1997-2008.

small streams more commonly than in larger rivers, potentially
because EAC concentrations in larger rivers were diluted
below detection limits (Lee and others, 2004). The presence
of EACs in streams with no wastewater source indicates that

there are EAC sources other than WWTP effluent. Alternative
sources may include runoff from land surfaces, atmospheric
deposition, or inflow from contaminated groundwater into
streams, such as from on-site septic systems.
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Number of
samples
analyzed

4-Nonylphenol

Bisphenol A

Acetyl-hexamethyl-tetrahydronaphthalene

Hexahydrohexamethyl-cyclopenta-benzopyran

4-Nonylphenolmonoethoxylate

4-tert-Octylphenol

4-Nonylphenoldiethoxycarboxylate

4-tert-Octylphenoltriethoxylate

4-Nonylphenoltriethoxylate

4-Nonylphenolmonoethoxycarboxylate

4-tert-Octylphenolmonoethoxylate

4-Nonylphenoldiethoxylate

4-tert-Octylphenoldiethoxylate

235

195

164

164

133

234

63

69

70

63
227
236

235

Figure 8.
streams in Minnesota, 1997-2008.

Temporal Variability of Endocrine Active
Chemicals in Streams

The types and numbers of EACs detected varied tempo-
rally at sites sampled more than once. EACs were measured in
samples from 12 streams (sites 10, 11, 12, 14, 37, 40, 43, 52,
58, 78,79, 93; fig. 34) and 1 lake sample (site 60L; fig 34)

2 to 4 times during 2000 and 2001 to determine the occurrence
and temporal variability of a broad suite of chemicals includ-
ing selected EACs associated with agricultural, industrial,

and household use (Lee and others, 2004). Most of these sites
have drainage areas greater than 1,000 square miles (mi?) and
drain agricultural land. Generally, few EACs were detected

(0 to 3 per sample) at these study sites; however, 50 percent
of the sites had a detection of at least one EAC during the
sampling period at low concentrations (less than 1 pg/L). The
type of chemicals detected varied among sampling periods.
For example, BPA, OP1EO, and NP were detected during the
fall sample; BPA, NP, and HHCB were detected in the summer

5 10 15 20 25
FREQUENCY OF DETECTION, IN PERCENT

Frequency of detection of endocrine active chemicals among all samples collected from

sample; and no EACs were detected in the spring sample at
the Mississippi River near Hastings, Minn. (site 93).

One stream location, the Mississippi River below 1-694 at
Fridley, Minn. (site 57), was sampled for 9 selected chemicals
during 2004-06 (appendix 3). The number and types of EACs
detected in stream samples collected at site 57 varied from 0 to
5 during the sampling period (fig. 9). The number of chemicals
detected at site 57 did not correspond directly to streamflow or
season. The chemicals NP, AHTN, and OP1EO were the most
frequently detected EACs (detected in 29, 19, and 18 percent
of the water samples, respectively) among all sampling peri-
ods. The mixture of EACs detected was not consistent among
sampling periods potentially because of variations in upstream
sources, in-stream degradation processes, and potential dilu-
tion to concentrations less than detection limits.

A study of three streams (South Fork Crow, Redwood,
and Grindstone Rivers) that receive wastewater in Minnesota
was conducted to identify temporal patterns of EACs (Lee,
Schoenfuss, and others, 2008). Water samples were col-
lected six times upstream from and at two successive points
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Figure 9. Endocrine active chemicals detected in samples collected from the Mississippi River

below 1-694 at Fridley, Minn., 2004—-06.

downstream from discharge of WWTP effluent and from
treated effluent from February through September 2007

(fig. 10). The number of EACs detected in these smaller
streams (using the USGS National Research Laboratory data)
ranged from 0 to 11 per site (Lee, Schoenfuss, and others,
2008) (sites 47, 50, 51, 64, 67, 68, 96, 97, 99 and 100; appen-
dix 3). Similar to other streams, the types and concentrations
of EACs detected varied temporally. For example, concentra-
tions of NP at a given site varied by as much as four times dur-
ing the sampling period (fig. 11). A noticeable seasonal pattern
in the number of EACs detected at sites along the South Fork
of the Crow River (sites 47, 50, and 51) and the Redwood
River (sites 64, 67, and 68) was observed. More EACs were
detected in samples collected during the winter or early spring
under ice conditions than during the summer and fall at the

Wastewater-
treatment plant

Upstream Dam

EXPLANATION

v Wastewater-treatment plant sampling site

W Water and bed-sediment sampling site and identifier

Fish sampling site

upstream and first downstream site. This pattern indicates that
aquatic organisms are exposed to variable concentrations and
chemical mixtures throughout the year.

Fate and Transport of Endocrine Active
Chemicals in Aquatic Environments

The fate and transport of EACs also was investigated
at the South Fork Crow, Redwood, and Grindstone Rivers
(Lee, Schoenfuss, and others, 2008). The expectation was that
EACs would be found more frequently and at higher concen-
trations at sites downstream from WWTP discharge than at
upstream sites and that concentrations and detections would
decrease as a function of distance downstream from WWTP

Downstream-1

Downstream-2

Grindstone
River Basin

South Fork

Crow River
Redwood Basin
River Basin

Index map

Figure 10. Relative locations of sampling sites upstream and downstream from discharge of
wastewater-treatment plant effluent along three Minnesota streams (modified from Lee, Schoenfuss, and

others, 2008).
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Figure 11. Concentrations of 4-nonylphenol in stream and wastewater-treatment plant

(WWTP) effluent samples collected from three stream systems in 2007.

discharge locations. In general, that pattern was observed for
most chemicals such as NP (fig. 11). Interestingly, some EACs
persisted for more than 6 miles (10 kilometers) downstream.
Unexpectedly, EACs also were detected at upstream sites on
each river, indicating upstream sources potentially including
effluent from other upstream WWTPs, onsite-septic system
effluent, runoff from land surfaces, or groundwater influent.
These results indicate that aquatic organism exposure occurs
beyond the point of WWTP discharge.

Distribution of Endocrine Active Chemicals in
Minnesota Stream Bed Sediments

EACs were detected in greater than 50 percent of the
bed-sediment samples collected from streams throughout
Minnesota (appendix 4, fig. 12), indicating that bed sedi-
ment is a storage location of EACs in stream ecosystems. In
general, a mixture of EACs was detected at each site. The
most frequently detected chemicals in bed sediments were NP,
NP1EO, and BPA (detected in 24, 24, and 17 percent, respec-
tively, of the stream bed-sediment samples collected)

(fig. 13). EAC concentrations in bed sediment ranged from
1.21 to 2,024 nanograms per gram (ng/g) (Lee, Yaeger, and
others, 2008; Lee, Schoenfuss, and others, 2008).

Most of the bed-sediment samples were collected from
the main stem of the Mississippi River (fig. 12; appendix
4). EACs were detected in bed sediments throughout the

Mississippi River reach from the headwaters of the Mississippi
River (site 17) near the outlet of Lake Itasca and upstream
from any wastewater discharge to Brownsville Minn. (site
128), near the Minnesota and lowa border. Although EACs
were detected in bed sediments along the entire reach

of the Mississippi River, more EACs were detected near
Bemidji, Minn. (site 19) and along the river from Brainerd
(site 29) through site 92 in the Twin Cities Metropolitan Area
than in other locations. The presence of EACs in bed sedi-
ments along the entire river reach reflects the multiple point-
and nonpoint-source discharges of EACs that exist along the
river. EAC presence from Brainerd downstream (sites 29-92)
generally coincides with human population density increases
and a change from forested to agricultural and urban land use
along the river.

Bed-sediment samples also were collected upstream and
downstream from WWTP effluent discharge on three small
streams in Minnesota: the South Fork of the Crow, Redwood,
and Grindstone Rivers (Lee, Schoenfuss, and others, 2008).
EACs were detected in bed sediment only at sites downstream
from effluent discharge on these small streams.

Results indicate that EACs partition onto or accumulate
in bed sediment. Bed sediments serve as a storage location of
EAC:s that potentially provide a continual source of EACs to
aquatic organisms that live in proximity to bed sediments or
depend on food from bed sediments. EACs may be transported
during high-flow events when bed sediment is suspended,
resulting in redistribution of EACs in the aquatic environment.
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128[] Endocrine active chemicals analyzed in bed sediment and not
detected—Number is sampling site identifier shown in

appendixes 2 and 4

Tl Endocrine active chemicals analyzed in bed sediment and
detected—Number is sampling site identifier shown in

appendixes 2 and 4

Figure 12.
samples, 1997-2008.

Endocrine Disruption Responses in Wild-Caught
Fish in Minnesota Streams

Male and female fish of 11 different species were col-
lected from 86 stream sites to characterize endocrine dis-
ruption in Minnesota surface waters during 1994 to 2008

Locations where endocrine active chemicals were analyzed in stream bed-sediment

(Goodbred and others, 1997; Lee and others, 2000; Lee and
Blazer, 2005; Lee, Yaeger, and others, 2008; Lee, Schoenfuss,
and others, 2008; Ferrey and others, 2009). Several indicators
of endocrine disruption were used among all studies

(table 1). A compilation of data from all studies for vitel-
logenin and oocyte presence in male fish testes is shown in
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Number of
samples
analyzed

4-Nonylphenol

4-Nonylphenolmonoethoxylate

Bisphenol A

4-Nonylphenoldiethoxylate
4-Octylphenoldiethoxylate
Hexahydrohexamethyl-cyclopenta-benzopyran
4-Octylphenolmonoethoxylate
Acetyl-hexamethyl-tetrahydronaphthalene
4-tert-Octylphenol

4-normal-Octylphenol

67

68

36

69

75

62

74

60

73

72

Figure 13.
streams in Minnesota, 1997-2008.

figures 14 and 15, and the data are included in appendix 5.
Sites with greater than 25 percent of the male fish of one spe-
cies collected during one sample event with the presence of
vitellogenin or oocytes were considered to have the presence
of endocrine disruption.

Results indicate that EACs in streams are interacting with
the endocrine systems of native fish in diverse environmental
settings, from small streams draining agricultural land use
to large rivers, such as the Mississippi River, draining mixed
land uses. Vitellogenin was present in the plasma of at least
one species of male fish during one sampling period at more
than 40 percent of sampled sites and occurred in streams of
various sizes and environmental settings (fig. 14). Oocytes
were present in at least one species of male fish during one
sampling period at 10 sites throughout Minnesota ranging
from small streams to large rivers (fig. 15). The presence of
oocytes in male testes tissue varied temporally. Oocytes were
found in the testes of at least 25 percent of the smallmouth
bass (Micropterus dolomieu) in all six sites (29, 34, 43, 55,
110, 114) measured along the Mississippi River during 1998,
but were not detected in male smallmouth bass at correspond-
ing sites (29, 34, 55, and 114) that were measured during a
subsequent study along the Mississippi River in 2006. Dif-
ferences in fish responses at sites over time could indicate
differences in EAC presence and fish exposure or differences
in fish sensitivity.

Several additional focused studies helped identify poten-
tial sources of EACs to streams. The USGS, in cooperation

10 15 20 25 30

FREQUENCY OF DETECTION, IN PERCENT

Frequency of detection of EACs among all bed-sediment samples collected from

with the Minnesota Pollution Control Agency (MPCA) and
the Minnesota Department of Natural Resources, conducted a
study between August 3 and September 13, 1999, to investi-
gate the presence of vitellogenin and other indicators of endo-
crine disruption in common carp (Cyprinus carpio) exposed to
WWTP effluent and runoff from agricultural and forested land
(Lee and others, 2000). The study was a paired site approach
targeting sites upstream and downstream from discharges of
WWTP effluent with a dam in between to prevent fish migra-
tion (fig. 16). Paired upstream/downstream sites were selected
on seven different streams. Fish were collected at an additional
eight sites located downstream from discharge of WWTP
effluent with no paired upstream site due to the absence of
fish.

Several biological indicators of endocrine disruption were
detected in male fish upstream and downstream from dis-
charge of WWTP effluent (Lee and others, 2000). The number
of biological indicators of endocrine disruption present and
the values for a particular indicator varied considerably among
sites, because of differences in EAC presence, fish sensitiv-
ity, or fish exposure time. The site with the greatest number
of indicators of endocrine disruption was in a WWTP effluent
channel (site 143W) with 100 percent effluent; however, for
the remaining 21 sites, the percentage of streamflow composed
of WWTP effluent did not correlate well with the number of
indicators of endocrine disruption present. This indicates that,
although the percentage of streamflow composed of efflu-
ent is important, other factors, such as the composition of
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EXPLANATION

122@ Location where 25 percent or more of at least one species of male
fish during one sampling period had plasma vitellogenin
detections—Number is sampling site identifier shown in appen-
dixes 2 and 5

8 Location where less than 25 percent of at least one species of male
fish during one sampling period had plasma vitellogenin
detections—Number is sampling site identifier shown in appen-
dixes 2 and 5

Stream locations where vitellogenin was present in male fish during 1994-2008.
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2@ Location where 25 percent or more of at least one species of male fish
during one sampling period had oocytes in testes tissue—Number is
sampling site identifier shown in appendixes 2 and 5

1280 Location where less than 25 percent of at least one species of fish
during one sampling period had oocytes in testes tissue—Number is
sampling site identifier shown in appendixes 2 and 5

Figure 15. Stream locations where oocytes were present in male fish testes during 1994-2008.
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treatment plant

Upstream

EXPLANATION

Downstream

Fish sampling site

Figure 16. Relative sampling locations for carp study in 1999 (modified from Lee and others, 2000).

the effluent and organism exposure, may be more important
factors controlling endocrine disruption. Neither of these other
factors was measured in this study.

Because the dominant chemicals at upstream sites likely
affect downstream sites, endocrine disruption measures were
expected to be greater at downstream sites because of the com-
bination of dominant upstream factors and WWTP effluent.
Contrary to expectations, vitellogenin concentrations in male
carp plasma were greater at some of the upstream sites drain-
ing primarily agricultural land than at the paired site on the
same stream downstream from discharge of WWTP effluent
(fig. 17). These results indicate that WWTP effluent is not the
only source of EACs to streams, and that the unknown sources
could cause a greater biological response than the effluent
in some cases. Potential sources of EACs at upstream sites
include unknown wastewater discharges, onsite-septic system
effluent, runoff from the agricultural landscape, or influent
from groundwater.

The USGS, in cooperation with SCSU and MPCA,
conducted a field study sampling water, bed sediment, and
fish at 43 sites along the Mississippi River (Lee, Yaeger, and
others, 2008). Results from this study indicate that the fre-
quency of occurrence of endocrine disruption in multiple fish
species along the Mississippi River was greatest from site 36
downstream to site 128 (fig. 14). This pattern coincided with
greater human population density and a change from forested
to agricultural and urban land use. The presence of endocrine
disruption in fish did not directly coincide with the presence
of EACs in water or bed sediment at the same site. This may
result from the migration of fish throughout the river, differ-
ences in fish sensitivity to EACs, or the EACs that elicited a
response were not measured.

Additional longitudinal studies of three small streams
(Redwood River, South Fork of the Crow River, and the
Grindstone River; Lee, Schoenfuss, and others, 2008) dem-
onstrated that endocrine disruption occurred in wild fish
downstream from discharge of WWTP effluent, indicating that
effluent is one source of EACs to the aquatic environment.
However, endocrine disruption, as indicated by vitellogenin

induction in male fish plasma, was not limited to fish down-
stream from discharge of WWTP effluent on these three
streams, but also was measured in fish at sites with no obvious
wastewater sources.

The presence of vitellogenin or oocytes in male fish
indicates that the fish are exposed to EACs. However, their
presence in male fish does not indicate an effect on fish repro-
duction or changes in fish populations. The diffuse occurrence
of endocrine disruption in wild fish indicates sources of EACs
other than WWTP effluent to surface waters in Minnesota. It is
difficult to define the specific chemicals that elicited endocrine
disruption responses in field studies because fish exposure is
largely unknown.

Distribution of Endocrine Active Chemicals in
Water and Bed Sediments in Minnesota Lakes
and Biological Responses

Fifteen lakes in Minnesota were investigated during
October 2000 through August 2008 by the USGS in coopera-
tion with SCSU, the MPCA, and the Minnesota Department of
Health, to assess the presence and concentrations of a diverse
group of organic chemicals (pharmaceuticals, pesticides, and
EACs) commonly associated with wastewater contamination
in water and bed sediment (Lee and others, 2004; Ferrey and
others, 2009; Jeff Writer, U.S. Geological Survey, written
commun., 2009). Water samples were collected from 14 lakes
from 2000-08. Bed sediment and fish were sampled from a
subset of the lakes during 2008. No EACs were detected in the
water samples collected from the two lakes—Vadnais Lake
(site 60L) and Ek Lake (site 3L)—sampled during 2000 and
2001 (fig. 18, appendix 3). Vadnais Lake is a water-supply
lake for the City of St. Paul, Minn., and Ek lake is a remote
lake in Voyageurs National Park. EACs were detected in the
water samples from St. Louis River Bay of Lake Superior (site
7L) during 2001 (fig. 18).

Twelve lakes (sites 2L, 4L, 5L, 6L, 16L, 30L, 31L, 32L,
48L, 61L, 62L, and 73L) representing various trophic levels,
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Figure 17. Graph showing average vitellogenin concentrations in male fish plasma at sites located upstream

and downstream from discharge of wastewater-treatment plant effluent in 1999.

different land use and development, and different regions of
Minnesota were sampled during 2008 (Ferrey and others,
2009; Jeff Writer, U.S. Geological Survey, written commun.,
2009). Water samples were collected from 11 of the 12 lakes
and bed sediments were collected from all 12 lakes. Wild-
caught fish (fathead minnow (Pimephales promelas), bluegill
sunfish (Lepomis macrochirus), common shiner (Luxilus
cornutus), and yellow perch (Perca flavescens)) collected from
these lakes and caged fathead minnows that were deployed at
11 of the 12 lakes for 3 weeks were examined for evidence of
endocrine disruption. Measures of endocrine disruption in this
study included induction of vitellogenin in male fish and the
presence of oocytes in male fish testes.

A wide variety of EACs were detected in water samples
among the 11 lakes sampled during 2008 (Ferrey and others,
2009; Jeff Writer, U.S. Geological Survey, written commun.,
2009; appendix 3). The most frequently detected EACs in lake
water samples were BPA (42 percent), NP1EO (25 percent),
and OP2EO (25 percent). Ferrey and others (2009) also
reported the presence of estrone and 17-estradiol in 82 and
55 percent, respectively, of the lake water samples.

EACs were detected in the bed sediments of about
90 percent of the 12 lakes measured in 2008 (fig. 18) at
concentrations ranging from 3.1 to 223.9 ng/g (appendix 4).
For lake bed-sediment samples, the most frequently detected
EACs were BPA (83 percent), 4-tert-octylphenol (TOP;

42 percent), and OP2EO (33 percent). Ferrey and others
(2009) also reported the occurrence of two hormones—estrone
(82 percent) and 17f-estradiol (55 percent)—in the bed-sedi-
ment samples collected.

EAC:s are present in lakes that lack obvious sources
of contamination and in lakes with substantial residential
development. Sources of EACs to lakes in this study are not
known; however, the detection of these chemicals indicates
that WWTP effluent is not the only source of EACs in surface
waters because the lakes in this study are not affected by this
source. Potential sources of EACs to lakes include onsite-
septic system effluent, runoff from agricultural and urban
land surfaces, and, for 17B-estradiol and estrone, excretion by
vertebrates.

Lake in an urban setting. Minneapolis, Minn. in the
background. Photograph courtesy of the Minneapolis Park
and Recreation Board.
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Figure 19. Concentrations of (4) total alkylphenols and (B) total 4-nonylphenolethoxycarboxylates
in wastewater-treatment plant effluent collected in August and October 2002 (modified from Barber

and others, 2007).

Biological responses in fish in the sampled lakes indicate
exposure to EACs in the 11 lakes sampled (fig. 18B). Plasma
vitellogenin concentrations in male fishes collected from the
11 Minnesota lakes varied considerably among sites. Vitello-
genin induction was observed in at least 25 percent of the male
fish of one species collected from the 11 lakes sampled, and
ovatestes (oocytes in testes tissue) were observed in at least 25
percent of the male fish of one species collected at 4 of the 11
lakes. Similar to studies of Minnesota rivers (Folmar and oth-
ers, 1996, 2001; Lee and others, 2004; Lee, Yaeger, and others,
2008; Lee, Schoenfuss, and others, 2008), the results from
the lake studies indicate that low concentrations of EACs are
present in Minnesota lakes regardless of region or land use,
and wild-caught and caged fish show evidence of endocrine
disruption in diverse aquatic environments in Minnesota.

Controlled Laboratory Studies to Define
Endocrine Disruption Responses

To better understand EAC exposure and effects, addi-
tional controlled exposure studies were conducted collab-
oratively with SCSU. Onsite, continuous-flow experiments
were conducted during August and October 2002, at a major
metropolitan WWTP in Minnesota (site 143W) to determine
if effluent exposure induced endocrine disruption in sexu-
ally mature male fathead minnows (Barber and others, 2007).
Two individual sets of fish were exposed to WWTP effluent;
one in August and one in October. Treated wastewater dis-
charged from the WWTP was pumped continuously through
aquariums for 28 days during both of those experiments. This

design allowed the fish to be exposed to the normal day-to-
day changes in the complex mixture of chemicals contained
in wastewater. Parallel experiments were conducted at the
Aquatic Toxicology Laboratory at SCSU exposing fish to
groundwater for a control.
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Figure 20. Vitellogenin concentrations in male fathead
minnows exposed to wastewater-treatment plant effluent
during August and October 2002 (modified from Barber
and others, 2007).



Effluent composition varied temporally, and the con-
tinuous-flow experiments captured the range of chemical
variability that occurred during normal WWTP operations.
Wastewater contained several chemicals known to be endo-
crine active chemicals, such as 4-nonylphenolethoxycarboxyl-
ates (NP1EC, NP2EC, NP3EC), alkylphenols (NP, NP1EO,
NP2EO, OP1EO), 17B-estradiol, and BPA (Barber and others,
2007). Concentrations of total alkylphenols, total 4-nonylphe-
nolethoxycarboxylates (fig. 19), and likely other EACs such as
17B-estradiol, were greater in October than in August, reflect-
ing a difference in effluent composition.

Exposure to WWTP effluent resulted in vitellogenin
induction in male fathead minnows, with greater response in
October than in August (fig. 20). In contrast to expectations,
the gonado-somatic index (proportion of fish weight composed
of testicular tissue) in males exposed to WWTP effluent was
greater than in fish exposed to groundwater controls, possibly
because of greater nutrient concentrations in wastewater that
resulted in increased testicular growth (Barber and others,
2007).

This controlled exposure study highlights the potential
effects of wastewater on wild fish. In some cases, benefi-
cial effects (such as increased gonado-somatic index) were
observed along with detrimental effects (such as male min-
nows producing vitellogenin). Although an endocrine disrup-
tion response was observed in the fish exposed to wastewater,
determining the exact causative factors, or which chemicals
within the mixture of chemicals in the effluent were respon-
sible for the response, was difficult. This difficulty arose
because of continual changes in the presence and concentra-
tions of chemicals and nutrients in the wastewater and the
corresponding changes in the multiple responses of the fish
(Barber and others, 2007).

The USGS assisted SCSU in fathead minnow larvae
exposure studies at SCSU’s Aquatic Toxicology Laboratory
(Bistodeau and others, 2006; Schoenfuss and others, 2008).

In the first study, fathead minnow larvae were exposed for 64
days to a mixture of alkylphenols, which closely matched the
alkylphenol concentrations and composition of the effluent at
site 143 W. Target exposure included total alkylphenol con-
centrations of 200, 100, and 50 percent of WWTP effluent
concentrations at site 143W. The final exposure concentrations
were 148, 73.9, and 38.1 pg/L respectively for the 200 percent,
100 percent, and 50 percent treatments. The stock solution was
composed of eight chemicals (0.2 percent octylphenol,

2.8 percent NP, 5.1 percent NP1EQO, 9.3 percent NP2EO,

0.9 percent OP1EOQ, 3.1 percent OP2EQ, 33.8 percent NP1EC,
44.8 percent NP2EC).

Following exposure, larvae were raised to maturity in
groundwater and allowed to compete with males that were
not exposed to alkylphenols as larvae. Male fathead minnows
normally display aggressive behavior against other males to
defend a nest site for spawning. Most of the larvae died after
4-weeks of exposure to the 200-percent alkylphenol treatment
(Bistodeau and others, 2006). There was a substantial decrease
in the ability of many of the previously exposed males to
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defend and hold a nest site for both the 100-percent and
50-percent exposures (Bistodeau and others, 2006). These
results indicate that the life stage when the exposure occurs is
critical, as alkylphenol mixtures have an effect on the repro-
ductive competence of male fathead minnows exposed as
larvae.

In a follow-up experiment to further define the effects of
NP, Schoenfuss and others (2008) examined the ability of NP
to alter reproductive competence in male fathead minnows
after a 28-day flow-through exposure in a range of environ-
mentally relevant concentrations bracketing the USEPA toxic-
ity-based NP chronic exposure criterion of 6.6 pg/L. Exposure
to NP at concentrations equal to and greater than 6.6 nug/L
resulted in an induction of plasma vitellogenin in male fish
within 14 days. Schoenfuss and others (2008) reported that
male fish exposed to lower concentrations of NP out-competed
control males, and indicate that NP at the lower concentrations
affected the males similar to pheromones released from female
fathead minnows. At greater NP exposure concentrations,
control males out-competed exposed males indicating that the
effects of NP are dependent on concentration.

Results of these controlled studies confirm that WWTP
effluent does result in endocrine disruption in male fathead
minnows, that the life stage during exposure is critical, and
that alkylphenols including NP are one group of chemicals
that elicit an endocrine disruption response. Results of these
controlled laboratory studies highlight the complexity of
endocrine disrupting effects and the need for multiple analy-
sis levels to assess the effects of these chemicals on aquatic
resources.

Implications

The results of research and monitoring studies in Min-
nesota indicate that EACs in streams are interacting with the
endocrine systems of native fish, and that multiple sources of
EAC:s exist in addition to WWTP effluent. The presence of
EACs in the water column and bed sediments indicate mul-
tiple pathways for aquatic organism exposure. The accumula-
tion or presence of EACs in bed sediment results in a more

Fathead minnow (Pimephales promelas). Photograph by
Konrad Schmidt.
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permanent exposure for organisms that live in close contact
with the sediments such as benthic insects and mussels. The
exposure of aquatic organisms to EACs also is expected to be
in constant flux based on the variability in EACs measured at
sites sampled more than once. This variability in EAC occur-
rence and concentrations may be caused by differences in the
inputs from point and nonpoint sources, and also in-stream
physical, chemical, and biological processes. The presence of
multiple EACs in surface waters and bed sediments indicates
that organisms are exposed to mixtures of EACs. Although
concentrations generally were low for most EACs in water, the
combined effects of numerous organic contaminants on fish is
largely unknown.

The widespread occurrence of endocrine disruption
responses at sites where no EACs were detected in water or
bed sediment indicates that some chemicals acting as EACs
were not measured during the studies summarized in this
report. Many other organic chemicals, such as plant sterols,
fire retardants, antimicrobial chemicals, and pesticides were
detected during these studies but have not been directly linked
to endocrine disruption in fish. In field studies, the sources
or specific chemicals that elicited the endocrine disruption
responses are difficult to define because of fish movement and
inherent sensitivity of different individuals or species.

Controlled laboratory studies confirmed that WWTP
effluent elicits endocrine disruption responses, and the biologi-
cal responses correspond to differences in WWTP composi-
tion, which varies because of differences in influent and treat-
ment type or efficiency at an individual WWTP. Controlled
laboratory studies also confirmed that selected EACs detected
in WWTP effluent, such as hormones and alkylphenols, are
contributors to endocrine disruption responses in fish and that
the effects depend on fish life stage. Additionally, the effects
of WWTP effluent on fish were beneficial and detrimental. For
example, nutrients in effluent provide food that is incorporated
as fish biomass, whereas chemicals that are not removed in
treatment, such as EACs or other chemicals in wastewater, act
as endocrine disruptors.

Human exposure to EACs through dermal contact, water
consumption, or fish consumption is possible based on the
ubiquitous distribution of EACs in aquatic environments.

Lee and others (2004) detected EACs in the source waters for
six drinking-water facilities that use surface water as source
waters in Minnesota, but only detected AHTN and NP in one
finished-water sample. Tornes and others (2007) reported
AHTN, OP1EO, and HHCB in untreated groundwater used

as source water for drinking water and no detections of EACs
in finished-water samples. Focazio and others (2008) reported
NP2EO, BPA, and HHCB in 2.7, 9.5, and 16.2 percent, respec-
tively, of the 25 groundwater and 49 surface-water sources of
drinking water sampled across the United States.

Few EACs were detected in source or finished drinking
water in Minnesota and the effects of EACs on human health
is largely unknown. There are indications that EACs might be
contributing to increasing incidences of breast, prostate, and
testicular cancers (Glass and Hoover, 1990; Davis and others,

1993; Adami and others, 1994) and to precocious puberty,
hypospadias, and decreased sperm counts (Carlsen and others,
1992; Sharpe and Skakkabaek,1993); however, other investi-
gators have concluded that there is no evidence for effects in
humans (National Research Council, 1999; Safe, 2004).

The results from these studies of endocrine active
chemicals and endocrine disruption in Minnesota streams and
lakes provide information useful to understand sources, fate,
and effects of EACs. An expansion of a combined multidisci-
plinary approach to sample existing resources combined with
controlled studies at a larger scale is necessary to continue
to better define the effects on aquatic resources. Numerous
samples have been collected across Minnesota; however, these
samples represent a relatively small percentage of possible
sampling locations.

The studies summarized in this report were designed
with differing objectives and differing analytical techniques,
which provides challenges to interpretation. The establishment
of fixed sites with long-term sampling and consistent analyti-
cal techniques is necessary to better understand temporal and
spatial variability of EACs and biological responses.

The presence of biological indicators of endocrine
disruption in male fish indicates that the fish are exposed to
EACs. However, their presence in male fish does not indicate
an effect on fish reproduction or changes in fish populations.
Studies that better define the specific effects and modes of
action of EACs on aquatic and terrestrial organisms are cru-
cial. Many of the biological indicators currently (2010) used
are indicators of exposure and are not predictive of reproduc-
tive success. Controlled studies with large fish in more natural
conditions would allow for a more thorough investigation of
population-level effects on fish and other organisms. Equally
as important is the quantification of the effects of mixtures of
EAC:s on aquatic organisms because this is the environmental
exposure regime of most organisms.

Summary

This report summarizes a series of field monitoring stud-
ies and laboratory research conducted from 1994 through 2008
by the U.S. Geological Survey in cooperation with St. Cloud
State University, Minnesota Department of Health, Minnesota
Pollution Control Agency, Minnesota Department of Natural
Resources, Metropolitan Council Environmental Services, and
the University of Minnesota to determine the occurrence, fate,
and effects of endocrine active chemicals (EACs) and the inci-
dence of endocrine disruption in Minnesota streams and lakes.
EACs are chemicals that interfere with the natural regulation
of endocrine systems and may mimic or block the function of
natural hormones in fish or other organisms. This interference
commonly is referred to as endocrine disruption. Indicators
of endocrine disruption in fish include vitellogenin (female
egg yolk protein normally expressed in female fish) in male
fish, depressed vitellogenin in female fish, oocytes present in



male fish testes, reduced reproductive success, and changes in
reproductive behavior.

The long-term goals of these cooperative studies were
to determine the occurrence and distribution of EACs and
endocrine disruption in Minnesota surface waters, factors con-
tributing to EAC occurrence and fate in surface waters, factors
related to endocrine disruption occurrence, source pathways
of EACs to organisms, and population-level effects on fish
and other organisms. Select EACs were analyzed in water and
bed-sediment samples, and endocrine disruption was measured
through a series of biological indicators in fish.

Results of these studies indicate ubiquitous distribution
of selected EACs in the aquatic environment that originate
from numerous sources and pathways. The data indicate that
wastewater-treatment plant effluent (WWTP) is a primary
pathway of EACs to surface waters. The types and concen-
trations of EACs vary among WWTPs and vary temporally
within one WWTP likely because of variations in the influent
received and treatment operations.

In general, EAC occurrence and concentrations in
streams are greater at sites directly downstream from dis-
charge of WWTP effluent. Although WWTP is a primary con-
duit of EACs to streams, EACs also were detected in streams
with no obvious sources of WWTP discharge, indicating other
sources. Alternative sources may include runoff from land
surfaces, atmospheric deposition, or inflow from groundwater
into streams.

Another important finding of these studies is that EACs
were detected in stream bed sediment at 50 percent of the sites
sampled, indicating that bed sediment is a storage location
of EACs in stream ecosystems. Aquatic organism exposure
to EACs is expected based on the widespread presence of
EACs in wastewater, water, and bed sediments in Minnesota
streams that were sampled. The exposure of aquatic organisms
to EACs also is expected to be in constant flux based on the
variability in EACs measured at sites sampled more than once.
This variability in EAC occurrence and concentrations likely
is because of differences not only in the inputs from point and
nonpoint sources, but also in-stream physical, chemical, and
biological processes.

Indicators of endocrine disruption, such as the presence
of vitellogenin in male fish, have been observed at more than
40 percent of the sites sampled in Minnesota. The presence
of biological indicators of endocrine disruption in male fish
indicates that the fish are exposed to EACs. However, their
presence in male fish does not indicate an effect on fish
reproduction or changes in fish populations. Endocrine disrup-
tion was observed in wild fish downstream from discharge
of WWTP effluent, indicating that effluent is one source of
EAC:s in the aquatic environment. This finding was confirmed
in a controlled study exposing fathead minnows to WWTP
effluent at an onsite fish exposure laboratory. During this
controlled study, changes in biological responses coincided
with changes in WWTP effluent composition and strength,
demonstrating that effluent effects on fish endocrine systems
are temporally variable. Although chemicals contributing to
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endocrine disruption in fish are complex, several laboratory
studies have further confirmed that certain chemical classes,
such as hormones and alkylphenols, which are components of
WWTP effluent, affect the endocrine systems of fish through
biochemical, structural, and behavioral disruption.

Endocrine disruption was observed in wild fish from
diverse environmental settings ranging from small streams
draining agricultural land use to large rivers such as the Mis-
sissippi River draining mixed land uses. The results of these
field studies indicate that EACs in streams are interacting
with the endocrine systems of native fish. This pattern also
indicates multiple sources of EACs in addition to WWTP
effluent. The presence of EACs in water and bed sediments
indicates multiple pathways for aquatic organism exposure.
The accumulation or presence of EACs in bed sediment results
in a more permanent exposure for organisms such as benthic
insects and mussels that live in close contact with the sedi-
ments. Although few EACs were detected in source or finished
drinking water in Minnesota, the effect of EACs on human
health is largely unknown.

Although these studies indicate that WWTP effluent is a
conduit for EACs to surface waters, EACs also were present
in surface waters with no obvious WWTP sources. EACs were
detected and indicators of endocrine disruption in fish were
measured at numerous streams upstream from discharge of
WWTP effluent and in lakes with no WWTP discharge. These
observations indicate that other unidentified sources of EACs
exist, such as runoff from land surfaces, atmospheric deposi-
tion, inputs from onsite-septic systems, or other groundwater
sources. Alternatively, some EACs may not have been identi-
fied or measured.

The complex results from these field and laboratory
experiments indicate that multidisciplinary research is crucial
to gain a better understanding of the effects EACs on exposed
aquatic organisms. Although numerous samples have been col-
lected across Minnesota, these samples represent a relatively
small percentage of possible sampling locations. Although
the results from these studies provide information useful to
understand sources, fate, and effects of EACs, a continuation
and expansion of a combined multidisciplinary approach to
sample existing resources, combined with controlled studies
at a larger scale, is necessary to continue to better define the
effects on aquatic organisms.
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