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Approaches to Highly Parameterized Inversion:  
Pilot-Point Theory, Guidelines, and Research Directions

By John E. Doherty1,2, Michael N. Fienen3, and Randall J. Hunt3

Abstract 
Pilot points have been used in geophysics and 

hydrogeology for at least 30 years as a means to bridge the gap 
between estimating a parameter value in every cell of a model 
and subdividing models into a small number of homogeneous 
zones. Pilot points serve as surrogate parameters at which 
values are estimated in the inverse-modeling process, and 
their values are interpolated onto the modeling domain in 
such a way that heterogeneity can be represented at a much 
lower computational cost than trying to estimate parameters 
in every cell of a model. Although the use of pilot points is 
increasingly common, there are few works documenting the 
mathematical implications of their use and even fewer sources 
of guidelines for their implementation in hydrogeologic 
modeling studies. This report describes the mathematics 
of pilot-point use, provides guidelines for their use in the 
parameter-estimation software suite (PEST), and outlines 
several research directions. Two key attributes for pilot-point 
definitions are highlighted. First, the difference between the 
information contained in the every-cell parameter field and 
the surrogate parameter field created using pilot points should 
be in the realm of parameters which are not informed by 
the observed data (the null space). Second, the interpolation 
scheme for projecting pilot-point values onto model cells 
ideally should be orthogonal. These attributes are informed by 
the mathematics and have important ramifications for both the 
guidelines and suggestions for future research.

Introduction

Pilot Points and Groundwater-Model Calibration

The use of pilot points as a spatial parameterization 
device in groundwater-model calibration is becoming 
commonplace. Pilot points can be useful for any model 

parameter or boundary condition, but are most commonly 
applied to aquifer hydraulic conductivity. Early uses include 
those of de Marsily and others (1984), Certes and de Marsily 
(1991), and LaVenue and Pickens (1992) and were extended 
by RamaRao and others (1995), LaVenue and others (1995), 
and LaVenue and de Marsily (2001). The latter authors 
combined the use of pilot points with a methodology for 
optimal selection of pilot-point locations. They also developed 
a methodology for using pilot points in conjunction with 
stochastic fields to derive multiple hydraulic-property 
distributions that on one hand calibrate a model, while on 
the other hand respect the geostatistical characterization of 
a study area. Use of multiple field realizations in making 
model predictions allows the exploration of estimates of the 
uncertainty associated with these predictions. Kowalsky and 
others (2004) implemented a pilot-point formulation for use 
with a maximum a posteriori (MAP) likelihood method for 
hydrogeophysical applications. 

Doherty (2003) used pilot points in the context of 
underdetermined model calibration. Underdetermined 
problems are those where the number of parameters exceeds 
that which can be uniquely estimated based on a given 
observation dataset, a common occurrence in the highly 
parameterized problems such as those motivating the use of 
pilot points. In such problems, uniqueness in solution of the 
inverse problem is achieved through the use of mathematical 
regularization. Regularization is a general class of methods 
that provides stability and uniqueness to calibrating 
underdetermined models by adding constraints of structure or 
a preferred condition to the parameters being estimated (see, 
for example, Hunt and others 2007). While regularization is 
a necessary component of this extension of pilot points to 
underdetermined problems, regularization has been used in 
many other contexts for a much longer time (see, for example, 
Tikhonov and Arsenin, 1977 and Tarantola, 2005). For general 
information about regularization, Menke (1984) and Aster and 
others (2005) provide introductory discussions. 

The use of pilot points in an underdetermined context 
marked a departure from conventional pilot-point usage in that 
the restriction of greatly limiting the number of parameters 
could be relaxed, allowing pilot points to be distributed 
liberally throughout a model domain. Parsimony is achieved 
by restricting the infinite possible number of solutions in 
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an underdetermined problem only to include solutions 
(1) reflecting the level of complexity in the underlying 
parameter field that is supported by the data, and (2) that 
are consistent with the general (soft) knowledge of the site. 
Documentation of their use as an adjunct to underdetermined 
parameter estimation continued with Tonkin and Doherty 
(2005) who used the hybrid subspace—Tikhonov “singular 
value decomposition (SVD)—assist” scheme provided by 
the PEST parameter-estimation software (Doherty, 2010; 
Doherby and Hunt, 2010) as a means of efficient mitigation 
of the large computational burden incurred in highly 
parameterized problems. Alcolea and others (2006, 2008) 
also have used pilot points as a parameterization device in 
the regularized inversion setting, both in model calibration, 
and in constraining stochastic fields to respect calibration 
constraints while conducting parameter and predictive 
uncertainty analysis. Using a synthetic model, Christensen and 
Doherty (2008) explored the effects of pilot point spacing and 
interpolation methods on model predictive accuracy.

The use of many pilot points in regularized inversion 
contexts has led to the development of new methodologies 
for exploration of calibration-constrained model predictive 
uncertainty analysis. Such an analysis only is representative 
when it accounts for both solution space and null space 
contributions to parameter and predictive uncertainty (Moore 
and Doherty, 2005, 2006; Doherty, Hunt, and Tonkin, 2010). 
The solution space is the portion of parameter space that is 
informed by the observations while the null space accounts for 
parameters (or combinations of parameters) that are unknown 
and not informed by observations. Use of a large number of 
pilot points as a basis for model parameterization allows the 
null space contribution to predictive error/uncertainty to be at 
least partially explored (see Hunt and Doherty, 2006; Doherty, 
Hunt, and Tonkin, 2010). Model predictive uncertainty 
analysis in conjunction with pilot-point parameterization 
was demonstrated by Tonkin and others (2007) who used a 
constrained maximization/minimization process to compute 
predictive confidence limits. Their use, in conjunction with 
stochastic field generation, in conducting highly efficient 
calibration-constrained Monte Carlo analysis was explored 
by Tonkin and Doherty (2009). Gallagher and Doherty (2007) 
demonstrated their use in linear uncertainty analysis. Not only 
can the uncertainty of key model predictions be estimated 
through such an analysis, but contributions to that uncertainty 
by different parameter groups also can be determined. The 
efficacy of different observation types in reducing that 
uncertainty also can be established.

Implementation of Pilot-Point Parameterization

Support for pilot-point parameterization in the 
MODFLOW/MT3DMS context is provided by many 
groundwater model commercial graphical-user interfaces. 

In addition, the PEST Groundwater Data Utilities 
(Doherty, 2007) support use of pilot points in conjunction 
with the MODFLOW (Harbaugh, 2005), MT3DMS (Zheng, 
1990), SEAWAT (Langevin and others, 2008), FEFLOW 
(Diersch, 2009), MicroFEM (Hemker and de Boer, 2009), 
and RSM (South Florida Water Management District, 2005) 
groundwater models. In the MODFLOW/MT3DMS/SEAWAT 
context, functionality provided by these utilities supports 
pilot-point parameterization on a layer-by-layer basis and on a 
hydrostratigraphic unit-by-unit basis; a hydrostratigraphic unit 
can encompass (and/or intersect) many different model layers. 
In all cases, pilot points are assumed to be distributed on a 
two-dimensional areal basis; however, horizontal interpolation 
between pilot points can be combined with vertical 
interpolation between model layers to realize a pseudo-
three-dimensional pilot-point-based interpolation scheme for 
parameterization of multi-layered hydrostratigraphic units. 
Throughout this report, we refer to the finest discretization 
of parameter values as occurring on a “cell” and “grid” 
basis, implying use with a finite-difference or finite-volume 
model. The methods and findings could also be applied to a 
finite‑element model, in which case the finest discretization 
would be on an “element” basis.

In addition to providing the means to undertake spatial 
interpolation from pilot points to the cells of a numerical 
groundwater model, software provided with the PEST 
Groundwater Data Utilities suite provides the means to add 
prior information equations to a PEST input dataset applying 
regularization and to add soft-knowledge constraints to a 
pilot-point parameter set. A number of options are supported, 
implementing both inter- and intra-hydrostratigraphic unit 
parameter constraints.

Purpose and Scope

Despite the fact that pilot-point-based parameterization 
of groundwater models is now commonplace, their use in 
model calibration is largely ad hoc, with implementation 
guided by intuition rather than mathematics. The mathematical 
analysis of the use of pilot points in groundwater-model 
calibration has been the subject of little research. The costs 
and benefits of their use have therefore not been quantified, 
nor have mathematically backed guidelines for their use been 
documented. As a result, a basis has not been created for 
further research into their usage that can result in improved 
efficiency and performance of pilot-point-based calibration or 
identify contexts where their usage may be problematic.

The purpose of this report is to address these 
shortcomings by (1) presenting and reviewing the 
theoretical underpinning for the use of pilot points, 
(2) providing implementation guidelines based on 
this theory, and (3) providing suggestions for further 
research and development to improve pilot-point usage in 
groundwater‑model calibration.
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Conceptual Overview of Pilot-Point Usage
The goal of pilot points is to provide an intermediate approach for characterizing heterogeneity in groundwater models 

between direct representation of cell-by-cell variability and reduction of parameterization to few homogeneous zones. Figure 1 
depicts a schematic representation of the process of using pilot-points. In figure 1A, a heterogeneous field is depicted overlain 
by a model grid. This illustrates that, even at the model-cell scale, the representation of heterogeneity requires simplification 
as each model cell must be assigned a single value representative of the entire area that it overlies. In figure 1B, a network 
of pilot-points is shown in which the size of the circle is proportional to the parameter value, and the color represents the 
value on the same color scale as in figure 1A. The general pattern of variability in the true field is visible in this image, but the 
resolution is much coarser than reality. Figure 1C shows the pilot-point values interpolated onto a very fine grid and illustrates 
that much of the true heterogeneity can be reconstructed from a subset of sampled values provided that appropriate 
interpolation is performed. Figure 1d shows the interpolated version of the pilot-point values in figure 1B on the model-cell grid 
scale, which represents the version of reality that the model would actually reflect. 

Figure 1.  Conceptual overview of 
representing complex hydrogeologic 
conditions using pilot points. Panel 
(A) shows the inherent property value 
overlain by the model grid in gray. 
Panel (B) is a representation of the 
true property values by a grid of pilot 
points in which symbol size indicates 
value. Panel (C) shows an interpolated 
representation of panel (B) on an 
arbitrarily fine grid scale. Panel (D) 
shows the value from the pilot points 
interpolated to the computational-grid 
scale. Interpolation in all cases was 
performed using ordinary Kriging. The 
same color scale, in arbitrary units, 
applies to all four panels.

The approach taken in this report to model calibration is 
based on regularized inversion discussed by Hunt and others 
(2007), whereby many parameters are represented in a model, 
and that solution of the inverse problem (the problem of model 
calibration) is undertaken using mathematical regularization 
as a stabilization device and means of obtaining a unique 
solution. The benefits of this approach to model calibration are 
discussed by Hunt and others (2007) and briefly discussed in 
later sections of this report.

Conceptually, every cell of a numerical model can be 
assigned a different set of parameters. In fact, real-world 
hydraulic properties show so much spatial variability that if a 
model were to provide an accurate representation of hydraulic 
properties and processes throughout its domain, a very fine 
grid discretization would be needed, and the properties 
assigned to each cell would be different. However, there is an 

upper limit to the parameterization detail that can be inferred 
from a given calibration dataset. Therefore, any “calibrated 
model” is capable of representing only broad-scale aspects of 
parameterization spatial variability, with greater potential for 
representation of this variability where data density is greater 
and comparatively error-free. Nevertheless, where a large 
number of parameters are included in the calibration process, 
and where parameter simplification is achieved through 
mathematical means, this simplification can be implemented 
such that maximum information is extracted from a given 
calibration dataset by endowing the calibration process with 
the flexibility it needs to emplace heterogeneity where it 
needs to be placed, while subduing representation of spurious 
heterogeneity or geometric artificialities (such as boundaries 
between zones of assumed piecewise constancy) that are not 
supported by the calibration dataset.
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Mathematically, there is no limit to the number of 
parameters that can be used in the regularized inversion 
process; however, in most contexts of groundwater-model 
calibration an upper limit is set by the computational burden of 
having to compute derivatives of model outputs with respect 
to adjustable parameters. Therefore, a “reduced parameter 
set” must be developed that, of necessity, requires some 
kind of “lumping” or “averaging” of hydraulic properties as 
represented on a cell-by-cell basis in the numerical model.

The notion of regularization is implicit in the use 
of a reduced parameter set, for it is a form of parameter 
simplification that eradicates the possibility of certain scales of 
hydraulic property variability from appearing in the calibrated 
model. As a result, this detail is not available to confound 
the parameter-estimation process. When (mathematical) 
regularized inversion also is applied to the reduced 
parameter set, two forms of regularization are active: implicit 
regularization arising from parameter reduction and explicit 
regularization specified through mathematical calibration 
algorithms. An immediate challenge is to ensure that 
regularization implicit in using a reduced parameter set does 
not erode the benefits provided by the explicit mathematical 
regularization used to solve the inverse problem, or if it does, 
to ensure that the degradation is minimal.

Use of a reduced parameter set often requires manual 
intervention and (or) subjective decision-making by the 
modeler. Ideally, these decisions should be as informed as 
possible. Where pilot points are used for parameter reduction, 
decisions need to be made on the locations and density of 
placement of these points, on the manner in which spatial 
interpolation is conducted between them and the model grid, 
and on the type of mathematical regularization applied to the 
reduced parameter set. Although it is possible (and perhaps 
desirable) that the entire process be automated, design of 
a pilot-point parameterization scheme is currently (2010) 
implemented by mostly manual means; however, whether 
it is implemented automatically or manually, design of 
such a scheme should be informed by the knowledge of the 
regularization role of pilot points and of the way in which this 
regularization interacts with the mathematical regularization 
used to constrain the calibration process. This report is an 
attempt to provide the foundation for such awareness.

Theory
Let the vector k represent the hydraulic properties 

of a simulated system at the level at which they can be 
represented in a model: the grid scale. Although parameters 
will not normally be represented with this level of detail 
during the calibration process (because of the extremely 
high dimensionality of k), it is necessary to consider 
parameterization at this level of detail to begin, because 
heterogeneity within the real world exists at this scale (and 

probably at a finer scale). Such a conceptualization represents 
“reality” (as far as it can be represented in the model). 
Consideration of parameterization at the finest representable 
scale allows us to develop a theoretical description of 
the compromises that are made in representing it at the 
coarser scale required for numerical convenience during the 
model‑calibration process.

Suppose further that the model is linear with respect 
to its parameters, so the relation between model parameters 
and model outputs can be represented by a matrix operator. 
We designate the matrix that represents the relation between 
model parameters and those model outputs that correspond to 
measurements comprising the calibration dataset as Z.

Let h be a vector that represents historical observations 
of system state that comprise the calibration dataset. Then 
(ignoring parameter and observation offsets for convenience)

	 = + εh Zk ,	 (1)

where ε represents epistemic uncertainty, including noise 
associated with the measurements and errors arising from 
model inadequacies, which, in this document, we will refer to 
as “structural noise.”

It is presumed that unique estimation of k from h is 
impossible owing to the number of elements comprising the 
vector k, and the limited information content (and number of 
elements) contained within the calibration dataset h. Thus, Z 
has a null space, meaning there exist vectors δk for which

	 δ =Z k 0 .	 (2)

Conceptually, the fact that Z has a null space means that 
there are values of k that, even if they vary substantially, will 
not affect the calculation of model outputs that correspond to 
h in equation 1. This is profound because if certain parameters 
cannot affect these outputs, they are inestimable based on h.

For convenience, let it be assumed that
1.	 The model is a perfect simulator of 

environmental behavior, and 

2.	 There is no noise associated with historical 
measurements of system state.

Equation 1 then becomes

	 =h Zk .	 (3)

Notwithstanding the fact that observation datasets on 
whose basis parameter estimation takes place are always 
contaminated by measurement (and structural) noise, initial 
consideration of a noise-free dataset allows insights into the 
effect that estimation of a “lumped,” “reduced,” or “averaged” 
parameter set as an intermediary step in estimation of k, 
actually has on the estimates of k so obtained. 
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Generalized Inverse

There are many (infinite) equations that satisfy 
equation 3, because of equation 2. In seeking any k that 
satisfies equation 3, we are in fact seeking a generalized 
inverse of Z, designated as Z –. 

The generalized inverse (A – ) of a rank-deficient matrix 
(A) is defined through the relation

	 −=A AA A .	 (4)

When applied to our model encapsulated in the matrix Z, 
this implies that we seek a parameter set k  that allows us to 
reproduce the heads h through the relation

	 −=k Z h .	 (5)

Because there is a plethora of vectors k that satisfy 
equation 3, there also is a plethora of generalized inverses 
Z– of Z. One of these, however, the so-called Moore-Penrose 
pseudoinverse (Moore, 1920 and Penrose, 1955), is especially 
significant because it is unique, and it leads to a minimum 
norm solution for k .

The Moore-Penrose pseudoinverse A+ of the matrix A 
has the following properties (Koch, 1987)

	 + =AA A A 	 (6a)

	 + + +=A AA A 	 (6b)

	 ( )T+ +=AA AA 	 (6c)

	 ( )T+ +=A A A A 	 (6d)

where ( )T indicates a matrix transpose.
Note that equation 6d is equivalent to insisting that the 

resolution matrix obtained as a by-product of solution of the 
ill-posed inverse problem is symmetric. For a full discussion 
of the resolution matrix see, for example, Menke (1984), 
Aster and others (2005), and Moore and Doherty (2005). As 
discussed in these and other references, the resolution matrix, 
defined as A+A in the current context, has the notable property 
that each of its rows represents the “averaging coefficients” 
through which the simplified parameters as represented in 
a model are derived from their real-world counterparts. At 
the extreme of A+A being equal to an identity matrix, no 
averaging takes place and the estimate of k is perfect. In 
practice, this extreme can never be achieved so the resolution 
matrix represents the blurring, or simplification, of reality 
required to achieve a unique solution of the inverse problem.

Let C(k) denote the covariance matrix of k. This is a 
matrix that describes the innate variability of k, including the 
degree of spatial correlation that exists between parameters 

of the same type at different locations within the model 
domain, and between parameters of different types at the 
same or different locations. It can thus be considered to be a 
result of geological site characterization. In a small number of 
cases it can be the outcome of a comprehensive geostatistical 
study; more often, it is simply an expression of the fact that 
quantitative geological knowledge is limited but not absent. 

Suppose that C(k) can be represented by the relation

	 2C( ) k= σk I ,	 (7)

where I is the identity matrix and σ2
k is variance (note that this 

condition implies stationarity of k). In this case, the minimum 
norm solution for k  corresponds to the solution of maximum 
likelihood for k  (if it is normally distributed). This solution is 
not actually “likely,” but it is a simplified solution about which 
potential parametric error is roughly symmetric. Symmetry of 
potential error indicates that the solution is unbiased. Ideally, 
the same applies to model predictions made based on the 
estimated parameter set k .

The Moore-Penrose pseudoinverse is computed easily 
through singular value decomposition (SVD) of the matrix Z. 
Through SVD,

	 T=Z USV ,	 (8)

where U is a matrix composed of orthogonal unit vectors 
spanning the range space of Z, V is a matrix of orthogonal unit 
vectors spanning the domain of Z (therefore parameter space), 
S is a matrix of singular values whose off-diagonal elements 
are zero. Equation 8 can be re-written as

	 [ ] 1

1 2
2

T

T

 
 =
  

V
Z U S S

V
,	 (9)

where S2 is 0 and S1 contains only non-zero singular values of 
Z. The vectors comprising the columns of V1 span the solution 
space of the matrix Z, while those comprising the columns of 
V2 span its null space. From equation 9,

	 1 1 2 1 1 1
T T T= + =Z US V US V US V .	 (10)

Through substitution of equation 10 into equation 3, we 
readily obtain for k ,

	
1

1 1 1 1
T T−= =k V V k V S U h ,	                   (11)

from which it is apparent that the Moore-Penrose 
pseudoinverse of Z is

	
1

1 1
T+ −=Z V S U 	 (12)
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Equation 11 reveals that the inferred or “calibrated” parameter 
field k  is the projection of the real-world parameter field k onto 
the solution space of Z. In practice, however, the dimensions 
of the solution space are reduced by relegation of columns of 
V1 associated with small singular values to the calibration null 
space, this being done to minimize contamination of the estimated 
parameter field k  by measurement noise. See Moore and Doherty 
(2005) for more details.

Albert (1972, p. 19) shows that the Moore-Penrose 
pseudoinverse of the matrix A also can be expressed as

2 1 2 1
0 0lim limT T T T+ − −

δ→ δ→   = + δ = + δ   A A A I A A AA I . (13)

We will make use of this important result later.

Reduced Parameters 

In this and the following subsections, the concept of a reduced 
parameter set is introduced. This is defined as a smaller set of 
parameters used in the calibration process than those represented 
by the detailed parameter set k. The reduced parameter set is used 
as a practical replacement for the k parameter set and may be 
composed of any combination of values assigned to pilot points, 
zones of piecewise constancy, and (or) parameters defined based 
on any other parameterization device.

Replacing the detailed parameter set represented by k with a 
reduced parameter set, and estimating values for the latter during 
the calibration process as an intermediate step in assigning values 
to the former, raises certain issues. The issue of most importance in 
the present context is whether estimates of the solution parameter 
set k that is sought through the calibration process is compromised 
through adoption of the numerical convenience of estimating 
only a reduced set of parameters, and back-calculating k from the 
reduced set. Compromise may or may not be inevitable, depending 
upon the degree of parameter reduction that must be used, the 
nature of that reduction, and the characteristics of the system 
parameterization. If it is indeed inevitable, then it may be possible 
to reduce the detrimental effects of parameter reduction through 
understanding these effects and how they arise.

In this and the following section of this report, the nature 
of compromises incurred by the use of a reduced parameter set 
is explored. In the course of the discussion, two conditions are 
defined that, if fulfilled, result in no detrimental consequences 
incurred by the use of a reduced parameter set as an intermediary 
step in estimation of the detailed parameter set represented by k. 
The first of these defines the condition under which no structural 
noise is inflicted on model outputs corresponding to historical 
measurements of system state making up the calibration dataset by 
use of the reduced parameter set. The second of these defines the 
nature of the relation between the reduced and expanded parameter 
sets, which must exist for estimation of the reduced parameters 
to result in a maximum likelihood estimation of the expanded 
parameters.

Definition of Reduced Parameters
Let the vector p represent a set of reduced parameters 

that are estimated in place of k, estimation of p being 
preferable to estimation of k because of the (often vastly) 
reduced dimensionality of p with respect to that of k. 

It is assumed that the inverse problem is still ill-posed, 
and thus that some form of mathematical regularization 
must be used for estimation of a parameter set p, which 
is deemed to “calibrate” the model. The advantages of 
regularized inversion over classical, overdetermined 
parameter estimation as a means of model calibration 
were discussed by Hunt and others (2007) and Moore and 
Doherty (2006), building on past work from Tikhonov 
(1963a, b), Parker (1977), Menke (1984), and Haber and 
others (1997). In particular, if undertaken properly and 
allowing adequate flexibility, it offers a better guarantee of 
achieving at least a good approximation to the maximum 
likelihood solution of the inverse problem than that offered 
by an over-simplified problem characterized by a greatly 
reduced parameter set made up of piecewise constant zones. 
Furthermore, representation of hydraulic complexity at a 
scale that more closely approximates that on which critical 
predictions may depend allows better quantification of the 
uncertainty associated with those predictions. See Tonkin 
and others (2007), Gallagher and Doherty (2007), and Tonkin 
and Doherty (2009) for more discussion of this point. In 
contrast, overdetermined calibration methodologies such 
as those described by Hill and Tiedeman (2007) require 
that a model-parameterization scheme serve the dual roles 
of (a) representation of hydraulic properties and (b) a 
regularization device. The need for a parameterization 
scheme to serve both of these roles may compromise its 
ability to serve either of them well. Furthermore, as Parker 
(1977) notes in the geophysical context:

Sometimes, however, unknown structures 
are conceived in terms of small numbers of 
homogeneous layers for reasons of computational 
simplicity rather than on any convincing 
geophysical or geological grounds. Such 
simplification may lead to false confidence in the 
solution because the true amount of freedom has 
not been allowed in the parameters.
In the groundwater context, the lumping of parameter 

values into homogeneous zones constitutes an extreme 
and rigid imposition of prior information because once 
boundaries are delineated they cannot be changed by the 
parameter‑estimation process. Although explicit methods to 
estimate both homogeneous zonal parameter values and their 
boundaries are in development (for example, Cardiff and 
Kitanidis, 2009), they are not commonly available and are 
computationally expensive.
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The relation between parameters used by the model at 
the cell level (j), and the reduced parameter set (p) can be 
designated by the equation

	 =j Lp ,	 (14)

where j defines parameters on a grid scale (the same scale as 
k) and p defines the reduced set of parameters used for the 
purposes of parameter estimation. If p represents hydraulic 
properties assigned to pilot points, then the L matrix 
represents interpolation factors though which grid properties 
are computed by spatial interpolation from pilot-point 
properties. Alternatively, p may represent properties assigned 
to a large number of small zones of piecewise constancy. In 
this case, the L matrix is a “selection operator” through which 
each grid cell is assigned a property equal to that pertaining to 
the zone in which it lies.

Finally, p  represents a set of parameters estimated 
through the calibration process Equation 14 then becomes

	 =k Lp ,	 (15)

where k  represents calibrated model parameters at the cell 
scale. 

Relation between Model and Reduced 
Parameters

A parameterization device used for calibration purposes 
is normally defined based on equation 14. This defines 
how model-grid properties are computed from the lumped 
parameter properties implied in the reduced parameter set p; in 
doing so, it defines the L matrix. It does not tell us, however, 
how lumped parameter properties are computed from grid 
properties. In fact, this latter relation (denoted herein as the 
matrix N) need not explicitly be known; however, there are 
desirable implicit attributes that this relation should possess. 
The remainder of this subsection describes these.

Notionally, we can compute a reduced parameter set 
p from the grid-level parameter field k using the following 
equation:

	 =p Nk .	 (16)

If, for example, p represents the values assigned to zones 
of piecewise constancy, N may be an averaging matrix in 
which each row is composed of zero-valued elements, except 
for those elements that pertain to model cells that collectively 
comprise the zone pertaining to the respective element of 
p. Non-zero element values within a row of N may all have 
values of 1/n, where n is the number of cells comprising the 
zone. Alternatively, a more complex averaging scheme could 
be adopted, whereby greater averaging weights are assigned to 
some cells (for example, those of greater area) than to others. 

Though not necessarily known, N can be viewed as a 
generalized inverse of L. This is expressed as

	 −=N L 	 (17)

and thus

	 =LNL L .	 (18)

To clarify, consider that a cell-based parameter field 
j is computed from a set of reduced parameters p using 
equation 14 and that this field is then “re-reduced” to form 
another reduced parameter set. If that reduced parameter set is 
now expanded through application of equation 14, we should 
expect to obtain the same cell-based parameter field as we 
did on the first occasion of reduced parameter set expansion 
through application of equation 14.

Similarly, suppose that we start with a cell-based 
parameter field k and calculate a reduced parameter set using 
equation 16. If a new cell-based parameter field j is now 
computed from the reduced parameter set p using equation 14, 
and then a new set of parameters is computed from j using 
equation 16, we should expect to obtain the same reduced 
set that we obtained on the first application of N. That is, 
parameter reduction undertaken twice gives the same result as 
parameter reduction undertaken once, thus

	 =NLN N .	 (19)

Given an L, there is no unique solution for N. A desirable 
choice for N, however, is

	 1( )T T−=N L L L 	 (20)

For pilot-point parameterization, equation 20 states that 
once pilot-point locations have been selected, the parameters p 
assigned to pilot points should be computed from a cell-based 
parameter field as that set of values that leads to minimized 
misfit in the least-squares sense between the starting field k 
and the parameter field j derived from pilot-point interpolation 
to the model grid or mesh. Where reduced parameters are 
zones, equation 20 stipulates that each zonal value (each 
element of p) is the average of respective k element values 
within the zone. Substitution readily verifies that N calculated 
through equation 20 satisfies equations 18 and 19. 

Another choice for N is

	 1( )T T−=N L QL L Q ,	 (21)

where Q is a matrix of full rank. If Q is a diagonal matrix, it 
can be considered as a weight matrix. Thus, for pilot points, 
the operation described by N through which lumping of k to 
form p is performed results in a set of pilot-point parameters 
for which the fit between the original and interpolated 
parameter fields is optimal in the weighted least-squares sense. 
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Where p describes zones of piecewise constancy, values 
assigned to zones are computed as a weighted average of cell 
values within each zone.

A weighting scheme can be such that, for each element 
of p, weights applied to the k field are zero for all but one cell 
of the model domain (that is, one element of k). Thus, values 
assigned to the elements of p can be considered as samples of 
the k-field. If such a scheme were used, it would follow that 
the sampled point coincided with the location of the respective 
pilot point or with the centroid of a zone if zone-based 
parameter reduction is used.

In practice, N is unknown; furthermore, it is 
model‑specific. Therefore, although model-independent 
formulations such as equations 20 and 21 may satisfy certain 
of its requirements, they can only approximate the real N.

Note that if N were chosen rather than L, an L that 
satisfies equations 18 and 19 can be readily computed as

	 1( )T T −=L N NN 	 (22a)

or

	 1( )T T −=L QN NQN .	 (22b)

The Reduced Model and One Condition for the 
Reduced Parameter Set

Equation 1 describes the relation between model 
parameters and observations comprising the calibration 
dataset; equation 3 describes this relation in the absence of 
measurement and structural noise. We will now derive the 
relation between model outputs and the reduced parameter set 
p. 

Vector o describes a set of model outputs computed based 
on a reduced parameter set p so that

	 =0 Xp ,	 (23)

where X is a matrix operator describing the action of the 
model on the parameter set p and o is the model-generated 
counterpart of h and contains the same number of elements. 
That is, the elements of o comprise a set of model outputs 
collocated with measurements of system state encapsulated in 
the h vector during the process of model calibration. 

For every p there is a j described by equation 14. So the 
same set of model outputs o can be produced by the action of 
the cell-based model Z on a cell-based parameter field j as

	 = =0 Zj ZLp 	 (24)

from which it is apparent that

	 =X ZL .	 (25)

When choosing a parameter-reduction scheme, 
undesirable artifacts of using the scheme under calibration 
conditions should be minimal or even zero. That is, it is best 
to use a scheme for which the differences between model 
outputs that correspond to members of the calibration dataset, 
computed based on a complex cell-based parameter set k, 
and those computed based on a simplified cell-based field j 
calculated from a reduced parameter set p using equation 14, 
are zero. In other words, the difference between k and j should 
lie in the null space of Z. Thus, the parameter reduction 
does not further degrade the solution beyond the effects of 
calibrating a model against a dataset of necessarily limited 
information content. In this case, adjusting values of the 
reduced parameter set p rather than the cell-based parameter 
set k during the calibration process, provides the same model 
output at the measurement of system state.

From equation 1,

	

h Zk
Zk Xp Xp
Xp Zk Xp
Xp

= +
= − + +
= + − +
= +

ε
ε

ε
ε

( )
+ηη 	 (26)

from which it is apparent that the “structural noise” η incurred 
by using a reduced parameter set p is calculated as

	 ( )= −Zk Zpη .	 (27)

Elimination of this noise (under calibration conditions) 
requires that

			 

	

equation 15
equation 16

(from )
(from )

=
=
=

Zk Xp
ZLp
ZLNk 	 (28)

from which we can derive the following equation as a 
desirable condition for the reduced parameterization scheme 
to satisfy

	 −= =Z ZLN ZLL .	 (29)

This also can be written as

	 ( ) ( )−− = − =Z I LN Z I LL 0 	 (30)

denoting that (I - LL–) is in the null space of Z.
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The conditions expressed by equations 29 and 30 can be 
approached by placing pilot points closer and closer together 
or by making zones of piecewise constancy smaller and 
smaller. In the limit, when a pilot point exists in every model 
cell of the model domain, or when every cell comprises its 
own zone, L becomes the identity matrix I, and equations 29 
and 30 are exactly satisfied.

Equation 29 gives us the ability to calculate N, given an 
L. From equation 29

1 1

( )fro equation 25m 

( ) ( )

T T

T T T T− −

=
=

=
=

ZLN Z
XN Z
X XN X Z
X X X XN X X X Z

	 and, thus

	 1( )T T−=N X X X Z .	 (31a)

N is still not unique, however, because it also could be 
calculated as

	 1( )T T−=N X QX X QZ .	 (31b)

Direct substitution (and use of equation 25) readily 
verifies that N calculated using either equation 31a or 31b 
satisfies both equations 18 and 19. In practice, N cannot be 
obtained through these equations because we do not know 
Z; computation of Z would require that derivatives of model 
outputs be calculated with respect to parameters assigned 
to every cell in the model domain. Although this is possible 
using adjoint-state methods such as those developed for 
MODFLOW-2005 by Clemo (written commun., 2007), it 
generally will not be feasible in contexts where reduced 
parameters are used, for the infeasibility of computing 
sensitivities at the grid-scale is the reason that reduced 
parameters are being used. Fortunately, there is little to 
be gained by knowing N. If an occasion arises where it 
is required, equation 20 or 21 can be used to compute 
approximations to N. 

Two Key Conditions for Reduced Parameterization
Two key conditions follow, which constitute a successful reduced parameter set. The first is a 

condition regarding the selection of the pilot-point network, and the second involves the interpolation 
of the pilot-point values onto the computational model grid.

The first condition is established in equations 29 and 30. This condition states that the difference 
between the reduced parameter set (defined through pilot points and an interpolation scheme) and the 
full parameter set (defined as having a parameter value in every model cell) should be relegated to the 
null space of the relation between the full parameter set and the observations. The null space of this 
relation corresponds to parameter combinations about which values are not informed by observations 
comprising the calibration dataset. By relegating differences between the reduced and full parameter 
sets to the calibration null space, we can argue that there is a minimal loss of information in the 
calibration dataset incurred by using the reduced parameter set. The goal is to obtain the same 
estimate of parameter values as actually used by the model through adjustment of members of the 
reduced parameter set or the through adjustment of the full parameter set through the calibration 
process.

The second condition is discussed in equations 44 to 48, which shows that the interpolation 
function relating pilot-point values to model-cell parameter values ideally should be an orthogonal 
interpolator. An orthogonal interpolator is one for which interpolation basis functions, when multiplied 
by each other, integrate to zero over the model domain.

Taken together, these two conditions indicate that in an ideal situation, there should be many 
closely spaced pilot points and that grid values be derived from pilot-point values based on an 
orthogonal interpolation scheme. As will be shown, the second condition allows the first condition 
to be achieved using a smaller pilot-point density than would otherwise be the case. This is 
advantageous because the fewer pilot points that are used, the lower the computational burden of 
estimating the solution of the model calibration problem. 
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Pursuit of the Optimal Inverse

Model Parameters
As has already been discussed, the Moore‑Penrose 

pseudoinverse has qualities that make it useful in solving the 
inverse problem in contexts where there is no measurement 
noise. Where there is measurement noise, however, 
the situation becomes more complex. A mathematical 
regularization scheme used to solve the inverse problem must 
then provide the means to restrict the goodness of model-
to-measurement fit to a level that is commensurate with 
measurement (and structural) noise. This is possible when 
using Tikhonov regularization through calculation of an 
appropriate “regularization weight factor” (see Doherty, 2003, 
2010 and Fienen and others, 2009, p. 837). If using truncated 
SVD as a regularization device, appropriate selection of the 
singular value that marks the boundary between the calibration 
solution and null spaces controls the balance of achieving a 
good fit with the need for regularization.

The intent of this report, however, is to explore the 
requirements of a reduced parameterization scheme. Insights 
into these requirements are best pursued in the context of no 
measurement noise where the demands on such a scheme are 
greatest. Conclusions drawn in this context then are extended 
to real-world contexts where measurement and structural noise 
are present and significant, thus reducing the demands placed 
on a reduced parameter scheme.

As stated above, where the innate variability of 
model parameters, represented by C(k), is homoscedastic, 
uncorrelated, and stationary (equation 7), the Moore-Penrose 
pseudoinverse provides the solution of maximum likelihood 
to the inverse problem. Unfortunately, however, hydraulic 
property spatial variability is unlikely to follow these 
conditions, for this would mean that properties in one cell of 
a model domain are statistically independent from those in 
neighboring cells. In most modeling contexts some spatial 
correlation is likely to exist. This must be accommodated in 
seeking an optimal solution to the inverse problem.

Singular value decomposition of a general C(k) leads to

	 C( ) T=k WEW ,	 (32)

where the columns of W are orthogonal unit vectors that 
span parameter space, and E is a diagonal matrix containing 
the singular values of C(k), normally ranked in order of 

decreasing value. Because C(k) must be a positive definite 
matrix, none of these are zero, although some may be very 
small.

Let us now define a new parameter set m through 
transformation of the parameter set k as

	 1/2 T−=m E W k 	 (33)

k is therefore calculated from m as

	 1/2=k WE m .	 (34)

From equation 33, the covariance matrix of m is

	 C( ) =m I 	 (35)

Therefore, m represents a suitable candidate for 
estimation using the Moore-Penrose pseudoinverse, and k then 
can be calculated from m using equation 34. 

Orthogonal Basis Functions
If only a single parameter type within a single model 

layer is represented by the elements of k, the columns of W 
computed through equation 32 can be considered to form a 
set of orthogonal basis functions for k that span the domain of 
the model. In general, basis functions corresponding to high 
singular values depict broad-scale variation of the hydraulic 
property represented by k, while those corresponding to low 
singular values depict fine-scale variation of this property. 
The lowest singular values depict spatial variability at the 
model cell level. Figure 2A shows the first three and last three 
spatial eigencomponents of a covariance function computed 
from an exponential variogram over a rectangular model 
domain composed of 80 cells × 50 cells. The range (a) in the 
exponent of the variogram equation is equal to 10 cell widths. 
In the bottom panels, the apparent purple color is caused by 
elements of red (high) and blue (low) values alternating on 
a cell-by-cell basis. In other words, this figure represents 
extreme variability on a cell scale as opposed to the top 
panels, which show smoothly varying values at the scale of 
the entire image. Figure 2B shows the singular value spectrum 
of this covariance matrix, showing singular values in order of 
decreasing value. Taken together, these figures indicate that 
variability of broad-scale features is greater than variability of 
finer scale features.
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Because it is square, and because its columns are unit 

orthogonal vectors, W satisfies the following equations

	 m
T =W W I 	 (36a)

	 m
T =WW I .	 (36b)

Here we add a subscript “m” to the identity matrix I to 
denote the fact that I is m-dimensional, where m is the number 
of elements of k. As usual, the identity matrix is a diagonal 
matrix, with element values of 1 along the diagonal.

We partition E into two submatrices, the first containing 
the largest n singular values of C(k), and the second 
containing the remaining m-n singular values

 	 1 1
1 2

1 2

0C( ) [ ] 0

T

T
  =      

E Wk W W E W
.	 (37)

That is,

	 1 1 1 2 2 2C( ) T T= +k WE W W E W .	 (38)

The following equations hold:

	 1 1 n
T =W W I 	 (39a)

	 2 2 m-n
T =W W I 	 (39b)

	 1 1 2 2 m
T T+ =WW W W I .	 (40)

From equation 40, any vector k can be expressed as

	 1 2 1 1 2 2
T T= + = +k k k WW k W W k .	 (41)

Equation 41 shows that any vector comprising a model 
parameter set k can be decomposed into two orthogonal 
vectors k1 and k2 by projecting k onto two orthogonal 
subspaces of parameter space, these being the subspaces 
spanned by the vectors comprising the columns of W1 and 
those comprising the columns of W2. k1 represents broad‑scale 
hydraulic property variation (that is, variations that encompass 
lower spatial frequencies) because it is associated with the 
higher singular values of C(k), while k2 represents localized 
hydraulic property detail (that is, variations of k associated 
with higher spatial frequencies). Equation 41 demonstrates 
that if k is decomposed in this manner, it is readily 
reconstituted by adding together the two orthogonal vectors 
resulting from this decomposition. 
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Figure 2.  Graphical representation of singular vectors. Panel (A) shows the three first (top) and three last (bottom) singular 
vectors of the 80 row × 50 column exponential covariance matrix. Panel (B) shows the singular value spectrum of a covariance
matrix on a linear scale (top) and logarithmic scale (bottom).
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A Second Condition for the Reduced Parameter 
Set

So far, we have established one desirable condition for 
a reduced parameter set as the condition that differences 
between j and k lie in the null space of Z, encapsulated in 
equation 29. As stated above, a reduced parameter set will 
tend to satisfy this condition naturally as the dimensionality 
of p approaches that of k; however, we seek an ability to 
approach this condition even where the number of elements of 
p is much smaller than the number of elements of k, thereby 
maximizing the utility of the reduced parameter set. The 
smaller the reduced parameter set for which this condition is 
approximately fulfilled, the greater the numerical efficiency 
over the native model parameter set, as the numerical burden 
of estimating the reduced set of parameters diminishes with 
the size of this set. This leads to a second desirable condition 
for a reduced parameter set to meet.

Suppose that equation 29 is fulfilled (or almost fulfilled), 
and that there is little or no noise associated with the 
measurement dataset. Then

	 =h Xp .	 (42)

Let us further suppose that the reduced parameter set p 
is defined in such a way that its covariance matrix of innate 
variability is proportional to the identity matrix In. (Here we 
assume that it has n elements). Let us also assume that the 
native parameter set k from which it is reduced also is defined 
in such a way that its innate variability can be described 
by a covariance matrix that is proportional to Im (whereby 
we assume that it has m elements). Thus, for example, the 
elements of k may be hydraulic properties pertaining to model 
cells, or more likely, they may be eigencomponents of the 
C(k) covariance matrix. 

We are justified in using the Moore-Penrose 
pseudoinverse of X to solve for p , the calibrated reduced 
parameter set, because of the first of the above conditions. 
Thus, we can obtain p  as	

	
+=p X h 	 (43)

and then can obtain k  as 

	 ( )

+

+
=
=

k LX h
L ZL h 	 (44)

where the second relation follows from equation 25. For k  
as computed using equation 44 to be optimal, the following 
relation must hold:

	 ( )+ +=Z L ZL .	 (45)

Direct substitution of equation 45 into equations 6a-d 
readily establishes that equation 45 holds, provided that 
equation 29 holds, and provided that one extra condition is 
satisfied; 

	 T− = αL L ,	 (46)

where α is an arbitrary scalar. Now, from

	 − =LL L L 	 (47)

we obtain

	

1 1

1

1

( )from 
( )
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/
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L L L L
L L I

α
α
α

α
α

α 	 (48)

Equation 48 shows that the interpolation or basis 
functions through which cell-based parameters are computed 
from reduced parameters must be orthogonal. Note also that 
substitution of equation 48 into the right side of equation 20 
immediately leads to equation 46, recalling that N in 
equation 20 is L–. 

This has several repercussions. Where the reduced 
parameter set is composed of zones of piecewise constancy 
(presumably enough of these for equation 29 to hold), then 
L is “naturally” orthogonal. It also is naturally orthogonal 
if a nearest-neighbor interpolation scheme is implemented 
about pilot points (which amounts to the same thing). It is not 
orthogonal, however, if interpolation is undertaken using, for 
example, triangle basis functions or Kriging.

If parameterization is based on eigencomponents m of 
C(k) defined by equation 33, and if parameter reduction is 
effected through selection of only the first n (out of m) of 
these, L is simply a diagonal “selection matrix,” an example 
of which is shown below, where m is 6 and n is 3:

	  

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 
 
 =  
 
  

L .	 (49) 

This matrix satisfies equation 48.
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Application to Pilot Points
Where pilot points are used as a basis for reduced 

model parameterization, L could take many forms. As stated 
above, if a nearest-neighbor interpolation scheme is used, 
this is equivalent to the use of polygonal zones of piecewise 
constancy. Each row of the L matrix is then composed of 
zeroes, except for a single element of value 1, which assigns to 
a model cell a hydraulic property value equal to that pertaining 
to the closest pilot point. More complex interpolation schemes, 
such as Kriging, have far fewer (if any) zero-valued elements. 

In spite of the diversity of interpolation schemes that 
could be used, there are some things they must have in 
common. Ideally, a spatial interpolation scheme should be 
such that it honors the value assigned to each pilot point, 
no matter the value. This requires that the value of the 
interpolation function pertaining to every pilot point be 1.0 at 
the location of that point, and 0.0 at the location of other pilot 
points (assuming that pilot points are placed at cell centers 
and that hydraulic property values are assigned to these same 
locations).

For some schemes, element values along any row of the 
L matrix sum to 1.0. Thus, if all pilot points are assigned the 
same value, all model cells will be assigned that same value. 
In many circumstances this is a desirable property; however, 
this may not always be the case. For example, it may be 
desired that interpolated values approach some preferred value 
if they are too far from the nearest pilot point; simple Kriging 
has this property. 

Two further desirable properties arise from the condition 
expressed by equation 29:

1.	 Pilot points should be close together where data 
density is high; and

2.	 The interpolation function encapsulated in the 
columns of L should avoid “sharp edges,” unless 
these coincide with known geologic contacts or other 
real discontinuities.

Lack of adherence to either of the above properties is 
likely to generate parameterization-induced structural noise, 
both of these leading to an erosion of the extent to which 
equation 29 is respected by a reduced parameterization 
scheme.

From equation 48, arises the added desirability of an 
orthogonal interpolation scheme. 

Tikhonov Regularization 

Tikhonov Regularization and the Generalized 
Inverse

As discussed previously, where parameters k are 
characterized by a covariance matrix C(k), optimality of 
the inverse problem solution is achieved in the absence of 

measurement noise by first estimating parameters m using the 
Moore-Penrose pseudoinverse, and then computing k from 
that m using equation 34. 

With the role of SVD in obtaining the Moore-Penrose 
pseudoinverse explained previously, equation 13 can be used 
to find the Moore-Penrose pseudoinverse, then to estimate m. 
From equation 34, A in equation 13 becomes ZL, where L is 
given by

	 1/2=L WE .	 (50)

Direct substitution into equation 13 then leads to 
estimation of m through

    1/2 1/2 2 1 1/2
0lim [ ]T T T T−

δ→= + δm E W Z ZWE I E W Z h .	 (51)

Use of equation 34 again, and a little manipulation, then 
leads to

	 2 1 1
0lim [ C ( )]T T− −

δ→= + δk Z Z k Z h .	 (52)

Extending the discussion provided by De Groot-Hedlin 
and Constable (1990) and Doherty (2003), equation 52 
could be obtained by solution of a constrained minimization 
problem:

Minimize 1
r C ( )T −Φ = k k k  subject to the constraint that:

	
m ( ) ( )

as 0

T l
m

l
m

Φ = − − = Φ
Φ →

h Zk h Zk
.	 (53)

This formulation of the calibration process seeks 
the (unique) solution to the inverse problem for which 
parameters deviate minimally (based on a C(k) norm) from 
a pre-calibration maximum likelihood condition of Φr = 0. In 
this formulation, which is used in PEST, the constraint l

mΦ   
(referred to in PEST as PHIMLIM) controls the strength of 
regularization. This is closely related to Occam’s inversion 
(Constable and others, 1987). Guidelines for adjusting l

mΦ  
using basic statistics are presented in Doherty (2003) and 
Fienen and others (2009). An alternative, such as cross 
validation (see Kitanidis, 1997 or Aster and others, 2005), 
could be implemented as well. 

Alternatively, equation 52 can be viewed as a traditional 
parameter-estimation problem:

Find k such that:

	

2

2

where
where

(  C( ) )
(  C( ) C( )

as 0

= + ε = δ
= + =
δ

h Zk I
k 0 k

ε
τ τ

→ .	 (54)
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Accommodation of Measurement Noise
We have seen that estimation of m (equal to 

1/2 T−E W k) using SVD, or k using Tikhonov regularization, 
leads to the same solution of the inverse problem where noise 
is zero. Where noise is not zero, a perfect fit between model 
outputs and field data cannot be expected and should not be 
sought; however, Tikhonov and subspace regularization (that 
is, SVD) diverge in the means that they employ to obtain a 
model-to-measurement misfit, which is commensurate with 
the level of measurement noise. In particular:

1.	 Where SVD is used as a regularization device, the 
truncation level is shifted to a singular value of 
greater magnitude.

2.	 Where Tikhonov regularization is used, the target 
measurement objective function l

mΦ  is raised.
Both methods have limitations, especially when applied 

in real-world settings, where C(k) and C(ε) are known only 
with some degree of uncertainty. In contexts where C(k) 
exhibits highly nonstationary behavior, use of Tikhonov 
regularization applied as equation 53 leads to a certain amount 
of “double accounting” of parameter constraints, which can 
lead to numerical problems in its application. In particular, for 
a non-zero δ2, use of equation 54 implies that there are two 
(sometimes contradicting) sources of information on solution 
space components of k. These have their sources in (a) the 
measurement dataset and (b) the regularization term through 
its suggestion that elements of k are all zero valued. In many 
contexts this problem can be at least partially rectified (with 
a consequential improvement in the numerical behavior of 
Tikhonov regularization) through reformulation of equation 54 
in the presence of measurement noise as:

Find k such that

h Zk
Z V V V V k
ZV V k V V k

= +
= + +

= + = ≈
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εε( )
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1 1 2 2

1 1 2 2
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2
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I
0 V V k V V k V V= + =ττ ττ(where C C( () )

where, through SVD

	 T=Z USV 	 (55)

and V is partitioned into V1 and V2 submatrices at the SVD 
truncation point that is chosen to separate calibration solution 
and null spaces. With this subspace enhancement formulation, 
Tikhonov regularization is applied to null space components 
of k while solution space components of k are estimated from 
the calibration dataset; the operation of one does not thereby 
interfere with that of the other. 

Strictly speaking, C(ξ) should account for structural 
noise incurred through truncation, if truncation occurs prior 
to singular values becoming absolutely zero; however, this 
is rarely done owing to the numerical work involved in 
calculating its covariance matrix (using, for example, the 
paired stochastic analysis of Cooley, 2004). Furthermore, the 
need for its inclusion is somewhat mitigated by the fact that far 
less regularization-based structural noise needs to be included 
in the above formation than in the overdetermined formulation 
discussed by Cooley (2004), where model parameterization 
must serve the dual roles of regularization and representation 
of hydraulic properties.

The formulation in equation 55 is further examined 
(and refined) in the “Theory” section of this report. Subspace 
enhancement of Tikhonov regularization (which uses both this 
and other similar formulations) is available through PEST.

Spatial Covariance

Cell-by-Cell Independence
Suppose that hydraulic properties within a model domain 

possess a covariance matrix that is proportional to the identity 
matrix;

	 2C( ) k= σk I .	 (56)

Through use of equation 32, a set of orthogonal basis 
functions that complement this C(k) matrix can be found. 
Any distribution of hydraulic properties k then can be 
expressed in terms of this set of basis functions; however, 
because decomposition of equation 56 leads to a singular 
value matrix E, which is in fact the identity matrix I, we 
have unlimited freedom in choosing our basis functions. All 
that is required is that they are orthogonal, that they span 
parameter space, and that each has a magnitude of unity; they 
will therefore satisfy equations 36a and 36b. For example, 
we could choose basis functions that arise from application 
of SVD to a covariance matrix arising from any useful 
variogram. Alternatively, we could choose “blocky” basis 
functions such as are depicted in one dimension in figure 2.
 

For the set of basis functions to span the entirety of 
parameter space, the trend of increasing frequency apparent 
in figure 3 would need to extend to the point where spatial 
variability occurs at the cell level; the corresponding basis 
function simply would oscillate between its upper and lower 
bounds, with the transition between the two occurring at cell 
boundaries.
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Spectra
Suppose now that pilot points are distributed evenly 

throughout a model domain. Let L be chosen to implement 
nearest-neighbor interpolation. Equation 48 then dictates that 
N be an averaging matrix. The value assigned to each pilot 
point can thus be considered to represent the average value of 
the native hydraulic property field (the k field) over an interval 
equal to the pilot-point separation distance, with the respective 
point at the center of each such interval. Furthermore, α of 
equation 48 is equal to 1. 

The upper part of figure 4 shows a native hydraulic 
property field, where variability occurs randomly and 
independently on a cell-by-cell basis. Pilot-point locations are 
shown in the middle part of the figure; the values assigned 
to these points through interval averaging are represented by 
their elevations. Note, that in this figure, it is assumed that the 
scale of model cells is not very fine, the resulting “granularity” 
in the k field being readily apparent. The final segment of 
figure 4 shows the “j field,” this being the field reconstructed 
from pilot points based on equation 14.
 

 

Figure 3.  A set of orthogonal basis functions in one dimension.
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Figure 4.  A sampled and reconstituted spatially varying hydraulic-property field.

From a mathematical perspective, from equations 14, 16, 
and 17

	 −= =j LNk LL k .	 (57)

The spatial covariance matrix of j is thus
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From equations 58 and 38 the singular vectors of 
C(j) whose singular values are non-zero are formed by the 
(orthogonal) columns of L. Thus, the interpolation function 
(this being equivalent to zones of piecewise constancy in the 
present case) forms a set of orthogonal basis functions. These 
orthogonal basis functions do not, however, have the capacity 
to carry as much detail as is required to represent an arbitrary 
k field. To learn something of the loss of detail incurred by 
sampling and then reconstitution, we can rewrite C(j) (with 
the help of equation 36b) as

	 2C( ) T T T
k

− −= σj LL WIW L L ,	 (59)

where the columns of W are composed of the basis functions 
of figure 3 (and I is the identity matrix as usual). If the 
pilot‑point emplacement frequency is a power of 2 multiple 

of the primary basis function frequency (corresponding to the 
top graph of figure 3), equation 59 can be rewritten without 
changing its value by replacing I with a matrix that has lost 
some of its 1’s and therefore acts as a “selection” matrix, 
selecting only those columns of W that collectively comprise a 
submatrix W1 for which

	 1 1
− =LL W W 	 (60a)

therefore, for which (from equation 48 with α = 1)

	 1 1
T =LL W W .	 (60b)

The columns of W1 are those basis functions that are 
unaffected by sampling and reconstitution. In the schematic of 
figure 4, these will be the top two basis functions, but not the 
bottom one. That is, they are the basis functions that describe 
k variations, which take place at a broader scale than that 
of the sampling interval. Substituting equation 60a into 59 
produces

	 2
1 1C( ) T

k= σj WW .	 (61)

By including as many basis functions in W1 as the 
emplacement frequency allows, it then follows that

	 2
T =LL W 0 .	 (62)
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Sampling and reconstitution removes high spatial 
frequencies, because the summation implied in LT averages 
them to zero over each averaging interval. (They are equally 
positive and negative over each such interval).
From this analysis, we conclude that:

1.	 Two (in fact many) families of basis functions can be 
used to represent the reconstituted parameter field. 
These include those composed of the interpolation 
functions, as well as basis functions inherited from 
the original spatial covariance matrix of k.

2.	 In the case of inherited basis functions, only a 
subset of basis functions is inherited. For the regular 
sampling interval used in the present example, these 
represent the basis functions with a spatial frequency 
that is less than half that of pilot-point emplacement.

3.	 Spatial frequencies within the original k field that 
are greater than half the pilot-point emplacement 
interval are lost or “filtered out” through 
representation of that field by pilot points.

This is exactly analogous to the Nyquist frequency in 
sampling theory (see Roberts, 2004, p. 503). 

The fact that high spatial frequencies are lost where 
a parameter field is represented using pilot points may not 
matter for the particular problem objective. For example, 
fine-scale parameter heterogeneity is more important for 
contaminant-transport problems than for water-balance 
problems. In fact, we attempt to ensure that it does not matter 
by selecting a sufficiently dense pilot-point emplacement 
interval and appropriate interpolation method for this to be the 
case. From equations 29 and 46

	 T−= =Z ZLL ZLL .	 (63)

Post-multiplying equation 63 by W2 and invoking 
equation 62 we have

	 2 =ZW 0 .	 (64)

Thus, the components of the parameter field that are lost 
through representation of that field using pilot points lay in the 
null space of the model. Therefore, they were never informed 
or constrained by the calibration process.

Finally, using equations 56 and 61 we can draw singular 
value spectra of the k and j parameter fields (fig. 5), which 
illustrates the low-pass filtering effect of pilot-point usage. 
The reader is reminded, however, that this desirable low-pass 
filtering effect relies on the following aspects of the design of 
our pilot-point scheme:

1.	 The interpolation matrix L implements nearest-
neighbor interpolation; LT is thus an averaging 
function. 

2.	 The spacing of pilot points must be such that 
“breaks” in the LT averaging function occur at the 
same locations as those of the eigenfunctions of 
figure 3. 

 
The above analysis does not depend on cell-by-cell 

statistical independence of the k parameter field, as was 
assumed in the above discussion. If C(k) were in fact 
represented by equation 32 with a singular value spectrum 
in which variance (singular value magnitude) decreases 
with increasing singular value number (and therefore with 
increasing spatial frequency), the situation would be as shown 
in figure 6. Spectra such as represented in the upper part 
of figure 6, where features embodied in hydraulic property 
heterogeneity tend to extend over a multiplicity of cells, are 
much more in accordance with real-world hydraulic property 
variability than that depicted in the upper part of figure 5 
where statistical independence of cell properties is depicted.

Geological and hydrogeological phenomena, though 
unknown on a point-by-point basis, are known to show some 
degree of spatial continuity. This continuity is expressed 
geostatistically through use of a variogram or (equivalently) 
through use of a covariance matrix of spatial variability as 
is done here. In other disciplines, concepts such as “spatial 
frequency power spectra” are used to represent the same 
phenomena. The two concepts are related and others (Philip 
and Watson, 1986) suggest that use of geostatistics instead of 
spatial frequency spectra as a basis for spatial analysis is of 
limited use even though tools based on the latter concept have 
been used in other disciplines to great effect. Nevertheless, 
characterization of spatial variability based on covariance 
matrices is useful when consideration is turned to uncertainty 
analysis; thus, it is retained for this report.

Use of a Variogram-Based Spatial Covariance 
Matrix 

C(k) represents the covariance matrix of spatial 
variability at a particular study site. This often is based on 
a variogram, even if detailed geostatistical studies have not 
been carried out at that site. Use of a variogram, together 
with the simultaneous assumption of stationarity, allows easy 
construction of a C(k) matrix. It also allows easy calculation 
of geostatistical products such as Kriging factors and random 
parameter fields. In hydrogeological studies, choice of a 
variogram type normally is more of a matter of convenience, 
though the exponential variogram is frequently chosen.

Implicit in the choice of a particular covariance matrix 
of spatial variability is the choice of a set of orthogonal basis 
functions spanning the model domain as in equation 32, 
repeated here

	 C( ) T=k WEW .	 (65)
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Figure 5.  Spectrum of a cell-by-cell 
parameter field (above) and of the 
equivalent pilot-point sampled parameter 
field (below). Statistical independence of 
cell properties is represented in the former 
case.
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Figure 6.  Spectrum 
of a cell-by-cell 
parameter field (above) 
and of the equivalent 
pilot-point sampled 
parameter field (below). 
Spatial correlation 
of cell properties is 
characterized in both 
cases.
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As discussed above, the basis functions are the columns 
of W. Suppose now that a set of pilot points is used as a 
means of parameter reduction (implemented for the purpose 
of model calibration), together with a set of interpolation 
coefficients L. Suppose also that in emplacing pilot points and 
in interpolating between them, the two conditions discussed in 
previous sections are honored:

	 − =ZLL Z 	 (66)

	 T− = αL L .	 (67a)

Thus,

	 /T = αL L I .	 (67b)

Choice of L leads immediately to L– (and therefore N 
of equation 16), because of equation 67a. Conceptually at 
least, we know what is being estimated through the inversion 
process. In addition, conceptually at least, this formulation 
may be used in a structural noise analysis (Cooley, 2004) to 
minimize the effect of parameter reduction on estimation error.

In the analysis of the previous section, basis functions 
and interpolation functions were such that the covariance 
matrix of the reconstructed parameter field (the j field) 
contains many of the characteristics of the original parameter 
field (the k field). This allows easy visualization of the effects 
of using a reduced parameter set; however, where basis 
functions are chosen based on a selected covariance matrix, 
and where pilot points are not necessarily regularly spaced, the 
situation unfortunately is not as clear.

As above, let p represent a reduced set of parameters 
(in this case pilot points) that are used as a basis for 
calibration‑based parameterization of a model. Then

	 T−= = = αp Nk L k L k 	 (68)

so that

	 2 2C( ) C( )T T T= α = αp L k L L WEW L .	 (69)

From equation 69, it is apparent that the covariance 
matrix (or variogram) pertaining to a set of pilot points 
is not the same as that attributed to the k parameter field. 
Pilot‑point parameters do not have the same statistical 
properties as cell‑based parameters, for account must be 
taken of the averaging process encapsulated in the L– matrix 
through which pilot-point parameters are related to cell-based 
parameters. 

The covariance matrix of the reconstituted parameter 
field j is

	 2 2C( ) C( )T T T T T= α = αj LL k LL LL WEW LL .	 (70)

The situation shown in figure 6 can occur exactly as 
depicted only if L is chosen such that equations 60 and 62 are 
followed. If such an L can be found, it will form a “natural” 
interpolation method to accompany the pilot points and chosen 
covariance matrix. Unfortunately, this is not an easy matter. 
Moreover, selection of which singular vectors to include in W1 
and W2 would become especially problematic with irregular 
pilot-point emplacement. Therefore, selection of a useful 
L can be approximate only. This is a matter that requires 
research, and is discussed in the last section of this report. For 
now, however, we can state that the desirable properties of L 
are that

	 2 0T =L W 	 (71)

where W2 is as full as possible, yet satisfies

	 2 0=ZW .	 (72)

Equation 71 is derived by pre-multiplying both sides of 
equation 62 by 1( )T T−L L L .

Singular Vectors and Interpolation 
p is a vector of reduced parameters (for example, 

pilot‑point parameters), and cell-based parameters are obtained 
from them using equation 14, which can be rewritten as

	 =j Lp .	 (73)

Suppose that p is characterized by a covariance matrix 
C(p) and that e is a singular vector of this matrix. Thus,

	 C( ) = λp e e .	 (74)

The covariance matrix of j is given by

	 C( ) C( ) T=j L p L .	 (75)

Since the elements of j outnumber those of p, C(j) is 
rank-deficient (and therefore singular), possessing only the 
same number of non-zero singular values as C(p) from which 
it is derived. From equation 75,

	
equation 67b

C( ) C( )
C ( ) / if  holds

/ (from equation 74)

T=
= α
= λ α

j Le L p L Le
L p e
Le .	 (76)

Thus, if L is chosen such that equation 67b is followed, 
the singular vectors of C(j) whose singular values are non-zero 
are computed from those of C(p) by spatial interpolation of the 
singular vectors of this latter matrix. (In other words, they will 
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look the same if plotted spatially as in figure 2). Furthermore, 
relativity between singular values is maintained; in fact, 
singular values will be the same between the two matrices if α 
is unity.

Suppose now that C(p) is subjected to singular value 
decomposition such that

	 C( ) T=p UFU .	 (77)

Suppose also that, in ways discussed previously, we 
obtain a minimum norm solution for eigencomponent 
parameters n related to parameters p using the formula

	 1/2 T−=n F U p .	 (78)

Because the elements of n are statistically independent 
and have identical variances (similar to the elements of m in 
the previous discussion, see equation 35), the minimum norm 
solution for n also is the maximum likelihood solution for n. 
The maximum likelihood solution for p then can be computed 
from n. Because j has identical eigencomponents to those of p, 
the maximum likelihood solution for j also can be calculated 
from that of n. In other words, interpolation using a matrix L, 
chosen to follow equation 67b, has neither introduced spurious 
information to the interpolated parameter set nor violated 
the maximum likelihood nature of the solution to the inverse 
problem found for p.

This relation is useful, in that calibration needs only 
to focus on achieving maximum likelihood for the reduced 
parameter set p; the maximum likelihood for cell-based 
parameters j will follow. A problem with this approach, 
however, is that achievement of a maximum likelihood 
solution of the inverse problem for the reduced parameter set 
p does not necessarily guarantee that a maximum likelihood 
solution has been found for the true parameter set k of 
which p is a reduced representation. This will occur only if 
equations 60, 62, and 64 are followed which as stated above, 
may not be possible, and often can be approximated only.

Kriging as an Interpolator
Kriging is a desirable interpolator in that it follows 

prescribed values at pilot-point locations, and among other 
desirable characteristics, provides best linear unbiased 
estimates of hydraulic property values between interpolation 
points (pilot points in our case). Some of its benefits may be 
overstated (Philip and Watson, 1986), however, especially if 
only a small subset of pilot points is used in interpolating to 
any one model grid or cell. This creates discontinuities in the 
interpolation scheme at those locations where a point is added 
or removed, thus compromising not only its claims to best 
linear unbiased estimation, but also possibly to satisfaction 
of equation 29. Another drawback of Kriging in the present 
context is that it is not an orthogonal interpolator. 

This section is completed with an interesting property of 
Kriging as an interpolator.

k is a random vector representing, for example, hydraulic 
properties assigned to model cells throughout a model domain. 
It is partitioned into two subvectors such that

	 1 2[ ]T T=k k k ,	 (79)

where, for example, k2 is a subvector of pilot-point locations 
collocated with model cell centers, and k1 is the subvector of 
the remaining cell centers.

The covariance matrix C(k) of k is partitioned 
accordingly as

	 11 12

21 22
C( )  =   

C Ck C C ,	 (80)

where C11 and C22 are the covariance matrices of k1 and k2, 
respectively, and C12 = C21 is the cross-covariance matrix 
between k1 and k2.

Suppose that the elements comprising k2 become known 
through estimation of the pilot-point values in the calibration 
process. Then, if k follows a multi-Gaussian distribution, the 
conditional expectation of the remaining elements of k, these 
comprising k1, can be computed as

	 1
1 2 12 22 2E( | ) −=k k C C k .	 (81)

This is the same equation as used by the “simple Kriging” 
interpolation scheme.

The conditional covariance matrix of k1 is

	
1

1 12 22 21C( ) −=k C C C .	 (82)

With some manipulation, it can be shown that E(k1 | k2) 
also can be calculated as

	 1
1 2 11 12 2E( | ) −= −k k D D k 	 (83)

where

 	
1

11 12 11 12

21 22 21 22

−
   = =      
D D C CD D D C C

.	 (84)

It also can be shown that where k1 is computed from k2 
in this manner, then

	 22

1 1
2 2C ( ) D( )T T T− −= =k k k k k k k C k .	 (85)

This shows that if we have calculated a hydraulic 
property field for a model domain by Kriging from a set 
of pilot points, the geological likelihood function for that 
entire field can be computed simply through calculating the 
likelihood function pertaining to the pilot points.
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This appears to indicate that a maximum likelihood 
solution to the inverse problem can be obtained by applying 
Tikhonov regularization to an arbitrary set of pilot-point 
parameters from which computation of grid parameter 
values is accomplished through Kriging (as is often done in 
practice). It must not be forgotten, however, that equation 85 
does not indicate that Kriging is the optimal interpolation 
method for use in an inversion context. It states that if Kriging 
is used for computation of cell-based parameter values 
from pilot-point parameter values, then computation of the 
geological component of the parameter likelihood function 
(through which parameter likelihood is assessed in terms of 
the C(k) matrix of innate parameter spatial variability) is a 
computationally simple matter. 

Background and Issues Regarding Use 
of Pilot Points

The purpose of this section is to make use of insights 
gained through the mathematical explorations of the previous 
section, which lead to recommendations for the most effective 
use of pilot points in calibration of an environmental model. 
First, it is necessary to identify the aim of the calibration 
process and thereby establish the metric by which any 
recommendations on any aspect of that process can be judged: 

First, we seek values for parameters, and predictions 
dependent upon them, that are “expected” in the statistical 
sense, and (or) that approach “maximum likelihood.” As 
Moore and Doherty (2006) point out, this does not mean that 
model predictions made based on the calibrated parameter 
set are necessarily “right” or even “likely;” only that their 
potential for wrongness has been minimized. Neither does it 
mean that the potential for wrongness is necessarily small–
only that it is roughly symmetrically disposed about the 
parameter set that we take to be the “calibrated parameter 
set.” As a result, the (manual or mathematical) regularization 
process required to achieve a unique (and optimal) solution to 
the poorly posed inverse problem normally requires that the 
calibrated parameter field assigned to a model be a simplified 
version of reality, comprising only those aspects of reality that 
can be estimated with integrity, based on what is known about 
the system.

The use of a reduced parameter set based on pilot points 
is a numerical convenience, developed out of the necessity 
to reduce the number of parameters requiring estimation to 
those for which derivatives can be computed in a reasonable 
amount of time. In most cases of current model usage, these 
derivatives are computed through finite differencing, which 
requires at least one forward model run per parameter. 
Where alternative means of derivatives calculation are 
available, for example through the use of adjoint-state 

methods (for example, using MODFLOW-2005, Clemo, 
written communication, 2007), the necessity to use a reduced 
parameter set may be reduced or even eliminated for some 
problems. 

Unfortunately, use of a reduced parameter set requires 
that compromises be made and that the performance of the 
calibration process as judged according to the above metric 
is therefore diminished. Normally, however, it is not the fit 
between model outcomes and field measurements that is 
affected. It generally is not too difficult to define a reduced 
parameter set with proper mathematical regularization that 
provides an adequate fit between model outputs and field 
measurements, given the expected measurement/structural 
noise contained in the measurement dataset. The challenge, 
rather, is ensuring that the parameter field is indeed that of 
maximum likelihood or minimum error variance (which we 
assume herein are essentially equivalent), so that predictions 
calculated based on this parameter set can claim the same 
property.

Computation of parameter and predictive error intervals 
is beyond the scope of this report but salient aspects are 
briefly described below. Tonkin and Doherty (2009) describe 
calibration-constrained Monte-Carlo analysis, which can be 
carried out with a high level of efficiency following calibration 
of a pilot-point-parameterized model using regularized 
inversion. Such an analysis uses the calibrated field as its 
starting point. Differences between randomly generated 
parameter sets (at the k level of detail) and the calibrated 
field are computed prior to projection of these differences 
into the calibration null space. The projected differences are 
then added back onto the calibrated parameter field as initial 
estimates for use in a pilot-point-based recalibration process. 
The advantages of this method as a measure of parameter and 
predictive uncertainty are dependent upon the integrity of the 
claim of the calibrated parameter field to be one of maximum 
likelihood. The method commonly demonstrates a wide range 
of variability for many model predictions, notwithstanding the 
calibration constraints on parameter fields used by the model. 
In most cases, errors introduced to the calibration/uncertainty 
analysis process through use of a reduced parameter set 
are small in comparison to the post-calibration uncertainty 
resulting from the nonuniqueness of solution of the inverse 
problem.

Practical Considerations

Compromises involved in the use of a reduced parameter 
set are just one of the many compromises that are made in 
building and calibrating a groundwater model. A few of 
the shortcomings of the model construction and calibration 
process are relevant here.
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Calculation of Derivatives
There are a number of repercussions developed out of the 

necessity to calculate derivatives as is commonly done using 
finite differences. These include the following:
1.	 The upper limit on the number of pilot points that can be 

used in the parameter-estimation process is often set by a 
modeler’s access to computer resources. Notwithstanding 
the fact that the burden of lengthy model run times can 
be dramatically reduced through parallelization of model 
runs and through use of the SVD-assist inversion engine 
(Tonkin and Doherty, 2005), this facet of model design 
often sets an upper limit on the number of parameters 
used in the inversion process. Cloud computing may 
address these shortcomings to some extent (Hunt and 
others, 2010), but currently the guidelines presented 
herein are best viewed as “making the best of a bad 
situation,” in which compromises will be inevitable but 
whose detrimental effects can be minimized.

2.	 Model numerical behavior (particularly the numerical 
behavior of complex models) often contains granularity 
and thresholds. Poor convergence of numerical solution 
schemes, the occurrence of MODFLOW dry cells, and 
adaptive time stepping used by many transport and 
groundwater/surface water interaction models, can 
compromise derivatives of model outputs with respect 
to adjustable parameters. Although a gradient-based 
parameter-estimation process is somewhat resilient to 
numerical artifacts, its performance is not expected 
to be optimal. Furthermore, the greater the number of 
parameters for which estimates are sought, the greater the 
detrimental effects inflicted by poor performance of the 
model are on the parameter-estimation process.

3.	 As the number of parameters grows, the sensitivity of 
individual parameters diminishes. This, in turn, introduces 
errors to finite-difference derivatives as smaller numbers 
that are close together are subtracted, losing numerical 
significance in the process.

Structural Noise
Although commonly referred to as “measurement 

noise,” much of a model’s inability to simulate the complex 
natural world is actually “structural noise” that arises 
from the imperfect nature of the simplified model. Some 
structural noise arises from parameter simplification that 
is an indispensable aspect of model calibration whether 
achieved through mathematical regularization or manual 
means. Using methods such as those developed by Cooley 
(2004), the structural noise from manual simplification can 
be accommodated to some extent in the inversion process 
to more closely approach maximum likelihood of estimated 

parameter fields; however, this is rarely done in practice as it 
is a numerically burdensome procedure and pertains only to 
structural noise induced by a given parameter simplification 
scheme (that is, a new simplification scheme requires the 
entire analysis be re-run). 

Structural noise shows a high degree of temporal and 
spatial correlation—a correlation structure that (especially 
for that induced by model imperfections) cannot be 
accommodated through selection of a weight matrix that is 
proportional to its inverse—for neither its correlation structure 
nor its inverse is known. Lack of knowledge of both the 
magnitude of structural noise, and of its correlation structure, 
compromises the extent to which a parameter field can be 
declared to be of maximum likelihood or of minimum error 
variance (Doherty and Welter, 2010).

Spatial Covariance Matrix
The central role of the covariance matrix of spatial 

parameter variability (C(k) ) in consideration of native 
or reduced model parameterization is apparent from the 
discussion of the previous section. This matrix generally is not 
even approximately known, even where direct measurements 
of hydraulic properties have been made at a number of 
locations and (or) where knowledge of local geology is good. 
Furthermore, hydraulic properties rarely are likely to exhibit 
statistical stationarity and are even less likely to be Gaussian. 
In addition, inferring even the magnitude of its diagonal terms 
through the calibration process is fraught with difficulty owing 
to its interplay with the C(ε) matrix of measurement/structural 
noise. Acceptance of a high degree of spatial variation in a 
calibrated parameter field often means acceptance of a high 
degree of model-to-measurement fit, and therefore of a low 
magnitude C(ε), and vice versa.

Number and Placement of Pilot Points

Advantages of deploying pilot points on a uniform grid 
include the following:
1.	 The relation between pilot point spatial density and 

parameter field spatial frequencies admitted to the 
calibration process is readily apparent.

2.	 More flexibility is available in the design of interpolation 
functions, especially those that seek orthogonality.

3.	 If pre- or post-calibration analyses based on members of 
the PEST GENLINPRED utility suite (Doherty, 2010) 
are to be undertaken to determine contributions made 
by different parameter types to the uncertainty of model 
predictions, spurious inflation of parameter contributions 
as a result of nonuniform spatial pilot-point density is 
avoided.
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4.	 The potential to introduce artificialities such as 
“bulls‑eyes” into a calibrated parameter field is 
diminished, for no area within the model domain is in 
a “pilot-point desert,” containing isolated pilot points 
far from the others. Such an occurrence can result in 
incorrect parameterization both within the “desert” itself, 
and in locations close to the “desert,” where pilot-point 
parameters may be given unrealistically high or low 
values (especially if unconstrained by measurements) 
to introduce heterogeneity to parts of the model domain 
where excessive separation denies them leverage.

5.	 Use of a regular network of pilot points generally is 
more objective than use of an irregular network, thus 
avoiding decisions regarding local pilot-point density and 
placement.
Advantages of irregular pilot-point distribution include 

the following:
1.	 Irregular pilot-point emplacement can be more 

computationally efficient. Thus, more pilot points can 
be placed in regions of high data density and less can be 
placed in regions of low data density.

2.	 Pilot points can be placed at the locations of wells at 
which pumping tests have been performed; parameter 
values assigned to these points can reflect the outcomes of 
those tests.

3.	 Pilot-point placement can be optimized with respect 
to measurement point locations. For example, studies 
of post-calibration resolution matrices indicate that the 
averaging kernels that express the relations between 
parameter hydraulic conductivity fields assigned 
to calibrated models and those that exist in reality 
have highest values at locations between wells along 
streamlines that separate them. Placement of pilot points 
at these locations would help to ensure that the resolution 
matrix produced as an outcome of the reduced-parameter 
calibration process is as diagonally dominant as possible 
(this reducing the effect of the “I – R” or “null space 
term” on parameter and predictive error variance; Moore 
and Doherty, 2005). Similarly, where pilot points are used 
for parameterization of storage coefficient, optimality of 
reduced-parameter resolution matrices can be approached 
if pilot points are placed at the sites of wells in which 
water table variations were measured.

4.	 In places where hydraulic properties are known to show 
high spatial variability or can be inferred to exhibit this 
variability (for example, where piezometric contours 
show locally steep gradients), pilot points can be placed 
at locations where they are able to best “capture” this 
variability through the calibration process. 

5.	 It is widely documented that the information content 
of concentration measurements for estimating local 
hydraulic conductivity is far greater than that of 
head measurements. When calibrating a contaminant 
transport model against a dataset that includes historical 
concentration measurements, it would be more 
advantageous to have a higher pilot-point density within, 
rather than outside, a contaminant plume. 

6.	 Emplacement of pilot points with high spatial density near 
locations where predictions are to be made (especially 
predictions such as contaminant fate that are particularly 
sensitive to spatial hydraulic property variability) 
enhances the capacity of post-calibration predictive 
uncertainty analysis to compute the true uncertainty 
associated with these predictions as the null space 
contribution to their uncertainty is thereby more reliably 
calculated.
The approaches for pilot-point placement do not need 

to be mutually exclusive. A combined approach starts with a 
regularly spaced grid of pilot points that is then refined with 
additional pilot points in areas of interest or containing many 
observations. Regardless of whether pilot-point placement is 
at regular or irregular intervals, the primary concern in either 
case is whether enough of them are deployed to ensure that 
differences between j and k lie in the null-space of Z (that 
is, that equation 29 is satisfied). Through violation of this 
condition, the use of too few pilot points, can compromise 
the ability of the calibration process to obtain as good a fit 
between model outputs and field data as is supported by 
the level of noise associated with the data. Furthermore, it 
can compromise optimality of the calibration process by 
introducing spurious local parameter values, either because 
insufficient data density disallows introduction of local 
heterogeneity that is warranted by the data or because pilot 
points are not placed at the exact locations where such 
heterogeneity can be inferred to exist. In many contexts, 
this provides a strong case for use of an irregular pilot-point 
network so that high density requirements at one location 
within a model domain do not then require that the same 
density prevail over the entirety of that model domain.

Pilot-Point Density
Where a calibration process involves multiple parameter 

families (for example, hydraulic properties of different types 
in the same layer or of the same type in different layers), it is 
not necessary that the same density be used for all parameter 
families. For example, the conductance of an aquitard often is 
poorly resolved by measurement data; therefore, a relatively 
low pilot-point density may be sufficient to satisfy equation 29 
for this parameter type. Similarly, the density of pilot points in 
areas of high hydraulic conductivity can be lower than in areas 
of low hydraulic conductivity owing to the greater resolving 
power of head measurements in the latter areas. 
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There may be some calibration contexts where pilot-point 
density is strategically used by the modeler as an improvised 
regularization device. The link between pilot-point spacing 
and spatial frequencies that are capable of representation in 
a calibrated hydraulic property field was discussed above. 
Pilot-point density can thus be used by a modeler as a means 
of restricting the introduction of heterogeneity at a scale that 
is considered too small to be geologically reasonable. As the 
above discussion shows, the highest spatial frequency that can 
be represented in a pilot-point based field is half the spatial 
frequency of pilot-point emplacement.

The use of Tikhonov regularization also can limit 
the extent to which local heterogeneity is introduced to 
a pilot-point-based calibration process. Use of Tikhonov 
regularization can therefore allow a modeler to safely use 
higher pilot-point densities than would otherwise be tractable. 
This can be useful in many calibration circumstances because, 
in general, the more pilot points that are used, the smaller are 
the chances that any one point will be assigned an incorrect 
value through being placed at a less-than-optimal position 
with respect to local heterogeneity that manifests itself through 
the calibration process. On the other hand, if the calibration 
process irregularly applies Tikhonov regularization constraints 
by assigning diminished weights to these constraints to 
achieve a worthy fit in some parts of the model domain where 
both data density and heterogeneity are high, its stabilizing 
effects in other parts of the model domain, where data density 
may be much lower, can be lost. This then may result in the 
introduction of spurious heterogeneity where pilot-point 
density is high in data-poor areas. In many modeling contexts, 
however, it may be possible to at least partially overcome 
this problem through use of subspace-enhanced Tikhonov 
constraints (see the Current Research section later in this 
report).

Interpolation

Pilot Points and Zones
Software provided with the PEST Groundwater Data 

Utility suite (Doherty, 2007) allows the use of pilot points to 
be combined with that of zones. Thus, pilot-point parameters 
used in the calibration process can be grouped into zone-
specific sets of parameters. This ensures that interpolation 
does not cross zone boundaries; therefore, the modeler is 
free to enforce hydraulic property discontinuities at these 
boundaries. Presumably, use of zones in conjunction with pilot 
points will be accompanied by a regularization scheme that 
encourages the introduction of discontinuous heterogeneity 
at the boundaries of zones in preference to continuously 
between intra-zonal pilot points. Although this topic is beyond 
the scope of this report, the issue of a suitable regularization 
methodology is not trivial. If zones are few enough and data 

are plentiful enough for the zones to act as both regularization 
devices and parameterization devices, then regularization 
as it pertains to zones is not needed. If the use of zones 
with boundaries impervious to interpolation from points 
outside of each zone creates nonuniqueness in solution of the 
inverse problem, then regularization is required. Tikhonov 
regularization may not be necessary; a form of subspace 
regularization, such as SVD-assisted solution of the inverse 
problem, may suffice.

Although the use of pilot points in conjunction with 
zones will not be discussed further and much of the discussion 
that follows addresses cases where pilot points are used 
pervasively throughout a model domain, this need not be 
the case. Pilot points may be assigned to a single zone 
within a model domain composed of multiple zones, or they 
may be deployed separately and independently in many 
different zones. Finally, the software supplied with the PEST 
Groundwater Data Utility suite allows a zone to be populated 
by a single pilot point. In this case, the hydraulic property 
assigned to the pilot point applies to the whole zone, and the 
pilot-point parameter becomes a de facto zonal parameter.

Kriging
Currently, utilities available as part of the PEST 

Groundwater Data Utility suite support only the use of Kriging 
for spatial interpolation between pilot points and a model 
mesh or grid. Use of Kriging has the following advantages:
1.	 Kriging honors data values at interpolation points.

2.	 Interpolation coefficients are calculated easily.

3.	 They can be calculated prior to the parameter-estimation 
process so that interpolation consumes minimal computer 
resources as parameter estimation is performed.

4.	 In general, it is a smooth interpolator. 

5.	 Anisotropy is introduced easily to the interpolation 
process, if required.

6.	 If Tikhonov regularization constraints enforcing 
maximum likelihood of a cell-based parameter field in 
terms of an expected variogram are applied directly to 
pilot points from which that field is interpolated through 
simple Kriging, the constraints are applied to the entire 
interpolated field, as discussed above. 
The mathematical analysis presented in the previous 

section has indicated that the use of orthogonal basis functions 
as an interpolator between pilot points may serve the 
calibration process better than the use of Kriging. However, 
Kriging is used widely because of the strengths listed above. 
Based on experience, suggestions on the implementation of 
Kriging as an intra-pilot-point interpolation device are as 
follows.
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A variogram for an area is rarely known and 
heterogeneity is rarely statistically stationary. Therefore, 
the choice of a variogram as a basis for Kriging often will 
be made more based on model domain geometry and the 
distribution of pilot points within the model domain, than 
based on known or inferred geostatistics of a study area. When 
choosing a variogram, it is important to recognize that the 
sill has no effect on how Kriging takes place, unless multiple 
variogram types are nested to form the one geostatistical 
structure, and Kriging takes place based on that structure; 
in that case, only the proportional contributions, rather than 
the absolute variogram contributions, matter to the Kriging 
process.

The following strategy has proven successful when 
choosing variogram properties as a basis for Kriging. 
Although this strategy may not be suitable in all contexts, it is 
useful in many models:
1.	 The exponential variogram type often performs better 

than the spherical, Gaussian, or power variogram types, 
as this type appears to be least prone to the creation 
of spurious parameter fields between closely spaced 
pilot points of very different value. The introduction of 
such locally spurious hydraulic properties can degrade 
greatly claims of maximum likelihood for a calibrated 
model parameter field. The equation for the exponential 
variogram (γ(h))is

	 0( ) C [1 exp ( / )]h h aγ = − − 	 (86)

	 where C0 is the sill of the variogram, h is the absolute 
value of separation distance between points, and a 
determines its range. Where pilot points are distributed 
non-uniformly throughout a model domain, choose a 
value for a that is about equal to the largest cell-to-pilot-
point distance over which interpolation must take place. 
That is, choose it to be about equal to the greatest distance 
by which any model cell is separated from a pilot point. 
For uniformly spaced pilot points, choose a to be between 
one and two pilot-point separation distances.

2.	 Specify an infinite interpolation search radius.

3.	 Despite the infinite search radius, limit the number of 
pilot points used in the interpolation process to between 
5 and 10. This allows local heterogeneity to express itself 
in the calibration process by the assignment of values to 
pilot points that exist only near where the data indicates 
that this heterogeneity exists. Allowing distant points, 
even though suppressed by the variogram, to influence 
local heterogeneity can result in over-smoothing of the 
calibrated parameter field.

4.	 Introduce anisotropy to the variogram according to 
geological expectations of directions of preferential 
continuity of anomalous hydraulic property features.

The third point above is important for more than one 
reason. First, it mitigates the possibility of spurious values 
being assigned to Kriged parameter fields near identified 
hydraulic property heterogeneities. Second, if as is often the 
case, parameters need to assume abnormal values to become 
surrogates for features or processes that are unrepresented 
in a model, the “collateral damage” of their having to do 
this is limited to the near vicinity of the feature or process 
that causes the problem. Commonly, this can lead to more 
rapid identification (and sometimes rectification) of model 
inadequacies than would be the case if the effects of the 
model’s inadequacies had to be spread over a broader part 
of the model domain. On other occasions, it simply limits 
the damage done by model imperfections. Third, as the 
radius of influence of each pilot point is reduced, the Kriging 
interpolation scheme approaches orthogonality. In the limit, 
when each cell is influenced by only one pilot point, a 
nearest‑neighbor scheme is used. As discussed above, this 
indeed is an orthogonal interpolation scheme.

The final of the previous four points also is important. 
Pursuit of a maximum likelihood parameter field requires not 
only that heterogeneity be suppressed unless supported by the 
calibration dataset, it also requires that where it is introduced, 
this is done in a manner that is geologically reasonable. In 
many geological contexts, this will require that features 
possess a tendency for elongation in one direction but not in 
another. 

An Orthogonal Interpolator
The mathematical analyses of the previous sections 

demonstrate the benefits to be accrued through implementation 
of an orthogonal interpolation scheme from pilot points to the 
model grid or mesh. Interpolation functions can be viewed as 
basis functions. The use of orthogonal interpolators can thus 
be viewed as the use of an orthogonal set of basis functions, 
each with a value of one at the pilot point with which it is 
associated, and with a value of zero at all other pilot points, 
for reasons discussed above.

At present, pilot-point functionality provided with the 
PEST Groundwater Data Utilities suite (Doherty, 2007) 
provides no option for orthogonal interpolation. This is a 
subject of ongoing research, which is discussed further in the 
Future Research section of this report.

Regularization

Pilot Points as a Regularization Device
As discussed above, the use of a reduced parameter set 

can be considered as a regularization device in its own right 
in that it prevents the occurrence of heterogeneity at too fine 
a scale. Where the reduced parameter set is composed of 
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pilot points, and where L in equation 14 thus constitutes an 
interpolator, it can prevent the introduction to the calibrated 
parameter field of hydraulic property variations whose 
spatial frequency is greater than half that of the pilot-point 
emplacement frequency.

Suppose that pilot points were used without simultaneous 
use of Tikhonov regularization. Suppose also that a maximum 
likelihood solution to the inverse problem was sought based 
on no spatial correlation existing between these points, and 
that they are thus statistically independent of each other. As 
figure 4 shows, the interpolated parameter field would indeed 
possess spatial correlation because spatial frequencies beyond 
half the pilot-point emplacement frequency cannot exist within 
this field. Although it may not be possible to encapsulate this 
stochastic description of spatial variability using one of the 
standard variogram equations, under some circumstances it 
may nevertheless constitute an adequate enough description 
of geological variability to estimate geologically reasonable 
fields from the calibration process. Use of a variogram to 
describe spatial heterogeneity relations is more a convenience 
than anything else and (especially in water-resource studies) is 
seldom based on detailed geostatistical analysis. Furthermore, 
even if a geostatistical study had been undertaken, the choice 
of one variogram over another is often subjective.

In some circumstances, the use of pilot points alone, 
with no simultaneous Tikhonov regularization, may form 
a suitable basis for both parameterization and “first-order 
regularization” of a groundwater model. The pilot-point spatial 
emplacement frequency should be such that parameterization 
spatial frequencies above half this level should lie within the 
calibration null space, according to equation 64. Meanwhile, 
the variability associated with spatial frequencies below 
this would be expected to be constant with respect to spatial 
frequency, as is depicted in the lower two panels of figure 5. 
The words “first order” are used above because mathematical 
regularization then will be required in solution of the inverse 
problem of assigning values to pilot points; however, this 
can take the form of SVD alone, with no other form of 
regularization required, owing to the presumed statistical 
independence of the pilot-point parameters. 

To examine this in a little more detail, suppose that pilot 
points p possess a spatial covariance matrix C(p) described by

	
2
pC( ) = σp I

.	 (87)

From equation 14, model parameterization j on a 
cell‑by‑cell basis then has a spatial covariance matrix given by 

	 2
pC( ) T= σj LL .	 (88)

This is of diminished rank, and therefore contains many 
singular values of magnitude zero (which is why it lacks 
capacity to represent high spatial frequencies). If L is an 
orthogonal interpolator, its columns represent the eigenvectors 

of C(j). Where L is not orthogonal, this is not the case. In this 
case, suppose that (through singular value decomposition)

	 T T=LL USU 	 (89)

(where S includes zero-valued singular values because of the 
column-rank-deficiency of L). Then C(j) becomes

	 2
pC( ) T= σj USU .	 (90)

The question of whether certain pilot-point spacings used 
in conjunction with certain interpolation functions can achieve 
desirable properties for C(j) is addressed in the section on 
future directions, as this is a matter that requires investigation 
both into what properties it is desirable for this interpolator to 
possess, and whether these can be achieved or approximately 
achieved, through choice of a particular L.

Meanwhile, for guidance based on present knowledge, 
there may be situations where regularization inherent in the 
use of pilot points itself may be turned to advantage in certain 
geological contexts. In particular, where spatial correlation 
of geological features is unlikely to exist over a distance 
greater than the separation of pilot points, then their use in 
conjunction with SVD as a device for solution of the inverse 
problem may lead to something approaching a maximum 
likelihood solution for that problem. Although this may be 
viewed as a geologically unlikely situation, it may not be 
the case when combined with anisotropic interpolation. The 
existence of elongated anomalous features of limited width 
that may terminate relatively abruptly may indeed be a 
suitable geological abstraction to use for the purpose of model 
parameterization in some geological contexts. 

Tikhonov Regularization
As was discussed in the “Theory” section of this report, 

if spatial variability of hydraulic properties k is characterized 
by a spatial covariance matrix C(k), then the pursuit of a 
maximum likelihood solution to the inverse problem dictates 
that estimates be made of the coefficients by which the 
eigenvectors of this matrix are multiplied after normalization 
with respect to the standard deviation of variability associated 
with each such eigenvector; these are the elements of the 
matrix m of equation 33. This is not practical in real-world 
groundwater-model calibration, however, because:
1.	 C(k) is rarely known.

2.	 There probably is not much point in “knowing” C(k), as 
it is unlikely to provide an adequate description of innate 
hydraulic property spatial variability.

3.	 In most model domains, hydraulic property spatial 
variability is unlikely even to be stationary.
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Furthermore, computation of basis functions 
corresponding to the eigenvectors of C(k) over a densely 
gridded or meshed model domain would be a computationally 
burdensome procedure. (It is possible that the LSQR solver of 
Paige and Saunders (1982) or the PROPACK solver of Larsen 
(1998) may afford good approximations.)

In light of these difficulties, the question arises whether 
model calibration should attempt to estimate the normalized 
eigencomponents of C(p), the covariance matrix of a reduced 
parameter set, rather than those of C(k). In the present context, 
the reduced parameter set would be composed of hydraulic 
property values assigned to pilot points. The covariance matrix 
of C(p) is related to that of C(k) through the relation

	 C( ) C( ) T=p N k N 	 (91)

where

	 =N L .	 (92)

As discussed previously, unless L is orthogonal, N 
generally cannot be determined. In contrast, if L satisfies 
equation 46 and/or 48, N can be determined uniquely, so that 
(after equation 68)

	 2C( ) C( )T= αp L k L .	 (93)

Note, however, that where L is non-orthogonal, N could 
be inferred using a formula such as equation 20, which is 
repeated here for convenience:

	 1( )T −=N L L L .	 (94)

Furthermore, if pilot points are close enough together, 
then considering the approximations made in assuming a given 
C(k) in the first place, C(p) could be equated roughly to 

	 C( ) C( ) T=p S k S 	 (95)

where S is simply a selection matrix that selects elements from 
C(k) that pertain to model grid cells that coincide with pilot-
point locations.

For the same reasons as outlined above (particularly 
that of lack of stationarity of most realistic hydraulic 
property fields), estimation of normalized eigencomponents 
of C(p) probably would not provide a practical means 
of groundwater‑model calibration in most instances. 
Nevertheless, the fact that even an approximate C(p) or C(k) 
matrix exists should not be ignored in seeking an optimal 
solution to the inverse problem. In fact, it is impossible not 
to make some assumption about the innate variability of 
subsurface hydraulic properties. For example, if the minimum 
norm solution to the inverse problem is sought at the k level 
through computation of k  using SVD, implied in this choice 

of solution method is the fact that C(k) is assumed to be 
equal to δ2

kI. If the minimum norm solution is sought at the 
pilot-point level (through SVD-based computation of p ), this 
assumes variability of k in ways that are discussed above.

Therefore, there can be no consideration of obtaining 
a maximum likelihood solution to the inverse problem 
unless we explicitly take C(k) into account, even if it is 
known only approximately. SVD-estimation of normalized 
eigencomponents of this matrix has been shown to be 
infeasible. Use of Tikhonov regularization presents a practical 
alternative; however, whether this is applied at the level of 
native hydraulic parameters k or at the level of the reduced 
parameter set p, its usefulness is based on the following 
characteristics:

1.	 A modeler does not need to be as “committed” to 
a particular C(k) when using that matrix as part of 
a Tikhonov scheme as when choosing to estimate 
the normalized eigencomponents of this matrix. 
When embodying C(k) in a Tikhonov regularization 
scheme, the user designates that should it be 
necessary for local heterogeneity to arise, this should 
occur in a certain manner with certain preferred 
continuity relations followed to the extent feasible.

2.	 When applied in conjunction with an inverse 
problem solution algorithm such as that used by 
PEST, where the regularization weight factor is 
adjusted to complement a user-supplied target 
measurement objective function selected based 
on the anticipated level of measurement/structural 
noise, the strength with which Tikhonov constraints 
are applied can be adjusted automatically as 
the parameter-estimation process progresses. 
Selection of a less-than-perfect C(k) then can be 
complemented by a reduction in the strength with 
which regularization is applied, if its application 
compromises model-to-measurement fit.

“Preferred-Value” Regularization
The easiest to way to implement Tikhonov regularization 

is to provide a single item of prior information for each 
parameter used in the parameter-estimation process. In each 
such equation, that parameter is equated to its pre-calibration 
maximum likelihood value (which also should be its initial 
value). In geophysics, this is referred to as a smallness model 
or minimum-norm regularization (Aster and others, 2005 
for example). A covariance matrix then is assigned to all of 
these prior information equations according to the statistics of 
parameter spatial variability; this is the C(p) matrix, derived 
as above from the C(k) matrix, so that it pertains to the 
reduced parameter set. Where measurement noise is small, this 
formulation of the inverse problem approaches that described 
by equation 52, and thus achieves maximum likelihood.
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Use of preferred-value regularization has the following 
advantages:
1.	 It is easy to implement (see below).

2.	 It requires only one prior information equation per 
parameter. If a single, non-diagonal, C(p) covariance 
matrix is supplied in conjunction with all of these prior 
information equations, then for most parameter-estimation 
problems groundwater modelers encounter, inversion of 
this matrix for use in equation 52 is not too numerically 
laborious of a task.

3.	 In multi-layer contexts, preferred-value regularization 
can be applied to each layer and to each parameter type 
separately, possibly with separate C(p) submatrices for 
each. Inversion of a composite block diagonal C(p) matrix 
such as this should present no numerical difficulties.

4.	 If point measurements of hydraulic properties are 
available (for example, through pumping test analyses), 
the preferred value at each pilot-point location can be 
computed through Kriging from pumping test sites to 
the locations of pilot points. Furthermore, the covariance 
matrix of spatial variability C(p) can be altered in 
accordance with the conditioning effect of direct 
acquisition of system properties at pumping test locations. 
Thus, maximum use is made of site characterization 
data in seeking a maximum likelihood calibration of the 
model. 
The principal disadvantage of preferred-value 

regularization, however, is the fact that there are many 
situations where a preferred value for hydraulic properties is 
not known. Therefore, as the regularization weight factor is 
reduced to achieve a desired fit with the data (as it must be 
if preferred parameter values are mis-assigned), numerical 
stability is lost from the inversion process and parameter 
estimation may falter as a result.

The choice of an appropriate C(p) matrix to use was 
discussed in the previous section. Though it is not strictly 
theoretically correct, given the uncertainty associated with 
selection of a C(k) matrix, little is lost by computing C(p) 
based on the same variogram as that used for C(k) (thus by 
using equation 95).

Ideally, for reasons discussed earlier in this report, an 
orthogonal interpolator should be used to calculate hydraulic 
property values for the cells of a model grid or mesh from 
those assigned to pilot points. Presently, PEST groundwater 
modeling utility support software does not provide such 
an interpolator. Non-orthogonal interpolation may yet be 
beneficial, however, if its use results in an interpolated 
parameter field that has certain desirable relations with the 
assumed C(k) matrix of hydraulic property spatial variability.

“Preferred Difference” Regularization 
Although specific preferred differences can be specified, 

regularization constraints often are supplied in the form of 
“preferred homogeneity,” where the preferred parameter 
difference value is zero. Imposition of constraints of this type 
can lead to “smooth” solutions to the inverse problem. This 
may be more appropriate than preferred-value regularization 
where heterogeneity arises in a meaningful way out of a 
smooth condition, and a preferred background value is not 
known.

These techniques often are described in geophysics as 
higher-order Tikhonov regularization (Aster and others, 2005), 
which use a “smoothness” function in the form of a first- or 
second-derivative function imposed on the parameter field. 

PEST utilities support pilot-point-based preferred 
difference regularization in which prior information equations 
that encapsulate these differences are assigned weights that 
decrease with increasing pilot-point separation, in accordance 
with the presumed hydraulic property variogram for a study 
site. Each pilot point is linked to a number of other pilot points 
using a single difference equation for each such linkage, the 
number of such linkages being set by the user. 

This scheme has a number of disadvantages and could 
be considered in need of improvement. These disadvantages 
include the following:
1.	 It results in a large number of prior information equations 

as each pilot-point difference requires its own equation. 
This is not necessarily a problem, but it does require 
efficient internal storage of the resulting Jacobian matrix.

2.	 It ignores the fact that parameter differences are in fact 
statistically correlated. For example, T is a (large) matrix 
(with many columns) that expresses these difference 
relations. The covariance matrix of the set of “observed” 
differences of zero, which collectively make up preferred 
difference regularization constraints used in a calibration 
process, is actually given by

	 C( ) C( ) T=t T p T 	 (96)

	 where t = Tp.

	 Where each pilot point is linked to many other pilot 
points, use of this covariance matrix in the inversion 
process would be impractical because of its large size, 
in spite of the fact that pilot points constitute a reduced 
parameter set with respect to the native model parameters 
k.
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In spite of its shortcomings, the method presently 
supported by the PEST Groundwater Data Utilities has 
proven to be a successful regularization device in many 
practical inversion settings. Use of a C(p) matrix, calculated 
according to the same variogram as C(k), makes the method 
easy to implement. Furthermore, its theoretical shortcomings 
probably do not compromise the mathematical integrity of 
the parameter-estimation process any more than do the many 
other approximations that are involved in this process, some of 
which were discussed previously.

Other Regularization Formulations
The geophysical literature discusses the use of nonlinear 

Tikhonov relations that can be used for purposes such as:
1.	 To enhance the ability of heterogeneity to arise in a 

spatially limited manner whereby “total heterogeneity 
mass” is of maximum spatial density, rather than being 
diffuse.

2.	 To enhance the ability for heterogeneity to arise in 
proximity to known or inferred geological bodies. 

3.	 To promote maximum adherence to certain shapes/
dispositions/orientations of any heterogeneity that arises 
through the inversion process.

4.	 Using maximum entropy to enforce adherence to a 
weighted preferred value without penalizing sharp peaks 
and enforcing non-negativity through log transformation.
See, for example, Portniaguine and Zhdanov (1999) and 

Aster and others (2005) for discussion of some of these types 
of regularization.

PEST is able to accommodate nonlinear regularization 
relations just as easily as it accommodates linear regularization 
relations in the Tikhonov regularization process formulated as 
the constrained minimization problem of equation 53. These 
methods offer exciting possibilities for useful deployment in 
the groundwater-modeling context. However, there is currently  
no software available to assist in the automatic construction of 
these nonlinear regularization constraints.

Presently Available Software 
The PEST Groundwater Data Utilities include a suite of 

programs that facilitate the use of pilot-point parameterization 
in the groundwater-modeling context. Some of these programs 
include the ability to generate “preferred difference” prior 
information equations simultaneously with the computation 
of Kriging factors. The most powerful means of adding linear 
regularization constraints to a PEST-based inverse problem is 
provided by the GENREG utility. This utility has the ability to 
write prior information equations that link parameters within 
and between hydrostratigraphic units according to relations 
that may or may not involve parameter spatial location, with 

weight assignment strategies that may or may not involve a 
parameter covariance matrix. See Doherty (2007) for more 
details. 

Within the PEST suite itself, the ADDREG1 utility 
provides the easiest means of adding “preferred value” linear 
regularization to any PEST input dataset. This adds a prior 
information equation for each adjustable parameter to the 
PEST control file, in which that parameter is equated to its 
initial value. Prior information equations are assigned to 
different regularization groups according to the parameters 
they cite; PEST is able to assign differential weighting to these 
groups in inverse proportion to the composite sensitivities of 
parameters they cite.

Summary of Using Tikhonov Regularization with 
Pilot Points

In most incidences of underdetermined pilot-point-
based parameter estimation, it is recommended that 
Tikhonov regularization be used, regardless of whether 
other regularization devices such as SVD or SVD-assisted 
inversion also are used. Practical experience has demonstrated 
that parameter fields computed using an inversion scheme 
that includes Tikhonov regularization are more geologically 
reasonable than those that do not, even with simultaneous use 
of subspace regularization. The type of regularization best 
used is context-specific; it is anticipated that the previous 
discussion, as well as the discussion below, will assist a 
modeler in selecting an appropriate scheme for a particular 
modeling context. The use of regularization and SVD-based 
methods are covered in detail in Doherty and Hunt (2010).

In general, any type of regularization should be 
“reasonably pervasive.” For example, a user may go to great 
lengths to supply prior information equations, which link 
pilot-point parameters within each of a number of different 
hydrostratigraphic units of a model domain, thereby subjecting 
each layer to comprehensive “difference regularization;” 
however, they may then neglect to apply regularization 
between layers. This may result in an ill-posed inverse 
problem depending on boundary conditions used by the model 
and observations used in the parameter-estimation process. 
That is, nonuniqueness may still exist on a layer-by-layer 
basis as a model may be able to direct water flow through 
one or another of alternative overlying units with little or no 
effect on observations. The situation could be rectified in a 
number of ways. For example, prior information equations 
specifying interlayer parameter ratios (differences of logged 
parameter values) could be used. Alternatively, preferred-value 
regularization could be used for all pilot-point parameters 
for all layers (or just for some of them). Use of SVD or 
SVD-assisted inversion also would provide regularization 
and promote numerical stability by relegating inestimable 
parameter combinations to the calibration null space.
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When undertaking Tikhonov regularization, the user must 
select a value for the PEST PHIMLIM (target measurement 
objective function, in equation 53) variable. Fienen and others 
(2009) suggest this be set to the number of non-zero‑weighted 
observations (where weights are assigned values that are 
thought to be equal to the inverse of measurement noise 
standard deviations) because the user is often unaware of 
the amount of structural noise that is associated with a given 
dataset. At the beginning of the parameter-estimation process, 
an alternative approach is to set this variable to a very low 
value and use the FRACPHIM variable to gain the beneficial 
effects of Tikhonov regularization as the measurement 
objective function is lowered. FRACPHIM sets a temporary 
iteration-specific target measurement objective function 
at a user-supplied fraction of the current measurement 
objective function or to the user-supplied value of PHIMLIM, 
whichever is higher. A value of 0.1 or 0.2 often is most 
suitable for FRACPHIM. Once an initial parameter-estimation 
exercise has been carried out, PHIMLIM can be set to a 
more informed value for subsequent PEST runs. A “useful” 
value for PHIMLIM is one that provides a good fit between 
model outputs and field measurements, but shows no signs of 
over‑fitting through exhibiting heterogeneity which is judged 
to be geologically unreasonable.

If the SVD-assist scheme is used for solution of 
the inverse problem, PEST can be asked to list each 
parameter set that results in an improved calibration during 
subsequent iterations of the overall parameter-estimation 
process. If parameters achieved at the very end of the 
parameter‑estimation process are judged unrealistic, the user 
can select a geologically reasonable calibrated parameter set 
achieved earlier in the parameter-estimation process where the 
measurement objective function was slightly higher.

To save computation time, PEST ceases execution once 
the measurement objective falls below PHIMLIM. PEST can, 
however, be instructed to continue the parameter-estimation 
process until it is sure that the regularization objective 
function (which reflects lack of adherence to Tikhonov 
regularization constraints) is as low as possible (this normally 
forcing the measurement objective function to rise back 
to the level of PHIMLIM). When a user desires maximum 
adherence to the “default parameter conditions” that are 
encapsulated in regularization constraints, this aspect of PEST 
functionality should be activated through the control variable 
REGCONTINUE. Alternatively, PEST could be employed 
in “pareto” mode to maximize its adherence to regularization 
constraints; see Doherty, Hunt, and Tonkin (2010) for more 
information.

See Doherty (2008) for a guide to utility programs 
supplied with PEST, as well as PEST’s capabilities that 
support use of regularized inversion in the context of 
groundwater-model calibration.

Solution Methods

PEST provides a number of methods for solution of 
highly parameterized inverse problems. These include:
1.	 Gauss-Marquardt-Levenberg with Tikhonov 

regularization;

2.	 SVD with or without Tikhonov regularization;

3.	 SVD-assist with or without Tikhonov regularization; and

4.	 LSQR with or without Tikhonov regularization.
Where SVD-assist is chosen as a solution device, the user 

has the option of estimating super parameters using the Gauss-
Marquardt-Levenberg, SVD, or LSQR method. Furthermore, 
when Tikhonov regularization is used, the user has the choice 
of modifying its application through subspace enhancement, 
for which a number of implementation options are available.

Although it is beyond the scope of this report to present 
a description of the strengths and weaknesses of all these 
alternatives, the following points may guide the selection of 
pilot-point parameterization schemes and appropriate PEST 
settings for use in particular modeling contexts:
1.	 As mentioned previously, Tikhonov regularization 

should be used in most cases of pilot-point deployment. 
Furthermore, this should be “reasonably pervasive” in 
its formulation. If its strength of application appears to 
diminish toward the end of the parameter-estimation 
process, and numerical instability results in estimation 
of unrealistic parameter fields, consider subspace 
enhancement of Tikhonov regularization.

2.	 A subspace method should be used for computation 
of parameter upgrades. When a model runs quickly, 
SVD should be used. When model run-times are long, 
SVD-assist may be required instead. Parallelization of 
model runs can achieve dramatic gains in efficiency in 
implementing either of these (Hunt and others, 2010).

3.	 Where SVD-assisted parameter estimation is used, 
consideration should be given to using SVD as the 
related solution mechanism for super parameters. This 
provides “back-up stability” if too many super parameters 
are specified by the modeler. As described in PEST 
documentation, use of a few more super parameters than 
required to achieve uniqueness in solution of the inverse 
problem, together with Tikhonov regularization, can 
sometimes provide valuable assistance in overcoming 
limitations of the SVD-assist methodology when used in 
conjunction with excessively nonlinear models.
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4.	 If using SVD for solution of the inverse problem 
(regardless of whether base or super parameters are 
estimated), a low to intermediate value should be 
provided for the initial Marquardt lambda (PEST 
control variable RLAMBDA1); a value of 0.01 to 100 is 
suitable. The lambda multiplier RLAMFAC then should 
be set to -2, -3, or -4 to allow wide variation of the 
Marquardt lambda as the parameter-estimation process 
progresses. Experience has demonstrated that a wide 
ranging Marquardt lambda can provide stability in highly 
nonlinear contexts and can assist in mitigating detrimental 
effects of poor finite-difference-calculated derivatives.

Current Research Topics 
This report is an attempt to commence the process of 

providing a mathematical description of the role of pilot points 
in model calibration. It has been assumed that calibration takes 
place in a highly parameterized context, and that pilot points 
are used as a practical measure, partly for accommodating the 
necessity to compute derivatives of model outputs with respect 
to adjustable parameters using finite parameter differences 
based on repeated model runs, and partly to reduce other facets 
of the numerical burden of working in a highly parameterized 
context such as large computer memory requirements.

The analysis presented herein indicates that pilot-point 
parameterization and associated regularized inversion, as 
currently implemented by PEST and its ancillary utility 
support software, can be extended. Some of the issues that 
have been identified can be rectified with little effort. On the 
other hand, some research (probably involving numerical 
experimentation based on synthetic models) is required before 
other improvements can be made. 

The purpose of this section is to provide some 
suggestions for improvements to the current methodology 
and directions for further research into the use of pilot points 
in highly parameterized regularized inversion. It is possible 
that some of the suggestions provided below will not, in fact, 
lead to hoped-for improvements in the use of pilot points as a 
groundwater-model parameterization device. Nonetheless, the 
suggested research still will prove worthwhile, for it will have 
demonstrated that the methods currently applied, although 
not entirely satisfactory, are as satisfactory as any alternative 
method. 

Subspace Enhanced Tikhonov Regularization

The role of Tikhonov regularization in pilot-point-based 
inversion has been discussed extensively in this report. It was 
demonstrated previously that, if used in conjunction with a 
covariance matrix that provides an appropriate characterization 
of spatial variability of hydraulic properties, its use converges 

to the maximum likelihood solution of the inverse problem 
as measurement noise approaches zero. In the presence 
of measurement/structural noise of unknown statistical 
properties, however, no such mathematical guarantee exists. 
Furthermore, experience in practical implementation of the 
method has demonstrated less than optimal behavior where 
hydraulic property heterogeneity and/or measurement/
structural noise are substantial and nonstationary.

Conceptually, it makes sense that regularization 
constraints should be most strongly applied to those 
parameters, or to those combinations of parameters, about 
which the calibration dataset is least informative. At the same 
time, constraints on those combinations of parameters of 
which the data is somewhat-to-very informative should not 
be completely relaxed, for this may lead to over-fitting of that 
data. 

The roles of the calibration solution and null spaces in 
the parameter-estimation process are described by Moore 
and Doherty (2005). They show that, within the calibration 
solution subspace, estimation of eigencomponents of the 
Q1/2X matrix (where Q is the observation weight matrix and 
X is the Jacobian matrix) associated with singular values of 
decreasing magnitude is fraught with an increasing likelihood 
of contamination of these estimates by measurement/structural 
noise; this potential rises with the inverse of singular value 
magnitude. This indicates that use of a single regularization 
weight factor to determine the strength with which all 
regularization constraints are applied is an inappropriately 
blunt regularization methodology and that differential 
weighting of Tikhonov constraints may be more appropriate in 
many modeling contexts.

As presently implemented, PEST allows some degree 
of inter-regularization-equation weight factor variability in 
accordance with the need for strengthened regularization 
constraints to compensate for observation data inadequacy; 
this functionality is implemented by setting the IREGADJ 
regularization control variable to 1, 2, or 3. This strategy 
is coarse, however, and is based on composite sensitivities 
of model outputs to individual parameters rather than to 
linear combinations of parameters (each of which may be 
individually sensitive but are collectively insensitive because 
of high correlation).

By setting IREGADJ to 4 or 5, an enhanced form of 
inter-regularization weights adjustment can be implemented 
by PEST. This scheme involves projection of all regularization 
observations and (or) prior information equations onto 
the eigenvectors of Q1/2 X. A suitable weight for each 
such regularization constraint then is computed based on 
the direction cosine between the projection of parameter 
sensitivities embodied in the constraint and the singular 
value associated with each eigenvector onto which projection 
takes place. Testing of the methodology in a variety of 
practical settings is needed so that suitable guidelines for 
implementation in various modeling contexts can be identified.
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Nonlinear Regularization

The use of nonlinear Tikhonov regularization schemes 
in facilitating the appearance of geologically realistic 
heterogeneity through the process of model calibration 
has been indicated. Such methods may prove very useful 
in groundwater-model calibration, especially where large 
regional water-management models are built in data-rich 
modeling contexts in areas of well-known geology. It follows 
that the addition of a number of utility programs to the current 
Groundwater Data Utility suite, which would expedite the 
use of such methods, would enhance the general utility of the 
PEST software suite.

Orthogonal Interpolation 

The benefits of orthogonal interpolation were discussed 
previously. In summary, the use of an orthogonal interpolation 
scheme should provide that parameter field with properties 
that allow it to approach maximum likelihood status, provided 
the emplacement density of pilot points is sufficiently high.

This mathematical conclusion is supported by limited 
practical experience showing that use of a Kriging scheme in 
which the radius of influence is limited, performs better than 
one that uses a large search radius. The former scheme more 
closely approaches orthogonality than the latter scheme.

In an irregular model domain, it may not be possible 
(or practical) to achieve strict orthogonality of basis or 
interpolation functions. The problem would be compounded 
where pilot-point emplacement is irregular, and anisotropy 
should be introduced to accommodate likely elongation of 
anomalous features. In fact, an ideal interpolation scheme 
should be “locally stretchable” (while still maintaining or 
approaching orthogonality) so that anisotropy can be applied 
in some areas, but not in others, with a gradation between the 
two.

The easiest orthogonal interpolation methodology to 
implement is the nearest-neighbor scheme. In implementing 
this scheme, each model cell is assigned a value equal to that 
of its closest pilot point. Although this would indeed achieve 
orthogonality, it would be more difficult for such a scheme 
to satisfy equation 29 than a smooth interpolation scheme 
without the use of an unduly high number of pilot points. 
It would thus prove difficult to use in conjunction with an 
irregular pilot-point emplacement strategy, where an attempt 
is made to complement increased/decreased data density 
with increased/decreased pilot-point density. It also may lead 
to the creation of “numerical noise” associated with model 
predictions made near the boundaries of piecewise orthogonal 
areas introduced to the model domain through such a scheme. 
Intuition thus indicates that a smooth interpolator would serve 
the modeling process better and would provide parameter 
fields that are more geologically reasonable.

Design of an optimal interpolation scheme to 
complement pilot-point usage in the groundwater-modeling 
context is a matter that requires additional research. Apart 
from orthogonality, other desirable features of such a scheme 
include the following.
1.	 It should be easy to apply in complex model domains.

2.	 Interpolation should be computationally efficient, as it 
must be undertaken to many thousands (possibly hundreds 
of thousands) of model cells on many occasions during a 
typical calibration process.

3.	 It should be useable with both regular and irregular 
pilot‑point networks.

4.	 It should readily accommodate (spatially variable) 
anisotropy.
Other attributes also may be considered desirable for 

a pilot-point-based interpolation scheme. For example, 
equation 70 (repeated below) provides the spatial covariance 
matrix of an interpolated parameter field 

	 2 2C( ) C( )T T T T T= α = αj LL k LL LL WEW LL .	 (97)

C(j) is rank-deficient (because LLT is rank-deficient) 
and thus possesses some (many) zero-valued singular 
values. If eigenvectors of C(j) with non-zero singular values 
approximate the dominate eigenvectors of C(k), and if the 
singular values associated with these eigenvectors are similar 
in both matrices, this gives rise to the situation depicted in 
the lower panel of figure 6 where an interpolated parameter 
field retains the same stochastic character as an original field, 
except for the fact that certain eigencomponents are missing 
from the interpolated field (hopefully those that span the 
model’s null space in accordance with equation 72). Thus, it is 
beneficial that

	 1 1 1C( ) T≈j WE W .	 (98)

Suppose that a two-dimensional orthogonal interpolator 
(or approximately orthogonal interpolator) is expressible as 
a family of analytical interpolation functions. Properties of 
such functions may therefore be adjustable through alteration 
of the parameters that govern their shape. If this is the case, 
attainment of interpolator optimality may be possible in the 
least-squares sense in each modeling context, with function 
parameters being dependent upon the details of data density, 
pilot-point density, shape of the model domain, and other 
factors. Thus, for example, it may be possible to adjust 
parameters governing L such that (using equation 97)

	 2
1 1 1

T T T T≈ αWE W LL WEW LL .	 (99)
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If LLT is orthogonal to W2 (as ideally it should be—see 
equation 71), this becomes 

	 1 1
T≈ αW LL W .	 (100)

Thus,

 	 1( )T−α =I LL W 0 .	 (101)

Alternatively (or additionally), the parameters governing 
L could be adjusted such that the elements of f, defined as

	 2
T =W L f 	 (102)

approach zero in the least-squares sense.

Non-Orthogonal Interpolation 

The implicit regularization that attends the use of pilot 
points was discussed previously. Suppose that an interpolated 
parameter field is derived from a set of pilot points that are 
assigned an arbitrary covariance matrix C(p). The interpolated 
parameter field then has the covariance matrix C(j) given by

	 C( ) C( ) T=j L p L 	 (103)

where we do not necessarily assume that L represents an 
orthogonal interpolator.

C(j) should possess certain properties. Qualitatively, 
C(j) should resemble C(k) as closely as possible up to the 
nth eigenvector of this matrix, where n is the number of 
pilot points that are used. (Eigenvectors after the nth are lost 
through the use of pilot points; hopefully, these lie within the 
null space of the model operator Z.)

To measure the similarity of C(k) to C(j), we could 
compute two n-dimensional vectors, which we make as 
similar to their ideal-valued counterparts as possible in the 
weighted least-squares sense through adjusting the parameters 
governing the analytical interpolation functions incorporated 
in L, and maybe the variogram or other analytical stochastic 
descriptor on which C(p) is based. 

W contains the first n eigenvectors of C(k). A first 
measure of similarity is that variability of C(j) in each of the 
directions comprising the columns of W be the same as that of 
C(j). This occurs if

	 1 1diag[ C( ) ] diag[ ]T ≈W j W E 	 (104)

where

 	 1 1
1 2

2 2
C( ) [ ]

T
T

T
  = =      

E 0 Wk WEW W W 0 E W
.	 (105)

The second measure of similarity is the alignment of the 
eigenvectors of C(j) with the first n eigenvectors of C(k). A 
high degree of alignment occurs if

	 1sup (row)[ ] 1T ≈W U 	 (106)

where the matrix U holds the eigenvectors of C(j), calculated 
as

	 C( ) T=j USU 	 (107)

and sup(row) 1[ ]TW U  is an n-dimensional vector, the ith 
element of which is the largest element of the ith row of WT

1U.

Optimal Emplacement of Pilot Points

When pilot points are dispersed irregularly over a model 
domain, the locations at which they are placed may exert a 
considerable influence on their ability to satisfy equations 29 
and 64, and thereby to constitute an optimal reduced parameter 
set. Ideally, emplacement should be at locations within the 
model domain where the information content of the calibration 
dataset is most expressed. The focusing of information 
contained within the calibration dataset is measured by the 
resolution matrix, this being a by-product of the regularized 
inversion process. See Menke (1984), Aster and others (2005), 
and Moore and Doherty (2006) for further details. 

To further explain optimal placement of pilot points, 
a number of synthetic models whose construction is based 
on a large number of (possibly cell-based) parameters are 
needed. Resolution matrices for these parameter sets then 
can be computed based on appropriate synthetic calibration 
datasets. Computation of derivatives for such large numbers 
of parameters is most efficiently performed using the 
adjoint‑state formulation of Clemo (written communication, 
2007) for MODFLOW-2005. An approximation to the 
resolution matrix, or the resolution matrix itself, then could be 
computed based on approximate singular value decomposition 
as undertaken using the LSQR (Paige and Saunders, 1982) and 
(or) PROPACK (Larsen, 1998) solvers. 

Resolution analyses conducted on such synthetic models 
would allow a detailed exploration of the effect of placement 
of pilot points on optimality of the inverse problem solution 
using a reduced parameter set. In particular, suggestions 
made in this report that hydraulic conductivity pilot points be 
placed between head measurement points in the downgradient 
direction and that storage coefficient pilot points be placed at 
the same locations as measurement wells, could be evaluated 
rigorously .
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Summary
The following is a list of suggestions for pilot‑point 

use made in this report. These suggestions are based on 
functionality currently available through parameter‑estimation 
software (PEST) and its utilities along with a current 
understanding of research and development directions. It is 
expected that they may be revisited and amended in the future:
1.	 The number of pilot points used in any particular 

calibration exercise normally will be limited by practical 
considerations such as the length of model run times and 
integrity of finite-difference-based derivatives.

2.	 In general, use as many pilot points as is numerically 
practical. In certain modeling contexts, however, a user 
may wish to limit pilot-point density to limit the spatial 
frequencies of any heterogeneity that emerges during the 
calibration process, thereby recognizing that pilot points 
alone are a type of regularization device.

3.	 If using Kriging for spatial interpolation, limit the number 
of pilot points used for interpolation to any cell to a 
maximum of 10. 

4.	 For some models, it may be possible to use a uniform 
distribution of pilot points. This may make post-
calibration analysis of parameter contributions to current 
predictive uncertainty easier to interpret. In most cases, 
however, economy of model runs will dictate that the 
pilot-point distribution be nonuniform.

5.	 Use a higher pilot-point density where observation density 
is greater and a lower pilot-point density elsewhere. 
Ensure that a minimum pilot-point density prevails 
throughout the entire model domain, thereby avoiding the 
occurrence of any “pilot-point deserts.” 

6.	 Use an exponential variogram for most cases, and do not 
specify an excessive variogram range for calculation of 
Kriging factors; this may lead to local spatial oscillations 
in the estimated parameter field. If using an exponential 
variogram the a value in the variogram equation should 
be set to a value that is roughly equal to the maximum 
distance between any model cell and its closest pilot point 
if an irregular pilot-point distribution is used. Set it to 
between one and two times the inter-pilot-point distance if 
a regular distribution of pilot points is used.

7.	 Place pilot points at locations at which it is felt that 
observations are most informative. For pilot points that 
represent hydraulic conductivity, these locations may lie 
between observation wells in the direction of groundwater 
gradient. For pilot points that represent storage properties, 
pilot points may be best placed directly at observation 
well locations.

8.	 Pilot points should be placed at locations where direct 
measurements of system properties have been made. 
Regularization equations, and the covariance matrices 
which govern their application, should be adjusted in 
accordance with these measurements.

9.	 Use pervasive Tikhonov regularization. Set the target 
measurement objective function (PHIMLIM) to a level 
that is commensurate with that of measurement/structural 
noise. Be prepared to set it higher during subsequent 
PEST runs if “overfitting” has resulted in the introduction 
of geologically unreasonable heterogeneity, indicating 
that higher-than-expected measurement/structural noise 
prevails. Alternatively, if the emergence of strong local 
heterogeneity indicates local model inadequacies, rectify 
these conceptual inadequacies.

10.	 Use subspace methods for solution of the inverse 
problem, regardless of whether Tikhonov regularization 
is used. Use a Marquardt lambda selection strategy that 
ensures wide-ranging lambda values.
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