
6. Model Results    197

6.6 Groundwater Interactions with Lake 
Michigan

A key objective of the LMB model is to provide a 
comprehensive account of groundwater interactions with 
Lake Michigan. The model encompasses the entire lake and 
simulates shallow and deep flow across its entire shoreline 
under various stress conditions. The results selected for pre-
sentation are intended to summarize the interactions between 
two important regional water resources, one surface and one 
subsurface. 

A distinction is made between groundwater that enters 
Lake Michigan directly through the lakebed and indirectly 
through base flow into streams tributary to the lake. Both 
groundwater quantities, direct and indirect, contribute to the 
Lake Michigan budget. Both are influenced by climate vari-
ability and by ongoing well withdrawals. 

The water-budget analysis presented earlier (fig. 57) 
indicates that simulated direct discharge of groundwater 
to Lake Michigan under predevelopment conditions 
(218 Mgal/d) is 1.2 percent of the total simulated inflow for 
the Lake Michigan Basin (18,318 Mgal/d). In 2005, the direct 
discharge (216 Mgal/d) is 1.1 percent of the total inflow 
(19,313 Mgal/d). The total discharge (indirect and direct) 
under predevelopment conditions equals the total inflow to 
the groundwater system because there are no other sinks for 
groundwater and net lateral flow to the basin is positive. By 
2005, the simulated total discharge to the combined features 
of the Lake Michigan surface-water network (18,720 Mgal/d) 
captures 96.9 percent of the total groundwater inflow to the 
basin, whereas most of the remaining 3.1 percent of the inflow 
is captured by pumping. 

According to the model, most of the direct discharge 
occurs near the shoreline. Under predevelopment conditions, 
68 percent of the direct discharge occurs within 5,000 ft of 
the shoreline and 83 percent occurs within first 15,000 ft 
(table 17). The dropoff with distance into the lake appears 
to be approximately exponential (fig. 70), in agreement with 
theory (McBride and Pfannkuch, 1975).

Particle tracking indicates that recharge areas (source 
areas) of groundwater that discharges within 15,000 ft of the 
lakeshore extend further from the west and north lakeshores 
than from the east and south lakeshores (fig. 71). The pattern, 
although probably influenced by differences in the density of 
the stream network and by transmissivity of the glacial sedi-
ments, could also be partly an artifact of model-grid resolu-
tion; this possibility is explored in section 7 (“Alternative 
Models and Model Sensitivity”). 

In parts of NE_WI, SE_WI and NE_ILL, the source areas 
of direct discharge to Lake Michigan for predevelopment 
conditions (fig. 71A) are somewhat wider than for 1991–2005 
conditions (fig. 71B). The difference is due to the diversion 
of groundwater through pumping from shallow wells in the 
QRNR and SLDV aquifer systems. 

Pumping from deep wells also has an effect on ground-
water that, in predevelopment times, flowed from Wisconsin 
and Illinois eastward toward Lake Michigan through the C-O 
aquifer system and then discharged to the interior of the lake. 
To quantify the changing shallow and deep components of the 
system, it is helpful to characterize direct groundwater interac-
tions with Lake Michigan not only in terms of direct discharge 
into nearshore areas but also by vertically integrating flow that 
passes under the shoreline toward the lake. The simulated rate 
of shoreline discharge varies appreciably with location; more 
than that, the rate and even the direction of flow changes as a 
function of time. 

Under predevelopment conditions, flow under the shore-
line ranges from less than 0.05 Mgal/d to almost 5 Mgal/d 
per 5,000 ft linear length (fig. 72A), equivalent to a range of 
0.08 to 7.7 ft3/s per mile of shoreline; the average value is 
0.22 Mgal/d or 0.35 ft3/s per mile of shoreline. 

The rates simulated by the model are a complicated 
interplay of local-recharge, stream-density, and hydraulic-
conductivity inputs. Shoreline inflow induced from Lake 
Michigan to the predevelopment groundwater system is 
restricted to peninsulas in the NLP_MI (fig. 72B). Maps of 
shoreline discharge to the lake and induced flow from the lake 
for 1980 (figs. 72C, D) show pronounced changes relative to 
predevelopment conditions, in large measure because of the 
increase in recharge computed after 1970. The average outflow 
rate for 1980 increased to 0.23 Mgal/d (0.36 ft3/s) per 5,000 
ft of shoreline. Development also exerted some pressure: for 
parts of the shore in SE_WI and NE_ILL, shallow and deep 
pumping caused the direction of groundwater flow to reverse 
from outflow toward the lake to inflow from the lake. The 
maps of shoreline outflow and inflow for 2005 (figs. 72E, F) 
show some effect on local rates from fluctuations in recharge 
and recovery of inland water levels with reduced deep pump-
ing in NE_ILL; however, the average outflow rate is again 
0.23 Mgal/d (0.33 ft3/s) per 5,000 ft of shoreline.

Table 17.  Predevelopment groundwater discharge to offshore 
Lake Michigan.
[Values correspond to the confined model, SLMB-C]

Area  
receiving  
discharge

Amount of  
discharge  

(million  
gallons  
per day)

Percentage  
of total

Total direct discharge to  
Lake Michigan 

217.9 --

Discharge to first 5,000-foot- 
wide offshore ring

147.9 67.9l

Discharge to second 5,000-foot-
wide offshore ring  

24.9 11.4l

Discharge to third 5,000-foot- 
wide offshore ring

7.8 3.6l

Discharge to 15,000-foot- 
wide offshore ring

180.6 82.9l
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Figure 70.  Percentage of total direct discharge to Lake Michigan for nearshore 
rings. (First nearshore ring extends 5,000 feet from shore. Second ring extends 
5,000–10,000 feet from shore. Third ring extends 10,000–15,000 feet from shore. 
Curve is exponentially declining trendline.) 

Figure 71.  Simulated contributing areas for direct discharge to nearshore of Lake Michigan: A, Predevelopment. B, 1991–2005. 
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Figure 72A.  Simulated shoreline outflow (from groundwater to Lake Michigan): Predevelopment. 
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Figure 72B.  Simulated shoreline inflow (from Lake Michigan to groundwater): Predevelopment. 
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Figure 72C.  Simulated shoreline outflow (from groundwater to Lake Michigan): 1980. 
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Figure 72D.  Simulated shoreline inflow (from Lake Michigan to groundwater): 1980. 
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Figure 72E.  Simulated shoreline outflow (from groundwater to Lake Michigan): 2005. 
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Figure 72F. Simulated shoreline inflow (from Lake Michigan to groundwater): 2005. 
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The same method employed previously to identify the 
sources of water to wells by comparing water budgets for 
natural and pumped condition was used to calculate the effect 
of pumping on direct discharge to the lake. Direct discharge 
to Lake Michigan is correlated with the trend of groundwater 
withdrawals from the model nearfield.31 In 1950, the reduc-
tion in direct discharge to Lake Michigan served as a source 
of water pumped by wells totaling 4.1 Mgal/d, or 2.1 percent 
of total nearfield withdrawals (table 18). The reduction in 
discharge increases with time to more than 14 Mgal/d by 
2005; however, the relative contribution is lower (1.8 percent 
of nearfield pumping in 2005) (table 18). When increased 
induced flow from Lake Michigan is added to the reduced 
discharge, the lake’s relative contribution to well withdraw-
als becomes slightly larger (last column in table 18). All these 
findings are subject to an important qualification: the model 
does not include any return-flow component, such as wastewa-
ter-treatment plants that route pumped water after use back to 
Lake Michigan and possibly neighboring drainage basins. It is 
possible that most of the simulated reduction in direct dis-
charge and net direct discharge to the lake is, in fact, returned, 
but at a different time, location, and temperature than would 
occur in the absence of pumping.

31 The model nearfield is used in place of the Lake Michigan Basin as the 
area over which to calculate the effect of pumping on groundwater interac-
tions with Lake Michigan and also with inland surface water. This larger area 
is used because pumping from outside the Lake Michigan Basin (notably in 
SE_WI and NE_ILL) has an effect on the exchange between groundwater and 
the lake.

The contribution to pumping derived from indirect dis-
charge to Lake Michigan via diverted base flow and induced 
flow from streams and diverted base flow from inland water 
bodies is much greater than the contribution attributable to net 
changes in direct discharge alone. The difference is evident 
when the total contribution (indirect plus direct) to pumping 
is calculated for the entire surface-water network, including 
Lake Michigan (last column of table 19). The change in the 
rate of groundwater interactions with the nearfield surface-
water network (that is, the sum of reduced base flow and 
increased induced flow) accounts in the 1940 to 1985 period 
for about 75 to 80 percent of water flowing to nearfield wells. 
Subsequent to Lake Michigan diversions for water supply 
in NE_ILL, reduced base flow and increased induced flow 
account for around 90 percent or more of water flowing to 
nearfield wells. The percentage of nearfield pumping derived 
strictly from reduced direct discharge to Lake Michigan gener-
ally is between 1 and 2 percent. The remaining sources of 
water (storage release, lateral inflow to the nearfield) provide 
between 10 and 25 percent of the well discharge depending on 
the period.
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Table 18.  Effect of nearfield pumping on simulated direct groundwater discharge to Lake Michigan.
[Values correspond to the confined model, SLMB-C; Mgal/d, million gallons per day]

Stress period Date

Net pumping in 
model nearfield
(net of injection)

(Mgal/d)

Source: reduced direct
discharge to 

Lake Michigan
(Mgal/d)

Source: reduced direct
discharge to, plus

increased induced flow
from, Lake Michigan

(Mgal/d)

1 Predevelopment 0.00 0.00 0.00

2 Oct. 1864–Oct. 1900 16.04 .04 .04

3 Oct. 1900–Oct. 1920 56.19 .62 .62

4 Oct. 1920–Oct. 1940 114.62 2.39 2.53

5 Oct. 1940–Oct. 1950 194.16 4.14 4.62

6 Oct. 1950–Oct. 1960 280.43 5.76 6.80

7 Oct. 1960–Oct. 1970 466.98 6.59 7.23

8 Oct. 1970–Oct. 1975 617.10 6.86 8.08

9 Oct. 1975–Oct. 1980 708.37 7.51 9.21

10 Oct. 1980–Oct. 1985 769.31 8.27 10.18

11 Oct. 1985–Oct. 1990 725.49 8.94 11.19

12 Oct. 1990–Oct. 2000 821.38 14.24 16.31

13 Oct. 2000–Oct. 2005 814.37 14.37 16.46

Notes:

1. Net pumping is pumping minus injection. The model simulates injection at only one location (near Kalamazoo, Mich.), where it amounts to 
about 10 Mgal/d in 2005.

2. Lake Michigan is represented by GHB nodes in the model. The flow to the GHB nodes represents the direct discharge to the lake (that is,  
groundwater flow that discharges directly to the lake rather than indirectly through surface-water bodies that are tributary to the lake.)

3. Because recharge changes between stress periods, it is not possible to use the change in direct discharge to Lake Michigan simulated by the 
model over time to isolate the effect of changes in pumping on direct discharge. Instead, the effect of pumping is calculated by comparing a simulation 
without pumping to a simulation with pumping and computing the difference in the flow to the GHB nodes representing Lake Michigan.

4. Because pumping can induce flow from Lake Michigan landward (that is, out of GHB nodes), it is also possible to calculate the net direct dis-
charge to Lake Michigan (that is, discharge minus induced flow) and the change in the net direct discharge due to pumping. Because the induced flow 
increases with pumping, the reduction in net direct discharge due to pumping is greater than the reduction in direct discharge.

5. It is important to note that the model does not include any return-flow component such as, for example, wastewater-treatment plants that route 
pumped water after use back to Lake Michigan. It is possible that most of the simulated reduction in direct discharge and net direct discharge to the 
lake is, in fact, returned, but at a different time, location, and temperature than under predevelopment (natural) conditions.
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Table 19.  Effect of nearfield pumping on total (direct plus indirect) groundwater discharge to Lake Michigan.
[Values correspond to the confined model, SLMB-C; Mgal/d, million gallons per day]

Stress period Date

Net pumping in 
model nearfield
(net of injection)

(Mgal/d)

Source: reduced total 
discharge (direct and 
indirect) to nearfield 

surface water
(Mgal/d)

Source: reduced total 
discharge (direct and indirect) 

to, plus increased 
induced flow from, 

nearfield surface water
(Mgal/d)

1 Predevelopment 0.00 0.00 0.00

2 Oct. 1864–Oct. 1900 16.04 9.08 9.96

3 Oct. 1900–Oct. 1920 56.19 23.06 27.14

4 Oct. 1920–Oct. 1940 114.62 60.21 70.67

5 Oct. 1940–Oct. 1950 194.16 115.68 139.08

6 Oct. 1950–Oct. 1960 280.43 176.55 218.60

7 Oct. 1960–Oct. 1970 466.98 282.95 373.64

8 Oct. 1970–Oct. 1975 617.10 374.02 464.29

9 Oct. 1975–Oct. 1980 708.37 409.04 539.70

10 Oct. 1980–Oct. 1985 769.31 499.59 621.77

11 Oct. 1985–Oct. 1990 725.49 501.30 642.64

12 Oct. 1990–Oct. 2000 821.38 611.32 781.07

13 Oct. 2000–Oct. 2005 814.37 613.49 785.35

Explanation:

1. Net pumping is pumping minus injection inside the Lake Michigan topographic basin. The model simulates injection at only one cluster of  
locations (near Kalamazoo, Mich.), where it amounts to about 10 Mgal/d in 2005.

2. Lake Michigan is represented by GHB nodes in the model. Inland surface-water bodies inside the Lake Michigan Basin (streams plus lakes plus 
wetlands) are represented by RIV nodes. The flow to the GHB and RIV nodes represents the total discharge to the lake (that is, groundwater flow that 
discharges directly to the lake plus groundwater flow that discharges indirectly through surface-water bodies that are tributary to the lake). All inland 
surface-water bodies represented in the model inside the Lake Michigan topographic basin are considered tributary to Lake Michigan.

3. Because recharge changes between stress periods, it is not possible to simply use the change in total discharge to Lake Michigan simulated by 
the model over time to evaluate the effect of changes in pumping on discharges. Instead, the effect of pumping is calculated by comparing a simulation 
without pumping to a simulation with pumping and computing the difference in the flow to the GHB nodes representing Lake Michigan and the RIV 
nodes representing inland surface-water bodies.

4. Because pumping can induce flow from Lake Michigan landward and from surface-water bodes into groundwater (that is, out of GHB nodes and 
out of RIV nodes), it is also possible to calculate the net total discharge to Lake Michigan (that is, discharge minus induced flow) and the change in the 
net total discharge due to pumping. Because the induced flow increases with pumping, the reduction in net total discharge is greater than the reduction 
in total discharge.

5. It is important to note that the model does not include any return-flow component such as, for example, wastewater-treatment plants that route 
pumped water after use back to Lake Michigan. It is possible that most of the simulated reduction in direct discharge and net direct discharge to the 
lake is, in fact, returned, but at a different time, location, and temperature than under predevelopment (natural) conditions.



208    Regional Groundwater-Flow Model, Lake Michigan Basin, in Support of Great Lakes Water Availability and Use Studies

7. Alternative Conceptual Models and 
Model Sensitivity 

Much can be learned about the dynamics of a groundwa-
ter-flow system by modifying assumptions built into a selected 
modeling approach. Some assumptions are linked to the 
conceptual model of the system, others to imposed boundary 
conditions and parameters, and yet others to the limitations of 
the solution algorithm linked to the regional grid spacing. For 
the groundwater-flow model of the Lake Michigan Basin, the 
robustness of model results was tested for the following ele-
ments of the model design: 

•	 Alternative models—Change conceptual assumptions 
regarding confined versus unconfined flow, variable 
density, and fixed salinity concentrations.

•	 Input sensitivity—Change input assumptions regarding 
cell-by-cell variation of QRNR hydraulic conductivity, 
head-dependent and flux-specified farfield boundary 
conditions, lakebed hydraulic conductivity, and fixed 
stages of Lake Michigan and other Great Lakes.

•	 Grid-resolution sensitivity—Change assumptions 
regarding coarse representation of surface-water net-
work along shoreline of Lake Michigan.

These tests are broad in scope insofar as they show the 
sensitivity of results not only to key parameter inputs but 
also to conceptual and geometric assumptions. The simula-
tions, which sometimes involve simplifying model input and 
sometimes more sophisticated input, show both strengths and 
weaknesses of the implemented model design. 

7.1 Alternative Models

The conceptual model for the calibrated, confined version 
of the LMB model (the “base” model) has two noteworthy 
assumptions:

1.	 Although parts of the flow system are truly uncon-
fined, a confined version that approximates uncon-
fined conditions by scaling inputs to take account of 
saturated thickness yields an adequate representation 
of the dynamics of the groundwater-flow system.

2.	 Although the distribution of salinity and fluid density 
gradients in the Michigan Basin is in theory subject 
to change in response to stresses such as pumping, 
the use of fixed concentration conditions in SEA-
WAT-2000 yields an adequate representation of the 
dynamics of the groundwater-flow system.

These sets of assumptions are tested with three alternative 
models. Each of the alternative models constructed poses 
advantages for certain types of applications. For this rea-
son they, like the base SLMB-C model version, have been 
archived and can be distributed for later use.

7.1.1 Unconfined Version of Model
Two versions of the LMB model were calibrated: con-

fined and unconfined. The confined model was adjusted to 
reflect actual unconfined conditions and employs a linearized 
version of the groundwater flow equation with concomit-
tant advantages of shorter runtimes, smaller mass-balance 
error, fully saturated conditions, and no exclusion of pumping 
because of dry cells. These features facilitated the application 
of nonlinear regression in the parameter-estimation process. A 
separate calibration was done by using an unconfined model to 
generate a version of the LMB model capable of directly simu-
lating unconfined conditions. Such a model version is particu-
larly useful for simulations that focus on water availability in 
areas with declining saturated thickness and for construction 
of more finely discretized inset models within the regional 
model domain to simulate local interactions between shallow 
pumping and surface. 

The unconfined version of the LMB model (SLMB-U) 
differs from the confined version (SLMB-C) in several ways:

•	 Storage in unconfined cells (all active cells in layer 1 
and cells in underlying layers where the simulated 
water level is below the top of the cell) is proportional 
to specific yield rather than specific storage.

•	 The controlling storage variable is redefined for cells 
that convert from confined to unconfined—or vice 
versa—during the simulation.

•	 Transmissivity in unconfined cells varies during the 
simulation as a function of saturated thickness rather 
than remaining constant.32

The confined and unconfined models were subjected to 
the same calibration procedure, although the mass-balance 
error in the unconfined model was increased to provide man-
ageable runtimes. The mass-balance error in the calibrated 
unconfined model is approximately twice as great as for the 
confined model, averaging about 0.2 percent for all time steps. 
The contribution of target sets to the calibration is similar for 
the confined and unconfined models (compare table 11B to 
table 11A). Both versions of the model were subjected to five 
regression iterations by using the same estimation techniques 
discussed in section 5. The model fit as reflected in the final 
values of the objective function differs little between the two 
calibrated models: 4.68 E5 confined versus 4.63 E5 uncon-
fined. Comparison of calibration statistics for the two models 
(table 12) indicates that the agreement between measured and 
simulated targets is nearly equal, although the quality of the 
match is better for more target groups in the confined model. 

32 For the confined version of the LMB model, the specific storage and 
hydraulic conductivity are adjusted to take account of the saturated thickness 
in unconfined cells based on a trial simulation with initial inputs (see sec-
tion 5). Also, it is worth noting that the vertical conductance term regulating 
vertical flow between layers is not a function of saturated thickness in either 
the confined or unconfined version of the LMB model.
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In addition, when residuals at measured water-level targets are 
considered, the root mean squares error for the confined model 
(36.78 ft) is slightly lower than that for the unconfined version 
(37.57 ft).

The ranking of parameter groups by sensitivity is nearly 
identical in the two models (compare tables 13A and 13B 
and fig. 49A, B). The specific-yield parameters are relatively 
insensitive in the calibration of the unconfined model, and the 
final estimated values for specific yield nearly equal the initial 
values. The insensitivity of the specific-yield parameters is 
due to the constraints on the water-table solution imposed by 
the large number of RIV boundary-condition cells distributed 
throughout the model nearfield. Specifying a single specific-
yield zone for all QRNR deposits probably also contributed to 
parameter insensitivity. 

One way to compare the results of the unconfined model 
(SLMB-U) to the confined model (SLMB-C) is to inspect the 
parameter multipliers (appendix table A5–2). In general, the 
multipliers are very similar, but small differences exist for 
recharge, hydraulic conductivity, conductance, and storage. 
Two differences are worth noting:

•	 Slightly higher recharge in the unconfined model (mul-
tiplier on the initial value of 1.060 instead of 1.048 for 
the confined case).

•	 Slightly higher riverbed conductance terms in the 
unconfined model (maximum multiplier on an initial 
value equal to 2.3 instead of 1.5 for the confined case).

A systematic comparison of the calibration results for 
horizontal hydraulic conductivity involves computing the cen-
tral tendency of values for the confined and unconfined models 
by aquifer system and by subregion (appendix 9). The biggest 
differences are evident for the Kh for the QRNR system, where 
the geometric mean is somewhat higher for the unconfined 
model in UP_MI, NE_WI, and SE_WI and the mean value is 
slightly lower in N_IND. There are small differences in the 
other aquifer systems, but in all instances the size of the differ-
ence between the two calibrated models is much less than the 
change from the initial values to calibrated values.

Two general conclusions can be drawn from the compari-
son of the confined and unconfined LMB models:

1.	 Even though more unreliable derivatives were fed to 
inversion routines in the unconfined as opposed to 
the confined case, the calibration processes produced 
similar calibration statistics and sensitivities for the 
two versions.

2.	 Whereas the calibrated inputs to the two models are 
not identical, the differences in parameter multipliers 
and resulting cell values generally are small.

One major difference between SLMB-U and SLMB-C 
is worth noting: The confined model simulation maintains all 
pumping input to the model, but the unconfined model loses 
pumping because of dry cells (where the water table falls 
below the bottom of a cell containing an active well, turning 

the cell inactive and eliminating any discharge assigned the 
cell). For SLMB-U, the loss amounts to about 2 percent of 
total net withdrawals by 2005 (21 Mgal/d of 1,095 Mgal/d) 
and 3 percent of 2005 net withdrawals from the Lake Michi-
gan Basin (19 Mgal/d of 580 Mgal/d). The loss is concentrated 
in two nearfield subregions where withdrawals are predomi-
nantly from unconfined aquifers: the SLP_MI (more than 5 
percent of pumping) and the NLP_MI (nearly 7 percent of 
pumping). It is possible that the exclusion of most first-order 
streams as internal model boundaries eliminates a source of 
water to wells, which contributes to overestimating drawdown 
in the unconfined model. It is certain that the coarse repre-
sentation required by the regional scale results in misfit in 
some locations; in the unconfined model, misfits can result in 
dry cells and lost pumping, but in the confined model, misfits 
cannot result in lost pumping even though the simulated water 
level is below the cell bottom. By keeping wells in the affected 
cells active, the confined model provides a better account of 
the expected effect of known pumping on base-flow reduction 
and other water-budget terms, but at the possible cost of main-
taining aquifer properties that are unreasonable in the vicinity 
of the wells. 

Shifting from calibration to model results, it is instructive 
to compare the unconfined and confined versions of the LMB 
model with respect to the 2005 water budget, predevelopment 
heads, 2005 drawdown, and water-level hydrographs at pump-
ing centers. Special attention is required to interpret the differ-
ences between the models when it is a question of dewatered 
conditions in the deep flow system. 

The 2005 Lake Michigan Basin water budgets for the 
confined and unconfined models show identical overall pat-
terns with small variations (fig. 73). The total recharge is 
slightly greater (1 percent) for SLMB-U than for SLMB-C, 
owing to the larger multiplier estimated for the unconfined 
model, whereas all the other inflow terms are slightly greater 
for the confined model, including storage. With respect to 
the outflow terms, total 2005 pumping is 3 percent lower for 
the unconfined model due to pumping lost from dry cells 
(although loss of pumping through 1990 in the unconfined 
model is less than 0.2 percent), whereas the distribution of 
discharge among surface-water features shifts slightly in favor 
of the inland water bodies (lakes and wetlands as opposed 
to streams) in the unconfined model. Direct groundwater 
discharge to Lake Michigan is virtually identical for the two 
simulations. Perhaps the most interesting difference between 
the model water budgets is the relative size of the storage 
terms. For stress periods after 1940, the average amount of 
storage release in the unconfined model is only two-thirds the 
release in the confined model; the average amount of uncon-
fined storage gain is only about six-tenths the confined gain. It 
is hard to know the extent to which the smaller storage change 
in the unconfined case reflects smaller average fluctuations in 
water levels or, alternatively, smaller storage factors applied to 
the water-level changes. 
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Larger differences are apparent in water levels and 
drawdowns simulated by the two models. To facilitate the 
comparisons, it is convenient to tabulate by aquifer system the 
percentage of the model nearfield with differences greater than 
20 ft (tables 20 and 21, first data column). This threshold is 
selected because it is roughly equal to (but less than) the Mean 
Absolute Error attributable to water-level residuals for the 
confined model calibration (25 ft). For predevelopment condi-
tions, the unconfined model simulates a higher water table 
(almost 1 percent of the QRNR system) but lower water levels 
in some deep system (almost 2 percent of the MSHL system). 
There are also differences at the 20-foot threshold with respect 
to 2005 drawdown:  the contrast is most marked in the C-O 
aquifer system, where drawdown in more than 3 percent of 
the unpinched cells in the unconfined model is lower than in 
the confined model. Water-level hydrographs at four selected 
pumping centers (locations shown in fig. 54) provide addi-
tional insight into the degree to which the two head solutions 
diverge. The trends appear very similar for the MSHL pump-
ing center near Lansing, Mich., for the C-O pumping center 
around Green Bay, Wis., and also for the C-O pumping center 
in southeastern Wisconsin (compare fig. 74A to 74B). Draw-
downs in northeastern Illinois simulated by the unconfined and 
confined models are different. Two comments are appropriate 
in this context. First, calibration statistics (table 12) indicate 
that the confined model more closely matches observed water 
levels, drawdown, and recovery for the C-O aquifer system in 

northeastern Illinois than does the unconfined model. Second, 
the difference in the slopes in the water-level hydrographs 
for the confined and unconfined models (compare fig. 74A to 
74B) reflects the storage properties in the two models. In the 
unconfined model, storage release is small as long as the water 
column remains saturated because specific storage controls the 
release of water (equal to thickness multiplied by 1.6 E−7 ft−1 
once the parameter multiplier of 0.636 is applied to the 
initial specific storage value of 2.6 E−6 ft−1; see appendix 5, 
table A5–2). However, once a second water table emerges at 
depth due to dewatering at the top of the C-O aquifer system 
at the center of the NE_ILL pumping center, storage release 
is controlled by the specific yield (equal to either 4.4 E−3 or 
4.4 E−2 depending on the unit where the head loss occurs). 
As a result, for the unconfined model, water-level declines at 
early times under confined (saturated) conditions are less than 
declines at later times under dewatered, unconfined conditions. 
In the confined model, a single storage coefficient, approxi-
mated as twice the geometric mean of the specific yield and 
the product of specific storage and thickness (see discussion 
of “linearization” in section 5), controls water-level declines. 
Therefore, the rates of decline in the confined model are less 
steep than in the unconfined model at early time and greater at 
late time (compare the NE_ILL pumping center hydrographs 
in fig. 74A and 74B), and water levels in the confined model 
are lower than in the unconfined model in the years before 
recovery starts in the 1980s. 
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Figure 73.  Simulated 2005 water budgets in Lake Michigan Basin: base model (SLMB-C) versus alternative unconfined model 
(SLMB-U). 
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Table 20.  Discrepancy between alternative models and SLMB-C with respect to predevelopment water 
levels, by aquifer system.

20A.  Percentage of nearfield active cells in aquifer system with predevelopment water level more than  
20 feet HIGHER in alternative models relative to SLMB-C.

Alternative models

Aquifer system
Unconfined

SLMB-U
(percent)

Uniform density
MLMB-C
(percent)

Active transport
SLMB-CT3
(percent)

QRNR 0.80 0.00 0.00
PENN .06 .00 .00
MSHL .04 49.50 .00
SLDV .26 56.49 .00
C-O .03 51.07 .00

20B.  Percentage of nearfield active cells in aquifer system with predevelopment water level more than  
20 feet LOWER in alternative models relative to SLMB-C.

Alternative models

Aquifer system
Unconfined

SLMB-U
(percent)

Uniform density
MLMB-C 
(percent)

Active transport
SLMB-CT3
(percent)

QRNR 0.03 0.00 0.00

PENN .00 .00 .00
MSHL 1.77 .00 .00
SLDV .32 .98 .00
C-O .24 16.71 .00
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Table 21.  Discrepancy between alternative models and SLMB-C with respect to 2005 drawdown, by aquifer 
system.

21A.  Percentage of nearfield active cells with 2005 drawdown more than 20 feet GREATER in alternative 
models relative to SLMB-C.

Alternative models

Aquifer
system

Unconfined
SLMB-U
(percent)

Uniform density
MLMB-C
(percent)

Active transport
SLMB-CT3
(percent)

QRNR 0.09 0.00 0.00
PENN .00 .00 .00
MSHL .00 .00 .00
SLDV .12 .00 .05
C-O .25 1.43 20.45

21B.  Percentage of nearfield active cells with 2005 drawdown more than 20 feet LESS in alternative 
models relative to SLMB-C.

Alternative models

Aquifer
system

Unconfined
SLMB-U
(percent)

Uniform density
MLMB-C
(percent)

Active transport
SLMB-CT3
(percent)

QRNR 0.07 0.00 0.00
PENN .00 .00 .00
MSHL .01 .00 .00
SLDV .32 .16 8.72
C-O 3.22 .00 .00
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Figure 74. Simulated water-level hydrographs at pumping centers: 
base model (SLMB-C) versus alternative unconfined model (SLMB-U) 
and alternative uniform-density model (MLMB-C). 
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An important finding of the LMB model is that in areas 
close to large pumping centers with deep wells penetrating 
the C-O aquifer system, dewatered conditions can exist at the 
top of the C-O aquifer system, most commonly in the Sinni-
pee unit. These dewatered conditions manifest themselves in 
the model in one of two ways:33 (1) All model layers contain 
saturated material, but the heads in the Sinnipee are below the 
top of that unit, implying the presence of a second water table 
in the dolomite. (2) The simulated head is below the bottom of 
the Sinnipee and the second water table is present in an under-
lying unit, such as the St. Peter. The first case is much more 
prevalent than the second, but both indicate dewatered condi-
tions at the top of the C-O aquifer system and the existence of 
two saturated systems, one shallow and one deep, separated by 
a deep water table.

The confined and unconfined versions of the LMB model 
simulate dewatered areas that form after predevelopment and 
are attributable to deep pumping. They are found only on the 
west side of Lake Michigan (fig. 75). In general, the dewa-
tered areas are larger in 2005 than in 1980, although the large 
dewatered area in northeastern Illinois is slightly diminished 
due to the switch from groundwater to Lake Michigan as a 
source of water supply. The agreement between the dewatered 
areas simulated by the confined and unconfined models is 
strong, suggesting that the two versions of the LMB model are 
generally consistent with respect to drawdown patterns and to 
the pattern of vertical leakage from overlying rocks to the deep 
C-O units. In this connection, it is worth noting that the dewa-
tered layer for the confined version of the model (SLMB‑C) 
is always treated as fully saturated from the standpoint of 
horizontal and vertical components of the groundwater flow 
equation whatever the head level simulated and the implied 
water-table condition; for the unconfined version (SLMB-U), 
by contrast, the transmissivity is reduced in proportion to the 
loss of saturated thickness in dewatered cells and, in addition, 
the vertical flow calculation across the cell is modified to take 
account of the presence of unsaturated material (McDonald 
and Harbaugh, 1988; Harbaugh and others, 2000). Despite 
these differences in the calculation routines, the results of the 
two model versions are very similar.

33 See section 5.1 for discussion of the algorithms employed by the 
SEAWAT code to handle dewatered conditions in unconfined mode and in 
confined mode.

The simulated dewatering at the top of the C-O aquifer 
system (fig. 75) is supported by a variety of field evidence. 
There are four main areas where the confined and uncon-
fined versions of the LMB model suggest that dewatering has 
occurred. In the vicinity of Green Bay, Wis., potentiometric-
surface information assembled for 2004 and 2008 indicates 
that water levels are drawn down to the extent that part or even 
all of the Sinnipee unit at the top of the C-O aquifer system is 
dewatered (Luczaj and Hart, 2009) in the same general area 
where the model simulates the presence of a deep water table 
for the 2005 stress period. Around Lake Winnebago in north-
eastern Wisconsin, geochemical evidence is favorable to the 
hypothesis that the top of the C-O aquifer system is dewatered 
in the same area indicated by the LMB model for 1980 and 
2005. Arsenic contamination around Lake Winnebago is attrib-
uted to the oxidation of arsenic from a sulfide-bearing second-
ary cement horizon, which is present at the boundary between 
the Sinnipee rocks and the underlying unit, generally the St. 
Peter. Researchers have noted that the elevation of water levels 
in wells exerts a strong control on the release of naturally 
occurring arsenic to groundwater; further, they point out that 
in some areas where arsenic is elevated, heads have been 
lowered by pumping, so that the present-day levels in wells 
are open to the Sinnipee and St. Peter units (Gotkowitz and 
others, 2004). The zone of dewatering near Waukesha, Wis., 
was noted in an earlier model centered on southeastern Wis-
consin (Feinstein, Hart, and others, 2005). This finding led to 
the installation of nested piezometers at a location within the 
zone of dewatering simulated by the confined and unconfined 
LMB models. Water levels measured in 2004 are strong evi-
dence that a second water table is present in the Sinnipee unit 
(Eaton and Bradbury, 2005). Finally, by far the largest area of 
simulated dewatering shown in figure 75 corresponds to the 
pumping centers around Joliet in northeastern Illinois. This 
finding is consistent with results obtained by a model recently 
constructed by the ISWS for Kane County and surrounding 
areas (Meyer and others, 2009). In light of these results, the 
ISWS has compared 2007 water levels in wells that penetrate 
the top units of the C-O aquifer system to the bottom elevation 
of the Sinnipee unit at the well locations. They conclude that 
the large dewatered area simulated by the models and centered 
on Joliet is consistent in shape and extent with the area where 
the water levels in the deep wells are either as much as 50 ft 
below the bottom of the Sinnipee unit (in a restricted zone 
immediately around Joliet) or at an elevation that falls within 
the Sinnipee (Wehrmann and others, in preparation). The 
simulated results of the LMB model agree with the details of 
this analysis insofar as they show the second water table to be 
in the St. Peter immediately around Joliet and in the Sinnipee 
in the larger surrounding area.
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Figure 75. Simulated dewatering at top of Cambrian-Ordovician aquifer system as a result of pumping: base model versus 
alternative unconfined model for 1980 and 2005. 
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Pumping is responsible for dewatering at the top of the 
C-O aquifer system in both Wisconsin and Illinois, but the 
mechanisms that accompany this dewatering are open to spec-
ulation. Multiple water tables at the locations discussed imply 
that there is shallow saturated system, the top of which is 
defined by a water table usually in Quaternary deposits and the 
bottom of which is generally in the Maquoketa hydrogeologic 
unit. The shallow system is underlain by a deeper saturated 
system whose top is defined by a water table in the Sinnipee 
unit or possibly an underlying unit such as the St. Peter and 
whose bottom is below the bottom of the Mount Simon unit 
at the base of the sedimentary deposits. It is possible that air 
enters the intermediate dewatered zone between the two satu-
rated systems by moving through boreholes that penetrate the 
C-O aquifer system and replaces the water withdrawn from the 
system. Alternatively, there may not be pathways to allow air 
to enter the system; in this case, the aquifer material between 
this second water table and the overlying system would, in 
fact, remain saturated but under a capillary tension that is 
above the air-entry pressure required to allow the largest pores 
to drain. Accordingly, observation wells would indicate the 
presence of a second, deep water table that is overlain by an 
intermediate zone analogous to the capillary fringe that is 
associated with water-table aquifers. However, because the 
system is not freely open to the atmosphere, the configuration 
and dynamics of this intermediate zone are likely complex 
and difficult to predict. Whatever the degree of dewatering, 
the model findings corroborated by field evidence suggest that 
pumping from the C-O aquifer system has caused deep water 
tables to form in the Green Bay, Lake Winnebago, Waukesha, 
and greater Joliet areas and that this condition occurs mostly 
commonly in the Sinnipee hydrogeologic unit.

7.1.2 Uniform-Density Simulation
Two alternative models have been devised to test the 

assumptions that (1) high levels of salinity in the Michigan 
Basin influence the groundwater flow field in important and 
detectable ways and (2) this influence can be adequately 
simulated by assigning fixed concentrations (and, hence, fixed 
density) levels to model layers in correspondence to unit-
dependent maps of the saline body. 

Density effects were first tested by preparing an alterna-
tive model that substitutes uniform freshwater density for 
spatially distributed variable density. The exact same model 
geometry and input used for the calibrated confined saline ver-
sion of the model (SLMB-C) was applied to a confined version 
of the model (MLMB-C) without any recalibration. The only 
difference between the two simulations is that the calibrated 
saline version is solved with SEAWAT-2000 and the com-
panion freshwater version is solved with MODFLOW-2000. 
Because SEAWAT-2000 calculations are performed in double 
precision, MLMB-C is solved with a double-precision version 
of MODFLOW-2000 to ensure consistency.

As emphasized earlier,
•	 model findings regarding water availability are sought 

principally in freshwater areas, and 

•	 model calibration targets are restricted to freshwater 
areas.

Only the results for the vertical-head-difference target set 
shows appreciable difference for the two simulations. The 
statistical similarity indicates that, in freshwater areas, there 
is little difference between the confined model with variable 
density and with uniform density in freshwater areas.With 
respect to the global 2005 water budget for the Lake Michi-
gan Basin, the results also are very similar (fig. 76), which is 
expected because recharge to the water table is the same in 
both simulations. The biggest difference is that the MLMB-C 
simulation yields a 5 percent lower rate of direct discharge to 
Lake Michigan than the SLMB-C simulation. Large differ-
ences are registered in the case of simulated predevelopment 
heads (table 20A, second column). For model cells containing 
saline water, the heads generated the uniform-density model 
are higher than the heads generated by a solution that accounts 
for salinity. The 50 percent or more of cells in the MSHL, 
SLDV, and C-O aquifer system with more than 20-ft discrep-
ancies are almost all in the Michigan Basin. As far as draw-
down is concerned, there is very little difference either within 
aquifer systems (table 21, second column) or near pump-
ing centers (fig. 74). Closer inspection of the results for the 
C-O aquifer system shows that, west of Lake Michigan, the 
drawdown around the NE_WI, SE_WI, and NE_ILL pumping 
centers is on the order of 5 ft higher for the SLMB-C than the 
MLMB-C simulation; but east of the lake, drawdown is on the 
order of 5 ft less. This subtle difference can be attributed to the 
effect of salinity on water flowing west toward deep pumping 
centers from the Michigan Basin underneath Lake Michigan. 
The saline conditions cause more drawdown than otherwise 
near the pumping centers and under the west side of the lake, 
where freshwater can be relatively easily moved, and less 
drawdown than otherwise under the east side of the lake and 
into the Michigan Basin, where the heavier saline water resists 
the pull of pumping centers. In effect, the increasing salinity in 
the direction of the Michigan Basin acts as a kind of boundary 
that resists the influence of deep wells. Subtle differences also 
appear in the magnitude and direction of the flow fields gener-
ated by the variable- and uniform-density versions of the LMB 
model (table 22). For the west and east shorelines of Lake 
Michigan along the latitudes between the cities of Green Bay 
and Chicago, summation of the lateral flows by aquifer system 
demonstrates some discrepancies, particularly under 2005 
stressed conditions. The SLMB-C simulation shows more 
movement through the C-O aquifer system from east to west 
in response to deep pumping centers than does the MLMB‑C 
simulation. Nevertheless, the extent and boundaries of the 
regional groundwater basins for the freshwater part of the 
Lake Michigan groundwater basin in the C-O aquifer system 
are nearly identical for both the variable-density and uniform-
density models (figs. 77A, B).
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Table 22.  East and west components of flow under shores of Lake Michigan between latitude of cities of Green Bay and Chicago: 
comparison of SEAWAT-2000 to MODFLOW-2000.

Predevelopment conditions 2005 conditions

SEAWAT-2000 (SLMB-C) SEAWAT-2000 (SLMB-C)

Aquifer system(s) 
(layer interval)

West shore  
net flow (Mgal/d)

East shore  
net flow (Mgal/d)

Aquifer system(s) 
(layer interval)

West shore  
net flow (Mgal/d)

East shore  
net flow (Mgal/d)

QRNR (L1-L3) 2.2 toward lake 5.0 toward lake QRNR (L1-L3) 2.1 toward lake 5.1 toward lake

PENN+MSHL+SLDV  
(L4-L12)

31.3 toward lake 4.5 toward lake PENN+MSHL+SLDV  
(L4-L12) 

30.4 toward lake 4.7 toward lake

C-O (L13-L20) 2.6 toward lake 2.4 toward lake C-O (L13-L20) 7.5 from lake 6.9 toward lake

TOTAL 36.1 toward lake 11.9 toward lake TOTAL 25.0 toward lake 16.7 toward lake

MODFLOW-2000 (MLMB-C) MODFLOW-2000 (MLMB-C)

Aquifer system(s) 
(layer interval)

West shore  
net flow (Mgal/d)

East shore  
net flow (Mgal/d)

Aquifer system(s) 
(layer interval)

West shore  
net flow (Mgal/d)

East shore  
net flow (Mgal/d)

QRNR (L1-L3) 2.1 toward lake 5.0 toward lake QRNR (L1-L3) 2.1 toward lake 5.1 toward lake

PENN+MSHL+SLDV  
(L4-L12)

31.3 toward lake   4.6 toward lake PENN+MSHL+SLDV  
(L4-L12)

30.4 toward lake 4.8 toward lake

C-O (L13-L20) 4.5 toward lake 0.2 from lake C-O (L13-L20) 5.5 from lake 4.4 toward lake

TOTAL 37.9 toward lake 9.4 toward lake TOTAL 27.0 toward lake 14.3 toward lake

Figure 76.  Simulated 2005 water budgets in Lake Michigan Basin: base model (SLMB-C) versus alternative uniform-density model 
(MLMB-C). 
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Figure 77A.  Simulated 1991–2005 groundwater basins for C-O aquifer system: Base model. 
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Figure 77B.  Simulated 1991–2005 ground-water basins for C-O aquifer system: Alternative uniform-density model. 
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The major differences between the variable-density and 
uniform-density results relate to the water levels and flow 
dynamics simulated in the deeper units of the Michigan Basin 
and under Lake Michigan, where calibration targets are not 
available. For this reason, it could be argued that there is no 
basis for preferring the head and flow results of the variable-
density solution except on theoretical grounds. Given (1) the 
extent of the highly saline body in the groundwater system 
underlying the Lake Michigan Basin and (2) the availability of 
simulation methods to account for it, a modeling strategy was 
adopted to consider the effects of variable density rather than 
neglect the phenomenon. However, comparison of the model 
versions suggests that, for most applications concerning water-
availability issues (for example, mapping regional divides by 
aquifer system), the uniform-density MLMB-C model can 
be used in place of the variable-density SLMB-C model for 
regional analyses of groundwater conditions in freshwater 
areas.

7.1.3 Active-Transport Simulation
A second way to analyze the influence of saline condi-

tions on the modeling process is to put more, rather than less, 
weight on the variable-density equation. For ease of input 
and, especially, to keep runtimes relatively short, the SEA-
WAT-2000 code was not applied to the calibrated LMB model 
in normal transport mode, which would permit the saline 
water body to move by advection and dispersion; instead, the 
code was executed under the assumption of fixed concentra-
tions. In SLMB-C and SLMB-U, the distribution of spatially 
variable but time-constant salinities (and the resulting fixed 
density field) influences the flow system through its effect on 
hydraulic conductivity and hydraulic gradients, but the saline 
body itself remains stationary. This assumption can be relaxed 
with the addition of inputs to the model setup that take account 
of transport mechanisms. 

To test the effect of movement of saline water on model 
findings, a simple transport simulation was performed for 
1864 to 2005 on the basis of the already calibrated SLMB-C 
model with

•	 longitudinal, horizontal transverse, and vertical trans-
verse dispersivity set everywhere to 10 ft, 1 ft, and 
0.1 ft, respectively;

•	 molecular diffusion set to 1−E5 ft2/d;

•	 porosity (and effective porosity) set everywhere to 0.2;

•	 a maximum transport time step set to 30 days; and

•	 an implicit finite-difference solution scheme.

The initial saline concentrations, equivalent to the fixed con-
centrations in SLMB-C, serve as the only source of salinity 
in the model. One very small change was made to the cali-
brated SLMB-C input: in the new model the WEL package, 
originally restricted to handling input for single-layer wells, 
also replaces the MNW package for all multilayer wells. This 
substitution is desirable to simplify the input of sources and 
sinks in the transport solution, and it is possible because the 
output of the calibrated SLMB-C model includes the cell-by-
cell pumping rates for all stress periods as a function of the 
transient solution.34 As a result, it is possible to duplicate the 
cell-by-cell pumping configuration of the original run with one 
input package for wells rather than two. However, the transla-
tion does promote a small degree of rounding error. To insure 
a consistent comparison between the transport solution and the 
fixed-concentration solution, the SLMB-C model was rerun 
with a single comprehensive WEL package. The correspond-
ing transport run with the same single WEL package is called 
SLMB-CT3. The runtime of the latter—about 10 hours—is 
approximately 16 times longer than that of the former.

Mass-balance results (fig. 78), predevelopment water-
level results by aquifer system (table 20, third column), 2005 
drawdown results by aquifer system (table 21, third column), 
and hydrographs at pumping centers (fig. 79) all indicate 
very small differences between simulations without and with 
transport of saline water. Changes in DS concentration through 
time are small and reveal no appreciable movement of the 
saline water in response to pumping. However, drawdown 
produced from pumping centers in the C-O aquifer system is 
greater in simulations with transport. The increase is relatively 
small: the maximum change in 2005 between the SLMB-CF3 
and SLMB-CT3 models in NE_ILL where wells are in the 
vicinity of saline water is 28 ft in the STPT aquifer, 23 ft in the 
IRGA aquifer, and 14 ft in the MTSM aquifer. These changes 
suggest that added density of the saline water induced to flow 
toward the pumping centers requires increased drawdown to 
withdraw groundwater at the simulated rates. 

Whereas the comparisons between the fixed and vari-
able concentration simulations demonstrate negligible cost in 
neglecting transport for most applications, it is conceivable 
that the SLMB-CT3 version of the LMB regional model might 
be useful for some problems. Therefore, like the SLMB-U 
(unconfined) and the MLMB-C (uniform density) versions, its 
input and output were archived, and the model made available 
for distribution.

34 As mentioned earlier, the distribution of pumping between layers for 
MNW wells is not an input to the model but an output based on the total 
pumping prescribed for the well, aquifer conditions simulated outside the 
well, and the simulated circulation pattern within the well.
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Figure 78.  Simulated 2005 water budgets in Lake Michigan Basin: base model (SLMB-CF3) versus alternative active transport model 
(SLMB-CT3). 

Figure 79. Simulated water-level hydrographs at pumping centers: base model (SLMB-CF3) versus alternative active 
transport model (SLMB-CT3). 
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7.2 Model Sensitivity

Model sensitivity analysis consists of modifying a single 
type of input in each sensitivity simulation. Selected sensitiv-
ity simulations test inputs falling into three categories: farfield 
boundary conditions, parameter values, and grid resolution. 
All the tests were done on the calibrated confined variable-
density model, SLMB-C, which is considered the base model.

7.2.1 Farfield Boundary Conditions
As discussed in section 4 (“Model Construction”), the 

boundary conditions at the edge of the model (first or last row, 
first or last column) consist of two types:

•	 GHB (head-dependent) cells representing Great Lake 
stages or CHD (constant-head) cells representing 
surface-water stages in the highest active cell at a row/
column location, with underlying cells set as no-flow 
boundaries at their outside edge (see figs. 26 and 27).

•	 WEL (constant-flow) cells representing time-dependent 
inflow or outflow to the bedrock across the southwest-
ern model edge of the LMB model domain, derived 
from a published regional model centered on northeast-
ern Illinois (see fig. 27).

Both conditions were modified to test sensitivity. In the first 
case, the lake stage and water-table values for the farfield 
boundary cells at the sides of the model were propagated 
downward as CHD cells, thereby replacing the vertical no-
flow boundaries at the sides of the model with constant-head 
boundaries (simulation SEN1-CHD). In the second case, 
the time-dependent flow constituting the boundary condi-
tion in bedrock layers along the southwestern edge of the 
model domain were either halved (simulation SEN2-HAF) or 
doubled (simulation SEN3-DUB) in magnitude. The effects of 
the three sensitivity runs on the original SLMB-C output are 
presented in terms of the percentage of cells in each aquifer 
system that differ more than 20 ft from simulations using 
predevelopment heads (table 23, first three columns) and with 
more than 20 ft of difference with respect to 2005 drawdown 
conditions (table 24, first three columns). A threshold of 20 ft 
was selected because it is roughly the magnitude of the mean 
absolute error for calibrated water levels. For predevelop-
ment water levels, the changes in excess of 20 ft, positive and 
negative, are concentrated in the C-O aquifer system. These 
discrepancies occur almost exclusively in the deep part of 
the Michigan Basin, which is devoid of calibration targets. 
Farfield boundary conditions appear to have very little effect 
on the drawdown distribution simulated for 2005. When 
the focus is on freshwater areas of the model, the effects of 
modifying farfield boundary conditions on both initial heads 
and drawdown are very small. At the selected pumping centers 
(see fig. 54), graphs showing the predevelopment water levels 
for the farfield boundary condition in sensitivity runs are 
similar to those showing levels for the base model, SLMB-C 

(fig. 80). Simulated drawdowns in 1960, 1980, and 2000 for 
the farfield boundary sensitivity runs are also similar to those 
simulated by the base model (fig. 81). For the drawdown 
graphs, it is interesting that the base and sensitivity runs all 
produce the same pattern: drawdown increases over time at the 
SE_WI pumping center, but the NE_ILL and SLP_MI centers 
both show recovery of water levels between 1980 and 2005 
as a result of reductions in withdrawals, whereas the NE_WI 
center shows recovery between 1960 and 1980. 

7.2.2 Parameter Values
Three simulations were done to test the sensitivity of 

model outcomes to parameter values. Clearly, a virtually 
unlimited number of such simulations could be devised. The 
ones selected bear on two important aspects of the model 
design: the handling of glacial heterogeneity and the treatment 
of groundwater exchange with Lake Michigan.

The reader may recall that the assignment of hydraulic 
conductivity to the inland QRNR deposits (mostly glacial in 
origin) in the model depends on two databases, one of which 
assigns glacial categories (types of tills and stratified depos-
its) to cells and the other of which assigns the cells a number 
representing coarse fraction (the proportion of sands and 
gravels as opposed to the proportion of silts and clays). The 
result is cell-by-cell variation of Kh and Kv wherever inland 
QRNR deposits are present in the top three model layers. The 
questions arise, “Given the regional scale of the model and the 
constraints on the solution posed by internal boundary condi-
tions, are model results largely insensitive to the heterogeneity 
generated by this method, and could a simpler version of the 
model based on zoned input to the QRNR layers produce a 
similar fit to calibration targets?”

To address these questions, delineation of K zones was 
based on the extent of glacial categories in each QRNR layer 
(see fig. 36), and zoned values were based on the geometric 
means consistent with calibrated values in the SLMB-C model 
(see appendix 6A, layers 1, 2, and 3 for Kh input and appen-
dix 6B, layers 1, 2, and 3 for Kv input). Apart from this change, 
the sensitivity simulation, called SEN4-QRN, is identical to 
the base SLMB-C run. In general, it produces water-level and 
flux results that are similar to those from the base run. For 
example, comparison of the residuals generated at targets by 
the two runs show only minor increase in the overall misfit 
for the run with the simplified QRNR input (the objective 
function increases by 2 percent), limited largely to a few target 
subsets. The residual differences that occur correspond mostly 
to differences in the simulated water-table surface. Inspection 
of table 23 shows that, for the sensitivity simulation, there 
are a fairly large number of shallow (that is, QRNR or PENN 
aquifer system) cells with more than 20 ft higher water levels 
than in the base run, owing to the simplified zonation, but an 
even greater number of cells with more than 20 ft lower water 
levels. These discrepancies are distributed throughout all sub-
regions, but they are largest in the NLP_MI. 
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Table 23.  Discrepancy between model-sensitivity simulations and SLMB-C with respect to predevelopment water 
levels, by aquifer system.
[FF, farfield; K, hydraulic conductivity]

23A.  Percentage of nearfield active cells in aquifer system with predevelopment water level more than 20 feet 
HIGHER in model sensitivity simulations relative to SLMB-C.

Model-sensitivity simulations

Aquifer
system

Modified FF 
no-flow

boundaries
SEN1-CHD
(percent)

FF boundary
fluxes halved

SEN2-HAF
(percent)

FF boundary
fluxes doubled

SEN3-DUB
(percent)

Simplified K
input to QRNR

SEN4-QRN
(percent)

Lake Michigan bed
K increased by 10×

SEN5-BED
(percent)

Variable stage in
each Great Lake

SEN6-GLS
(percent)

QRNR 0.00 0.00 0.00 1.65 0.00 0.00

PENN .00 .00 .00 2.81 .00 .00

MSHL .00 .00 .00 .08 .00 .00

SLDV 10.59 .00 .00 .04 .00 .00

C-O 51.16 .00 18.92 .06 .00 .00

23B.  Percentage of nearfield active cells in aquifer system with predevelopment water level more than 20 feet 
LOWER in model sensitivity simulations relative to SLMB-C.

Model-sensitivity simulations

Aquifer
system

Modified FF 
no-flow

boundaries
SEN1-CHD
(percent)

FF boundary
fluxes halved

SEN2-HAF
(percent)

FF boundary
fluxes doubled

SEN3-DUB
(percent)

Simplified K
input to QRNR

SEN4-QRN
(percent)

Lake Michigan bed
K increased by 10×

SEN5-BED
(percent)

Variable stage in
each Great Lake

SEN6-GLS
(percent)

QRNR 0.00 0.00 0.00 7.61 0.07 0.00

PENN .00 .00 .00 2.74 .00 .00

MSHL .00 .00 .00 1.92 .00 .00

SLDV .00 .00 .00 .24 .00 .00

C-O .00 6.84 .00 .08 .00 .00



7. Alternative Conceptual Models and Model Sensitivity     223

Table 24.  Discrepancy between model-sensitivity simulations and SLMB-C with respect to 2005 drawdown, by 
aquifer system.
[FF, farfield; K, hydraulic conductivity]

24A.  Percentage of nearfield active cells in aquifer system with 2005 drawdown more than 20 feet GREATER in 
model sensitivity simulations relative to SLMB-C.

Model-sensitivity simulations

Aquifer
system

Modified FF 
no-flow

boundaries
SEN1-CHD
(percent)

FF boundary
fluxes halved

SEN2-HAF
(percent)

FF boundary
fluxes doubled

SEN3-DUB
(percent)

Simplified K
input to QRNR

SEN4-QRN
(percent)

Lake Michigan bed
K increased by 10×

SEN5-BED
(percent)

Variable stage in
each Great Lake

SEN6-GLS
(percent)

QRNR 0.00 0.00 0.00 0.16 0.00 0.00

PENN .00 .00 .00 .00 .00 .00

MSHL .00 .00 .00 .01 .00 .00

SLDV .00 .00 .00 .00 .00 .00

C-O .00 .00 .00 .00 .00 .00

24B.  Percentage of nearfield active cells in aquifer system with 2005 drawdown more than 20 feet LESS in model 
sensitivity simulations relative to SLMB-C.

Model-sensitivity simulations

Aquifer
system

Modified FF 
no-flow

boundaries
SEN1-CHD
(percent)

FF boundary
fluxes halved

SEN2-HAF
(percent)

FF boundary
fluxes doubled

SEN3-DUB
(percent)

Simplified K
input to QRNR

SEN4-QRN
(percent)

Lake Michigan bed
K increased by 10×

SEN5-BED
(percent)

Variable stage in
each Great Lake

SEN6-GLS
(percent)

QRNR 0.00 0.00 0.00 0.02 0.00 0.00

PENN .00 .00 .00 .00 .00 .00

MSHL .00 .00 .00 .00 .00 .00

SLDV .00 .00 .00 .00 .00 .00

C-O .00 .00 .55 .00 .00 .00
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Figure 81.  Comparison of simulated drawdown at selected pumping centers: base model versus sensitivity models. 

Figure 80.  Comparison of simulated predevelopment water levels at selected pumping centers: base model versus sensitivity 
models. 
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Inspection of table 24 shows that drawdown results in 
all aquifer systems are much less affected by the simplified 
QRNR K zonation than are water levels. The effect of the sim-
plification is extremely small at the selected pumping centers 
(as evident in results for SLMB-C and SEN-QNR water levels 
in fig. 80 and drawdown in fig. 81), which is expected because 
none of the centers features QRNR wells. 

On the whole, it appears that the simplified K represen-
tation produces a water-table solution that is distinct from 
the solution with cell-by-cell K variation but simulates a 
very similar response to shallow pumping. The magnitude of 
drawdown simulated at the water table by either the base or 
sensitivity model is constrained by the presence of fixed head-
dependent boundaries in roughly half the inland water-table 
cells. Although this structural element of the regional model 
limits the extent to which the detailed QRNR hydraulic-con-
ductivity database is able to improve regional model results 
when compared to a simplified approach, the availability of 
the database is intended to be a product that, by itself, is a 
useful starting point for future studies involving the shallow 
groundwater-flow system in and around the Lake Michigan 
Basin.

Little information, either from field tests or calibra-
tion targets, is available to quantify or update the hydraulic 
conductivities assigned the Lake Michigan bed deposits in lay-
ers 1, 2 and 3. For this reason, a second sensitivity run, called 
SEN5-BED, was constructed in which the Kh  and Kv of the 
lakebed zones were increased by 10 times with respect to the 
value in the base run, SLMB-C. The effect on this change is 
minimal on calibration target residuals, predevelopment water 
levels (table 23), 2005 drawdown (table 24), or conditions at 
pumping centers (figs. 80 and 81). In order to detect a differ-
ence, it is necessary to compare the SLMB-C and SEN5-BED 
water budgets. The base simulation yields a predevelopment 
rate of direct discharge to Lake Michigan equal to 218 Mgal/d 
(see fig. 57). The SEN5-BED run yields a predevelopment 
rate of 279 Mgal/d. The order-of-magnitude increase in K 
produces about a 30-percent increase in discharge, and this 
sink increases from 1.3 percent of the Lake Michigan Basin 
outflow budget to about 1.7 percent of the budget. Given the 
uncertain nature of the bed properties, an error term on the 
order of plus or minus 30 percent for the discharge term is not 
unexpected. More attention will be given in the next subsec-
tion to consideration of possible bias in the model estimate of 
this flux term.

The final sensitivity run, SEN6-GLS, involved time-
dependent treatment of the stages assigned Lake Michigan and 
the farfield Great Lakes. Lake stage measurements compiled 
by the U.S. Army Corps of Engineers, Detroit District (2006) 
were averaged over stress-period intervals to modify the GHB 
input from the SLMB-C model. For example, the monthly 
excursion in the Lake Michigan/Lake Huron level recorded 
by the U.S. Army Corps of Engineers between 1918 and 2005 
ranges from 576.04 to 582.32 ft above lake datum, with a 
median value of 578.86 ft. When averaged by stress-period 
interval, the range is from 577.52 ft in 2001–5 to 580.59 ft 

in 1971–75. The effect on model results of varying stage by 
stress period in Lake Michigan, Lake Superior, Lake Huron, 
Lake St. Clair and Lake Erie is extremely small (tables 23 and 
24; figs. 80 and 81). Perhaps the biggest effect is on the direct 
discharge term to Lake Michigan. The 2001–5 rate of direct 
discharge to Lake Michigan changes from 216 Mgal/d in the 
base model to 219 Mgal/d in the sensitivity run, an increase 
of only 1 percent. The reason for the insensitivity of overall 
results to variable Great Lake stage is that most of the ground-
water outflow in the model occurs not to the Great Lakes but 
to inland surface-water features. Owing to lack of data for the 
SEN6-GLS run, as for the SLMB-C run, the stages of streams 
and water bodies were fixed for the entire duration of the 
simulation; consequently, the true effect of temporal variabil-
ity in surface-water levels on model results is not represented.

7.2.3 Grid Spacing
A regional finite-difference groundwater-flow model is 

generally characterized by a large domain discretized into a 
grid that is coarse relative to the density of features such as 
surface-water discharge zones. Among all the possible tests of 
the sensitivity of LMB model results to its 5,000-ft nearfield 
grid spacing, one was selected that centers on a key out-
come of the model simulation: the rate of groundwater direct 
discharge to Lake Michigan. The objective was to determine 
how the grid resolution affects the partitioning of flow near 
the Lake Michigan shoreline between inland surface water 
(indirect discharge) and the lake (direct discharge)—that is, 
whether the coarse grid spacing introduces a systematic bias 
into the relative discharge rates simulated by the regional 
model. 

The sensitivity analysis of discharge near the shoreline 
requires the use of inset models (a smaller model “inset” into 
the larger model, using the larger model results as bound-
ary conditions for the smaller model) as a way of contrasting 
results from refined as opposed to coarse grid spacing; use 
of inset models in this context also demonstrates the utility 
of the regional model in construction of local-scale models, 
one of the goals of this study. Eight inset models of roughly 
equal area were constructed, all within the Lake Michigan 
Basin (fig. 82). Each nearfield subregion contains one inset 
model except for the NLP_MI subregion, which contains 
two. A telescopic mesh refinement (TMR) approach available 
through the Groundwater Vistas interface (Rumbaugh and 
Rumbaugh, 2007) allows models with refined grid resolution 
to be automatically constructed such that the imposed bound-
ary conditions (CHD, RIV, and GHB) at the edges of the inset 
domain honor the water-level conditions simulated by the 
regional model. For TMR construction, the boundary heads 
correspond to predevelopment conditions (no pumping wells). 
The layering and property values specified for the inset models 
correspond exactly to the base regional model, SLMB-C. 
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Figure 82.  Locations and results for shoreline inset models. 
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However, the grid spacing for each inset model is smaller, 
producing cells 500 ft on a side with an area 1/100th the size 
of a regional model cell. The areal extent of the RIV cells 
in the inset model is the same as for the base model. (See 
figs. 83A and B, which contrast the grid spacing and compare 
the RIV cell distribution, shown in green, for the regional and 
inset models for the TMR in SLP_MI.) Conductance terms of 
the RIV cells internal to the inset domains were adjusted to 
ensure that the flow into and out of the inset model domain is 
virtually identical to the flow through the regional model for 
the same area. In this way, it is possible to directly compare 
the partitioning of a single amount of outflow between the two 
competing sink types, inland surface water and Lake Michi-
gan, at two very different grid resolutions. 

The assumption underlying the comparison is that the 
refined spacing of the inset models allows for a more accu-
rate simulation of gradients near discharge areas, and, there-
fore, a more accurate account of the fate of groundwater. 

The theoretical basis for this understanding is discussed in 
appendix 2. In that discussion reference is made to a “leak-
age factor” symbolized by λ, which indicates the degree 
of grid refinement needed to accurately simulate discharge 
patterns around surface-water features as a function of the 
distribution of horizontal and vertical hydraulic conductivity 
and layer thicknesses (Haitjema and others, 2001). Calcula-
tion with LMB model inputs of the average value and range 
of values for λ around the Lake Michigan shoreline indi-
cate that the 500‑ft spacing of the inset models is generally 
adequate to simulate discharge without introducing numerical 
inaccuracies.

Figure 83A. Representation of inset area in SLP_MI: regional 
model. 

Figure 83B. Representation of inset area in SLP_MI: inset 
model with refined grid. 
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The results of the sensitivity analysis are presented in 
terms of the ratio of direct predevelopment Lake Michigan 
discharge simulated by the inset model relative to the regional 
model. A value greater than 1 indicates that the inset model 
yields a higher rate of discharge to the lake than does the 
regional model. For all eight inset areas, the ratio is greater 
than 1, although the value ranges from 1.02 in NE_WI to 3.81 
in SLP_MI (fig. 82). The systematic discrepancy suggests 
that the finer resolution is needed to accurately simulate the 
hydraulic gradients toward Lake Michigan along its shoreline. 
The average ratio is 1.9; but when the total direct discharge 
is summed across all eight areas for the two grid resolutions, 
the global ratio is equal to a lower value, 1.27. This calcula-
tion suggests that the regional model, due to its coarse grid 
spacing, systematically underestimates the discharge to Lake 
Michigan by a factor on the order of 30 percent. 

The coarse grid resolution of the regional model gives 
rise not only to inaccuracies in local gradients but also to 
blocky and, therefore, inaccurate representation of the eleva-
tion and geometry of surface-water features. The misrepre-
sentation of the surface-water geometry can be compensated 
for by the conductance term, which incorporates the length 
and width of the stream segments or lake areas represented by 
the RIV cell. However, some distortion still arises from the 
grouping of multiple surface-water features in a single cell 
(see appendix 2). The effect of grouping multiple features was 
assessed by using an inset model constructed for the SLP_MI. 
In this case, the inland surface-water network is recast from 
the original blocky input (fig. 83B) to input that more accu-
rately reflects the true geometry of streams and water bodies 
(fig. 83C) by matching surface-water features directly to the 
finer mesh. The sum of the conductance terms for each seg-
ment of surface water represented by the two sets of RIV cells 
is identical. This refined-grid inset model simulates greater 
discharge to Lake Michigan than the original inset model with 
a refined grid and blocky RIV input. The factor increases by 
14 percent, changing from 3.8 to 4.3 times the regional model 
discharge.

The foregoing analyses suggest that bias arising from 
coarse grid resolution is large enough to justify a correction 
of the overall estimates of groundwater interactions with Lake 
Michigan generated by the regional LMB model. It is instruc-
tive to combine the average increase simulated by the inset 
models due to a refined grid alone (1.27) with the increase 
simulated arising from refining the surface-water network 
in the one case tested (1.14). If the resulting value, 1.45, is 
applied generally to the regional model results, it implies that

•	 the proportion of (predevelopment) groundwater inflow 
to the Lake Michigan Basin that discharges directly to 
Lake Michigan, rather than to competing sinks, should 
be increased from 1.3 percent to almost 2 percent of 
the overall water budget, and 

•	 the average rate of (predevelopment) direct groundwa-
ter discharge to Lake Michigan should be increased 
from the calculated value of 0.33 ft3/s per 5,000 ft of 
shoreline to 0.48 ft3/s per 5,000 ft of shoreline or, in 
other terms, 0.50 ft 3/s per mile of shoreline; this cor-
rected average rate is at the low end of the range of 0.5 
to 2.0 ft3/s per mile of shoreline estimated by Neff and 
Nicholas (2005). 

Figure 83C.  Representation of inset area in SLP_MI: inset 
model with refined grid and refined surface water. 
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8. Model Limitations and Suggestions 
for Future Work 

Model limitations stem from the regional scale of the 
study, gaps in available data, model conceptualization, and 
unaccounted-for processes. They are summarized below. In 
some cases, more detail is contained in companion reports that 
describe the methods and datasets used to estimate model stra-
tigraphy and salinity (Lampe, 2009), the distribution of glacial 
texture (Arihood, 2009), water use (Buchwald and others, 
2010), and recharge (Westenbroek and others, 2010).

Grid spacing—The 5,000-ft grid spacing in the model 
nearfield and the 20 layers employed to accommodate mul-
tiple aquifer systems yield a model with more than 2 mil-
lion cells and approximately 100,000 cells per layer. A more 
finely discretized model would produce too many cells to 
efficiently manage with respect to input and output with the 
tools employed. Throughout this report, attention has been 
paid to the problems that arise from overlaying the dense 
surface-water network characteristic of the areas around the 
Great Lakes on the regional grid spacing. (See in particular 
the discussion of the conceptual model in section 3. See also 
the final subsection of appendix 2; there, a schematic model 
is presented to demonstrate that the coarse grid spacing in 
the regional model introduces errors in the simulated rate of 
exchange between groundwater and surface water, which, 
especially in areas of fine-grained sediments, can be on the 
order of 50 percent or more.) The coarse spacing restricts the 
magnitude of the water-table response to transient stresses, 
limits the value of calibration targets in the shallow flow 
system in estimating parameters, and distorts the partition-
ing of discharge among surface-water sinks. It also precludes 
the model from simulating flow paths shorter than 5,000 ft 
and limits the precision with which point features (especially 
pumping wells) can be located. Similarly, the large thickness 
of many of the bedrock layers causes pumping stresses from 
partially penetrating wells to sometimes be assigned too shal-
low or too deep.

Time stepping—Not only the spatial resolution but also 
the temporal resolution of the model affects the dynamics of 
the system and the spectrum of results. Each stress period 
in a MODFLOW-2000/SEAWAT-2000 simulation has its 
own imposed conditions, such as recharge and pumping. The 
conditions are updated at the beginning of a stress period and 
held constant for the duration of the stress period; they do not 
evolve continuously over the course of time. The modeled 
system responds to the stepwise changes in these conditions 
first through changes in water levels, which are reflected in the 
storage term, and then through changes in the fluxes between 
the groundwater system and external features, such as surface 
water. The rate of removal (or addition) of water from (or to) 
storage is highest in the first time step, immediately after the 
imposed stepwise changes in stresses when the rate of change 
of water levels is greatest, and lowest for the final time step, 
when water levels have had time to stabilize and external 

inflows and outflows have had time to adjust. Conversely, 
the change in flux to and from surface-water features is at its 
highest value for the final time step because the accumulated 
response to variations in pumping or recharge is greatest at 
the end of the stress period. All the source and sink results 
presented in this report correspond to the last time step in the 
stress period. The tabulated values for storage flux can be 
taken as minimum contributions for a stress period, and tabu-
lated values for lateral flow or exchange with surface water 
can be taken as maximum contributions for the period. 

The difference between the beginning and ending stor-
age rates in a stress period can be large, amounting often 
to a reduction of more than half. For the SLMB-C simula-
tion in the 1976–80 stress period, the storage release in the 
model nearfield after the first time step (60 days from the step 
change) is 1,926 Mgal/d, but it  is only 522 Mgal/d for the 
last time step (2.5 to 5 years from the step change). For the 
2001–5 stress period, the nearfield reduction is from 217 to 
98 Mgal/d. When recharge effects are filtered from the results 
and only the storage fluxes associated with changes in pump-
ing are compiled, it is possible to compare the storage contri-
bution to wells as a function of the time step selected within 
a stress period. For the SLMB-C simulation in the 1976–80 
period, net storage release during the first time step accounts 
for 26 percent of the water diverted to nearfield wells but for 
only 17 percent during the last time step. It is not clear which 
value is more representative of the overall role of storage as a 
source of water to wells. It is important to recognize that the 
results presented in figures and tables represent the low end 
of a range for the storage contribution and that the high end 
could be even 2 times greater. However, because changes in 
pumping are, in reality, gradual rather than stepwise, all the 
storage contributions simulated by the model are necessarily 
approximate. Because the reported changes in base flow to 
surface water represent maximum values for the stress period, 
they can be considered “conservative” estimates of the effects 
of pumping or recharge changes on surface-water/groundwater 
interactions. 

Dewatering—The LMB model results are consistent with 
field evidence in showing that some cells at the top of the 
Cambrian-Ordovician aquifer system that were confined under 
predevelopment conditions become unconfined between 1864 
and 2005. The timing of dewatering and formation of a deep 
water table varies from location to location. This dewatering 
phenomenom requires adjustments to the input of the confined 
version of the LMB model. For the SLMB-C simulation, 
the hydraulic-conductivity values of the dewatered cells are 
adjusted to reflect the loss of saturated thickness and yield an 
effective transmissivity more reflective of pumped conditions. 
Because MODFLOW allows only one storage parameter for a 
model simulated in confined mode, cells in deep aquifers that 
become unconfined at some time during the simulation are 
represented with a “compromise” value of specific storage, 
which is inserted for the entire simulation period and, when 
multiplied by cell thickness, is smaller than the specific-yield 
value appropriate for unconfined conditions but larger than 
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the storage-coefficient value appropriate for confined condi-
tions. The methods adopted to quantify the adjusted values of 
hydraulic conductivity and storage parameters are discussed 
in section 5.1. The use of these adjusted terms introduces 
some error in the simulated conditions around deep pump-
ing centers for the confined version of the LMB model. In 
contrast, the input to the unconfined version of the model, 
SLMB-U, requires no adjustments because the transmissiv-
ity is automatically a function of saturated thickness and the 
correct storage term is automatically selected as a function 
of water-level conditions. Thus, SLMB-U is not affected by 
the same limitations with respect to deep unconfined condi-
tions as is SLMB-C. Comparison of their results shows that 
the maximum drawdown patterns for the two simulations 
are very similar in the areas of deep dewatering and suggests 
that distortions arising from the confined transmissivity and 
storage adjustments for SLMB-C are not large (see fig. 75). 
However, comparison of water-level hydrographs shows that 
the early drawdown history is different for the two simulations 
and indicates that some caution must be exercised in using the 
results of the confined version of the model that pertain to the 
rate of water-level change (see section 7.1 and fig. 74). It is 
also possible that the particle-tracking results discussed in sec-
tion 6, particularly in relation to the contributing areas of deep 
Cambrian-Ordovician wells, are influenced by the assumption 
of fully saturated conditons implicit in the confined version of 
the model, which allows for vertical and horizontal flow across 
cells even if the simulated water level is below the cell bottom. 

Data gaps—Beyond the limitations posed by the model’s 
spatial and temporal discretization and by model assumptions, 
data gaps add uncertainty. Notable examples are the following:

•	 Zonation of subsurface properties (on the basis, for 
example, of scattered aquifer tests).

•	 Surface-water stages based on interpolation of land-
surface data rather than on local stage measurements 
(which probably introduces a bias, given that the grid-
ded land-surface data used to compute the stages tend 
to overestimate the elevation of incised channels).

•	 Fixed surface-water stages do not reflect variations in 
stage that have occurred in time as a result of wetter 
and drier periods.

•	 Absence of domestic pumping from model input (with-
drawals largely but not entirely balanced by return flow 
through septic systems to the same shallow aquifers 
from which the groundwater was withdrawn). 

•	 Absence of farfield high-capacity pumping in the 
farfield areas of Michigan and Indiana (an omis-
sion that probably has little effect on nearfield results 
because most of the missing farfield pumping is 
shallow and its lateral influence is buffered by surface 
water). 

•	 Uneven distribution of calibration targets (for example, 
vertical-head-gradient targets are largely limited to the 
western side of Lake Michigan; even more important, 
although there are data against which to match the 
simulated rebound in NE_ILL of deep water levels 
after 1980, data are scarce that relate to drawdown 
between 1940 and 1980, making it difficult to evalu-
ate the parameters affecting the slope of the drawdown 
curve).

•	 Uncertainty about the distribution of effective porosi-
ties (equated in this study with the distribution of 
calibrated specific-yield values), especially due to the 
effect of unknown preferential flow paths; for example, 
those associated with gravel beds in unconsolidated 
deposits or with joints and partings in bedrock units. 
Effective porosities are not an input to SEAWAT-2000 
and therefore have no effect on simulated water-level 
and flux results, but they are an input to MODPATH 
and therefore affect particle-tracking results, notably 
the estimated traveltimes of flow to pumping wells. 

Unrepresented processes—The modeled areas shown in 
this report were conceptualized in a way that was consistent 
with the observed data. However, alternative conceptual-
izations could be used to model this area. Several of these 
alternative conceptualizations were presented in this report, 
but that should not preclude other conceptualizations that fit 
the observed data. In particular, the fact that some processes 
were approximated or neglected in the conceptualization adds 
uncertainty to model outcomes. For example, the contribu-
tion of vertical flow through abandoned, unsealed boreholes 
to the downward leakage between shallow and deep aquifers 
is not well understood. A study of this issue as it pertains to 
the shallow and deep aquifers separated by the Maquoketa 
hydrogeologic unit in southeastern Wisconsin (Hart and 
others, 2008b) concluded that abandoned boreholes could 
potentially transmit an appreciable amount of downward leak-
age to the deep part of the flow system, rivaling the downward 
flow through the Maquoketa itself, but it is not known whether 
conditions around the boreholes generally allow water to 
readily enter or exit in order to take advantage of the open 
conduits. The assumption that the bedrock at the regional scale 
acts as an equivalent porous medium (see section 3.1, discus-
sion of preferential flow) is a recognition that the LMB model 
is not capable of simulating the local effects, for example, of 
fractures and bedding planes on the drawdown pattern around 
individual wells. 

The chief source of inflow to the LMB model is recharge. 
The soil-water-balance model (see section 4, “Model Con-
struction”) devoted to estimating the spatial and temporal 
distribution of recharge is a sophisticated tool, but some 
processes influencing the transfer of water from the surface 
to the water table are not considered in the way the algorithm 
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was applied for this study. Among the unrepresented processes 
are overland routing of surface runoff to account for focused 
recharge in low-lying areas (an effect that is probably second-
ary at the 5,000-ft nearfield grid spacing) and irrigation as a 
source of recharge (it was assumed that all but a very small 
proportion is consumed by evapotranspiration, which might 
not always be true). Other limitations affect the ability of the 
estimated cell-by-cell recharge distribution to be updated dur-
ing the calibration process. Limitations might have been intro-
duced by the use of partly overlapping base-flow target sets to 
calibrate both the SWB model and the LMB groundwater-flow 
model, by the routing of all the water entering surface-water 
features to the target locations (even from wetlands, which 
might lose at least part of their base flow to evapotranspira-
tion), and by estimating only a single multiplier for recharge 
on the basis of conditions at the end of the model simulation 
and then applying that same multiplier to all earlier stress peri-
ods rather than estimating recharge independently for different 
periods.

Other unrepresented processes might affect the ability 
of the model to serve as a forecasting tool. In principle, the 
flux boundary in the southeastern corner of the model should 
be updated to reflect future flow into and out of the domain. 
However, sensitivity analysis suggests that the effects of 
neglecting variations in this flux on model results are small 
except in some cases for the C-O aquifer system (see section 
7). Upconing of saline water around pumping centers (for 
example around Joliet in NE_ILL, where DS concentrations 
have risen in well discharge) could be simulated by running 
the model in transport mode, but preliminary analysis suggests 
that the coarse grid spacing—and, especially, the thickness 
of the layers—blunts the model’s ability to simulate local 
movement of the saline body (see section 7). More generally, 
it must be emphasized that the LMB models (that is, both 
the SLMB-C and SLMB-U simulations) do not fully reflect 
the processes that control flow in the Michigan Basin where 
saline conditions are most prevalent. Variations in density are 
grossly estimated across the more than 10,000-ft thickness of 
the basin, and the influence of temperature gradients, viscosity 
distribution, and any lingering effect on the flow field of over-
pressurization due to glacial unloading (discussed, for exam-
ple, by Bahr and others, 1994) are neglected. In this sense, it 
is probably most fitting to consider the saline body more as a 
boundary condition that influences conditions at the edges of 
the freshwater body. LMB model results simulated within the 
saline body—water levels and flow patterns alike—should be 
considered approximate.

Limited precision—Regional model results are inher-
ently inprecise. An important example involves the simulated 
locations of groundwater divides. The simulated locations are 
uncertain because they vary with depth, they change through 
time, and they are very sensitivite to pumping rates as well as 
model inputs (such as the hydraulic-conductivity distribution) 
and model geometry (such as the coarse grid spacing). For all 

these reasons, if precise knowledge of the location of shallow 
or deep groundwater divides were needed for management 
decision-making purpose at the local scale, additional data and 
analysis would be needed to refine the regional results. 

Most of the limitations discussed above may be consid-
ered avenues for future work. Two areas of possible future 
study are discussed here. The most recent version of the 
SEAWAT-2000 code (Langevin and others, 2008) is able to 
simulate temperature gradients and viscosity conditions. In 
principle, it could also be used to simulate overpressuriza-
tion in the Michigan Basin by means of imposed areas of 
high head and possibly even the action of sources of salinity 
(for example, in the Salina Group) by means of concentration 
source cells. The LMB model could be used as a starting point 
for future models aimed at a more rigorous study of variable-
density conditions in the Michigan Basin. Versions of the 
model with refined lateral spacing and layering might help to 
increase understanding of the role of pumping on movement 
of saline water; for example, in the MSHL aquifer system in 
Michigan and the C-O aquifer system in northeastern Illinois 
(for an example application of this type, see Lahm and Bair, 
2000).

The regional model is partially designed to be a platform 
for inset models, which address local water-resource issues at 
a finer grid resolution. Two recent methodological advances 
have enhanced the flexibility and power of the connection 
between the regional model and the local refined model 
embedded in it. The first, called Local Grid Refinement (Mehl 
and Hill, 2005), allows changes in the parent regional model 
to influence the child local model, and the reverse is true. 
This advance is particularly important for maintaining proper 
boundary conditions for the refined inset model as stresses are 
added inside it or around it. For example, the gradual expan-
sion of drawdown in the regional model due to a pumping 
center at some distance from the local model automatically 
influences conditions at the boundary and inside the local grid, 
something that does not occur automatically with an inset 
model with fixed boundary conditions. The second approach, 
called hybrid finite-difference/analytic-element modeling, 
replaces the upper layer of the MODFLOW-2000 or SEA-
WAT-2000 model with a gridless analytic-element layer on 
the basis of techniques discussed by Haitjema (1995); this 
substitution allows the problems associated with superimpos-
ing the surface-water network on the finite-difference grid 
to be largely overcome without any alteration of the original 
horizontal or vertical grid spacing in the layers below the top 
layer. The possible advantages of this approach for simultane-
ously simulating with enhanced accuracy shallow and deep 
flow conditions is the subject of ongoing research (Haitjema 
and others, 2010). A study area was selected within the LMB 
model domain—shown in figure 84—to test the new Local 
Grid Refinement and Hybrid methods on a single problem 
involving the effect of pumping near a headwater stream on 
low-flow surface-water discharge (Hoard, 2010). 
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Figure 84.  Demonstration area for inset models with grid refinement. 
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9. Summary and Conclusions
A regional groundwater-flow model of the Lake Michi-

gan Basin and surrounding areas has been developed in sup-
port of the USGS National Assessment of Water Availability 
and Use—Great Lakes Basin Pilot. The transient 2-million-
cell model incorporates multiple aquifers and pumping 
centers with drawdown that extend into deep saline waters. 
The 20-layer model simulates the exchange between a dense 
surface-water network and heterogeneous glacial deposits 
overlying stratified bedrock of the Wisconsin and Kankakee 
Arches and the Michigan Basin in the Lower and Upper Pen-
insulas of Michigan; eastern Wisconsin; northern Indiana; and 
northeastern Illinois. It provides a platform for quantifying the 
regional sources and sinks of groundwater (including recharge, 
pumping, and groundwater flow to inland surface water and to 
Lake Michigan—all elements of the groundwater budget that 
change with time) and for mapping the direction and magni-
tude of flows in a series of aquifers (including the source areas 
for wells and the locations of major groundwater divides at 
various depths on both sides of Lake Michigan and the migra-
tion of the divides in response to pumping).

Five datasets, which were prepared as part of the Great 
Lakes Basin Pilot to serve as the foundation for model devel-
opment, are described in separate reports:

•	 a three-dimensional hydrogeologic representation of 
aquifers and confining units above the Precambrian 
basement, with a maximum thickness of 15,000 ft in 
the middle of the Michigan Basin (Lampe, 2009);

•	 maps of the coarse fraction of unconsolidated material 
at depth intervals of 0–100 ft, 100–300 ft, and greater 
than 300 ft, overlaid on existing interpretations of 
glacial categories (Arihood, 2009);

•	 location, depth, and pumping rates of high-capacity 
public-supply, industrial, and irrigation wells from the 
early 20th century through 2005 (Buchwald and others, 
2010), a compilation that documents generally upward 
trends in withdrawals and some shifts between deep 
and shallow pumping;

•	 maps of recharge derived from a soil-water-balance 
model that reveals trends in the spatial and temporal 
distribution of inflow to the water table (Westenbroek 
and others, 2010); and

•	 maps of salinity in hydrogeologic units that show the 
three-dimensional boundary between fresh and saline 
water, as well as the distribution of high concentrations 
of dissolved solids in the Michigan Basin (Lampe, 
2009).

These datasets, along with boundary conditions linked 
to outlying Great Lakes (see section 4), hydrologic coverages 
delineating the surface-water network (see appendix 2), and 
hydrogeologic information relating primarily to hydraulic 
conductivity (see appendix 4) provided the input required by 

the SEAWAT-2000 model to simulate groundwater flow before 
pumping (steady-state simulation) and after development 
(transient simulation with 12 stress periods extending from 
1864 to 2005). The simulation uses a form of the groundwater-
flow equation that takes account of variable density (Langevin 
and others, 2003). Two versions of the model were calibrated: 
one for confined conditions (SLMB-C) and one for unconfined 
conditions (SLMB-U). Multiple target sets developed from 
observations of head and base flow and inversion methods 
using the suite of PEST computer programs (Doherty, 2008a, 
b; Doherty and others, in press) guided the adjustment of ini-
tial inputs. Comparison of updated parameter values, calibra-
tion statistics, and parameter sensitivities demonstrated that 
SLMB-C and SLMB-U produced solutions similar in most 
respects.

The output of the calibrated confined model was selected 
for detailed presentation largely for reasons of numerical sta-
bility during inversion and no loss of pumping to dry cells as a 
result of drawdown. The simulated results, organized laterally 
into seven subregions and vertically into five aquifer systems, 
included maps, cross sections, and tables of 

•	 regional predevelopment water-table and head condi-
tions at depth in bedrock units; 

•	 changes in water levels (drawdown and recovery) over 
time, by aquifer system; 

•	 changes in the magnitude and direction of shallow and 
deep flow; and

•	 water budgets that quantify regional sources (such as 
recharge and storage release) and sinks (such as base 
flow to streams and discharge to wells) through time.

Analysis of the results by means of particle tracking revealed
•	 sources of water to shallow and deep wells by subre-

gion;

•	 the changing configuration of the divides that delin-
eate the Lake Michigan groundwater basin and the 
postdevelopment groundwater basins around pumping 
centers; and

•	 the distribution of direct and indirect discharge of 
groundwater to Lake Michigan and the modifying 
effects of pumping on the distribution.

The multiple perspectives provided by the model output 
portray a regional groundwater-flow system that, over time, 
has largely maintained its natural predevelopment configura-
tion but locally has been strongly affected by well withdraw-
als. The quantity of rainfall in the Lake Michigan Basin and 
adjacent areas supports a dense surface-water network and 
recharge rates consistent with generally shallow water tables 
and a flow system generally dominated by shallow circulation. 
At the regional scale, pumping has not caused appreciable 
disruption of the shallow flow system; however, pumping 
has resulted in decreases in base flow to streams and in direct 
discharge to Lake Michigan. Comparison of inset models 
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constructed along the Lake Michigan coastline suggests that 
the regional model, because of its coarse grid spacing and 
coarse representation of surface water, underestimates the 
direct discharge by about 48 percent. When the bias is cor-
rected, the results indicate that about 2 percent of total ground-
water flow is directly discharged to the lake at a rate of about 
0.5 ft3/s per mile of shoreline.

Well withdrawals have caused reversals in regional flow 
patterns around pumping centers in deep, confined aquifers 
(most noticeably in the Cambrian-Ordovician aquifer system 
on the west side of Lake Michigan near the cities of Green 
Bay and Milwaukee in eastern Wisconsin, and around Chicago 
in northeastern Illinois), as well as in some shallow bedrock 
aquifers (for example, in the Marshall aquifer near Lansing, 
Mich.). The shifts in flow have been accompanied by large 
drawdowns with consequent local decrease in storage (moder-
ated in some areas by metropolitan water-supply projects that 
substituted Lake Michigan water for groundwater supplies). 
On the west side of Lake Michigan, well withdrawals have 
caused a complete reconfiguration of the deep divides. Before 
the advent of pumping, the deep Lake Michigan groundwater 
basin boundaries extended to the west of the Lake Michigan 
surface-water basin boundary, in some places by tens of miles. 
Over time, the pumping centers have replaced Lake Michigan 
as the regional sink for the deep part of the flow system.

The regional model results provide a broad picture of the 
status of the groundwater resource and how it has responded 
to pumping. However, there are limitations imposed by the 
relatively coarse grid spacing. Laterally, the finite-difference 
cells are 5,000 ft on a side in the Lake Michigan Basin and 
in adjoining areas. At this resolution, the simulation of the 
water-table response to pumping is severely constrained by 
the necessity of including enough of the surface-water system 
in model cells to provide outlets for recharge and, thereby, to 
avoid spurious simulated water-level mounding. The mound-
ing that occurs when discharge points are neglected can be 
offset by increasing hydraulic conductivity; but, as discussed 
in section 3, this fix distorts the Kh and Kv fields relative to 
field conditions. In order to avoid distorting the hydraulic 
conductivity input, more than half the water-table cells in the 
Lake Michigan Basin model contain surface-water features, 
each of which is represented by a boundary condition with a 
fixed stage. The stage tends to “staple” the water-table solu-
tion because there is generally a small gradient between the 
average groundwater head solved for the cell and the surface-
water level assigned to the cell. The regional model by itself 
cannot overcome this limitation; however, in conjunction with 
techniques for inset models, it can lay the foundation for any 
number of applications designed to address local management 
problems related to optimizing water supply and maintaining 
ecologic flows. Two promising new techniques—Local Grid 
Refinement in MODFLOW-2005 and Hybrid Analytic- Ele-
ment/Finite- Difference Modeling—could allow enhanced 
versions of the regional model to simulate groundwater/sur-
face-water interactions in the presence of pumping at the nec-
essary level of refinement while still maintaining the regional 

pattern of flow needed to properly simulate water availability. 
Research aimed at demonstrating these two methods in a 
setting characterized by pumping near headwater streams is 
part of the Great Lakes Basin Pilot project (see Haitjema and 
others, 2010; and Hoard, 2010).

The construction of alternative versions of the regional 
model reveals important insensitivities with respect to model 
design. One is related to variable density. Whereas the specifi-
cation of salinity dramatically affects groundwater conditions 
in the deep Michigan Basin and even though the simulated 
drawdown around pumping centers extends into the highly 
saline waters, model results indicate that variable density 
can be neglected with only very small effect on the range of 
simulated results in freshwater areas under either predevelop-
ment or stressed postdevelopment conditions. Relaxing the 
assumption that saline concentrations are fixed through time 
also has little effect on model output. A second finding of 
insensitivity is related to the level of detail appropriate for 
the values assigned to the hydraulic conductivity of uncon-
solidated sediments. The availability of geologic descriptions 
from hundreds of thousands of driller logs for household wells 
permitted cell-by-cell mapping of hydraulic conductivity in 
the top three model layers. When this distribution is zoned 
more broadly on the basis of glacial categories alone (that is, 
on the basis of material types such as clayey till and coarse 
outwash), the model results give rise to a somewhat modified 
water-table solution, but the agreement to calibration targets is 
only weakly compromised, and the findings are very similar to 
the more detailed model with respect to the regional draw-
down response and the regional water budget. 

In summary, the results of this modeling effort have 
yielded 

•	 improved estimates of the various components of the 
water budget for the region, 

•	 improved estimates of the various hydraulic properties 
of the geologic units in the region, and 

•	 a better understanding of the groundwater flow 
throughout the region. 

The regional model is also intended to support the framework 
pilot study of water availability and use at the scale of the 
entire Great Lakes Basin. To that end, an ongoing effort has 
been undertaken to distill the model findings using a series of 
sustainability indicators. These are intended to reveal over-
all patterns in the status of the water resource in terms of the 
human effect on natural groundwater flows and on groundwa-
ter/surface-water interactions. Ongoing work includes applica-
tion of the regional model in forecasting mode to shed light on 
the effects of possible future levels of pumping on the ground-
water system, and the model is being used to test hypotheses 
regarding the effect of climate variability and change on water 
availability. These aspects, along with a demonstration of the 
procedures for embedding models and sample results related 
to ecologic flows, are discussed in detail in a USGS Profes-
sional Paper on the comprehensive findings of the Great Lakes 
Basin Pilot Project (Reeves, in press).
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