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Empirical Models of Wind Conditions on Upper Klamath 
Lake, Oregon

By Norman L. Buccola and Tamara M. Wood

Abstract
Upper Klamath Lake is a large (230 square kilometers), 

shallow (mean depth 2.8 meters at full pool) lake in southern 
Oregon. Lake circulation patterns are driven largely by wind, 
and the resulting currents affect the water quality and ecology 
of the lake. To support hydrodynamic modeling of the lake 
and statistical investigations of the relation between wind and 
lake water-quality measurements, the U.S. Geological Survey 
has monitored wind conditions along the lakeshore and at 
floating raft sites in the middle of the lake since 2005. In order 
to make the existing wind archive more useful, this report 
summarizes the development of empirical wind models that 
serve two purposes: (1) to fill short (on the order of hours or 
days) wind data gaps at raft sites in the middle of the lake, and 
(2) to reconstruct, on a daily basis, over periods of months to 
years, historical wind conditions at U.S. Geological Survey 
sites prior to 2005. Empirical wind models based on Artificial 
Neural Network (ANN) and Multivariate-Adaptive Regressive 
Splines (MARS) algorithms were compared. ANNs were 
better suited to simulating the 10-minute wind data that are 
the dependent variables of the gap-filling models, but the 
simpler MARS algorithm may be adequate to accurately 
simulate the daily wind data that are the dependent variables 
of the historical wind models. To further test the accuracy of 
the gap-filling models, the resulting simulated winds were 
used to force the hydrodynamic model of the lake, and the 
resulting simulated currents were compared to measurements 
from an acoustic Doppler current profiler. The error statistics 
indicated that the simulation of currents was degraded as 
compared to when the model was forced with observed winds, 
but probably is adequate for short gaps in the data of a few 
days or less. Transport seems to be less affected by the use of 
the simulated winds in place of observed winds. The simulated 
tracer concentration was similar between model results when 
simulated winds were used to force the model, and when 
observed winds were used to force the model, and differences 
between the two results did not accumulate over time. 

Introduction
The importance of wind in determining circulation 

patterns and water quality in Upper Klamath Lake has been 
well established (Laenen and LeTourneau, 1996; Kann and 
Welch, 2005; Wood and others, 2006; Holiman and others, 
2008; Wood and others, 2008). The collection of wind data at 
or near the lake is, therefore, a critical contribution to studies 
of the lake’s ecosystem and water quality. These studies 
address problems as diverse as (1) the occurrence of low 
dissolved-oxygen events (Kann and Welch, 2005; Wood and 
others, 2006), (2) the dependence of cyanobacterial vertical 
distribution on water-column stratification (J.W. Gartner, 
U.S Geological Survey, unpub. data, 2010), (3) the transport 
through the Williamson River Delta as a function of lake 
elevation, and wind speed and direction (T.M. Wood, U.S. 
Geological Survey, unpub. data, 2010), and (4) the transport 
of young larval suckers through the Williamson River Delta 
(Wood, 2009). 

In 2005, as part of a cooperative study with the Bureau 
of Reclamation to determine water circulation patterns and 
heat transport in Upper Klamath Lake, several meteorological 
sites were established on the shoreline of Upper Klamath 
Lake and at two sites on rafts on the lake (fig. 1), to accurately 
describe the spatial variation of the wind over the surface of 
the lake. Wind data collected during the summers of 2005 
and 2006 were used successfully as a forcing function in a 
hydrodynamic model of Upper Klamath Lake developed by 
Wood and others (2008). However, the collection of wind data 
since 2005 has been limited by the fact that the raft sites are 
in place only during the late spring through early fall months, 
May through September.

The ability to predict or, in the case of looking back in 
time, to “reconstruct” wind speed and direction at a site, would 
be useful for two reasons. First, the data needed to drive the 
hydrodynamic model are unavailable outside of May through 
September, which limits some applications of the model. 
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Figure 1. Upper Klamath Lake, Oregon, showing the location of sites used in this report. 
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For example, one application is to predict the passive transport 
of larval suckers through the Williamson River Delta and the 
lake. Larval suckers drift down the Williamson River in early 
spring, in some years prior to the availability of wind data at 
the two raft sites on the lake. Therefore, the ability to simulate 
early spring conditions at those sites a few days or weeks prior 
to the deployment of the rafts would make the hydrodynamic 
model more useful. In addition, there are occasional gaps in 
the wind records from May through October due to equipment 
failures that are too long to fill by simple interpolation. In 
these cases, reconstruction of the wind data is needed over a 
relatively short period of days or a few weeks, but at a high 
temporal resolution (at least hourly) to provide an accurate 
forcing function for the hydrodynamic model. The second 
reason that reconstructing the wind data at a site close to the 
lake would be useful is that it has the potential to extend the 
data record backward in time, prior to 2005, based on longer 
datasets collected elsewhere. This could provide several more 
years of overlap between wind data and water quality or other 
datasets for statistical analysis (for example, the Klamath 
Tribes water-quality monitoring began in 1986). 

This study, done in cooperation with the Bureau of 
Reclamation, evaluated the accuracy of two multivariate, 
nonlinear, empirical methods for reconstructing the wind 
conditions at the raft sites on Upper Klamath Lake based on 
meteorological data collected at sites on the shoreline of the 
lake and at other locations in the basin. These two methods 
were Multivariate Adaptive Regressive Splines (MARS), a 
variation of linear regression, and Artificial Neural Networks 
(ANNs). MARS is a nonparametric technique that describes 
nonlinear dependencies on independent variables with 
piecewise linear segments of differing slope (Friedman, 1991). 
The change in slope occurs at a “knot” value that is part of the 
solution to the problem. Because the form of individual terms 
is linear, the dependencies of MARS models are simpler to 
understand and visualize than are those of the ANN models. 
The MARS models are built in two passes. On the forward 
pass, terms are added until the maximum specified number 
of terms is reached. On the backward pass, all existing terms 
are considered at each step and the least important term is 
removed, based on a generalized cross-validation comparison, 
which is a means of weighing goodness-of-fit against 
additional model complexity (Milborrow, 2009). With this 
recursive procedure, MARS selects the independent variables 
that constitute the best model. 

Artificial Neural Networks have been used successfully 
in environmental studies to predict wind (Kretzschmar 
and others, 2004; Kulkarni and others, 2008), storm runoff 
(Shamseldin, 1997), and water-quality parameters, such as 
dissolved oxygen (Rounds, 2002), water temperature (Risley 
and others 2003), salinity (Conrads and Roehl, 1999; Conrads 

and others, 2006; Conrads and Roehl, 2007), sediment 
concentration (Rajaee and others, 2009), and pH (Cannon and 
Whitfield, 2001). ANNs rely on discerning and then “learning” 
the relations among variables based on many realizations of 
past events covering a large range in conditions, and therefore 
benefit from the large amount of data provided by the long 
records of hourly measurements collected at meteorological 
sites. Both ANN and MARS methods, being empirical in 
nature, allow data of varying types (for example, wind, air 
temperature, relative humidity, or solar radiation) to be tested 
as important explanatory variables without knowledge of a 
specific deterministic equation to describe the relation between 
dependent and independent variables, and do not require that 
the relations be linear. As such, these models are well suited to 
the current problem of reconstructing the wind data at a single 
site based on wind and other meteorological data collected 
nearby. The logical assumption is that the datasets are related, 
but the exact nature and physical description of that relation 
are unavailable. 

Two sets of models were built for this study, and each set 
included the MARS and the ANN approach to the problem. 
The first set of models, used for reconstructing short periods 
of 10-minute wind data at the raft sites, is designated as 
the “gap-filling” models. The second set of models, used to 
reconstruct longer periods of daily wind data, is designated as 
the “historical” models.

Purpose and Scope

This report presents the results of efforts to demonstrate 
the feasibility of models based on MARS and ANN to 
simulate the wind at two raft sites on Upper Klamath Lake and 
document their accuracy, using as input the meteorological 
variables measured at six other sites, four U.S. Geological 
Survey (USGS) sites on the shoreline of the lake, and two 
AgriMet sites located away from the shoreline. These models 
simulate the wind over periods of a few days to a week or 
more on a 10-minute basis to match the temporal resolution of 
the observations and are appropriate only for filling gaps in the 
data since 2005, when intensive collection of meteorological 
data around the shoreline of the lake began.

Second, this report presents the results of efforts to assess 
the feasibility and document the accuracy of models, based on 
MARS and ANN, to simulate the historical wind record at a 
single site on the lake shoreline on a daily basis. These models 
could be used to reconstruct the wind record at any lake site 
since 2000, using data from the long-term Pacific Northwest 
Cooperative Agricultural Weather Network (AgriMet) and the 
National Climatic Data Center (NCDC) sites located from 8.0 
to 11.5 km from the shoreline of Upper Klamath Lake. 
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Data Description
Wind measurements used in the gap-filling model were 

collected at six USGS meteorological sites—MDL, MDN, 
BLB, HDB, SSHR, WMR—as well as two nearby AgriMet 
sites (Bureau of Reclamation, 1997)—AGKO and KFLO 
(fig. 1). Meteorological instrumentation at sites MDL and 
MDN was mounted on floating rafts on the lake during the 
summer (approximately May through September); data were 
collected at the other sites continuously through the year. 
Construction associated with the breaching of levees around 
the Williamson River Delta dictated that the site near the 
mouth of the Williamson River be relocated twice during the 
period covered by this report. Site WMR was relocated to 
WME in May 2007, and WME was in turn relocated to WRW 
in April 2008. Data from WMR, WME, and WRW were used 
interchangeably in this report due to their close proximity; 
references to WMR wind data should be interpreted to mean 
data from the Williamson River Delta site, which was at 
one of these three locations, depending on the time period. 
During the periods used for calibration and validation of the 
gap-filling model, USGS data were measured at 10-minute 
intervals. AgriMet data were collected at 15-minute intervals, 
and for the purposes of the gap-filling wind model, were 
interpolated linearly (after a conversion to north-south and 
east-west components) to match the 10-minute intervals of the 
USGS data. The air temperature used in the gap-filling model 
was measured at site WMR and was collected at 10-minute 
intervals. 

Datasets used in the historical wind model included the 
wind measured at the AgriMet sites AGKO and KFLO (daily 
mean speed and direction), as well as global solar radiation 
(cumulative daily), relative humidity (daily mean), and air 
temperature (daily mean) measured at AGKO. These variables 
were downloaded from the AgriMet website as daily values 
(Bureau of Reclamation, 1997). The daily mean wind speed 
and direction was then converted to east-west and north-
south components, when appropriate, and depending on 
the model type. An additional dataset used in the historical 
model is the data collected since 1959 at the Klamath Falls 
Airport (KLMT) by the National Oceanic and Atmospheric 
Administration and distributed via the Internet by the NCDC 
(National Oceanic and Atmospheric Administration, no date). 
The KLMT site (fig. 1) is only about 2 km from the KFLO 
site, but the sensors at the AgriMet sites are at 2 m above the 
ground, whereas the sensors at the KLMT sites are at 10 m 
above the ground. Daily means of the wind components, air 
temperature, dew point temperature, sky cover, and altimetric 
pressure were calculated from the original NCDC data, 
which were collected at irregular intervals over the day, but 
generally at hourly temporal resolution. Daily means of sky 
cover were calculated after converting categorical values to 
numerical values as follows (adapted from ASOS user’s guide 
[National Weather Service, 1998]): clear sky = 0, scattered 
clouds = 0.31, broken clouds = 0.75, overcast sky = 0.83, partial 
obscuration = 0.92, and obscuration = 1.0.

Statistical Methods and Model 
Algorithms

Two statistical modeling algorithms were used and 
compared in both the gap-filling and historical models: 
Artificial Neural Networks (ANN) and Multivariate Adaptive 
Regressive Splines (MARS). ANNs provide a flexible 
method of relating input and output variables through an 
interconnected mesh of nonlinear transfer functions. The 
R-package nnet provided the feed-forward, single-hidden-
layer ANN that was used in this work (Venables and Ripley, 
2002). Nondefault parameters used in the nnet algorithm 
were size (number of units in the hidden layer) and decay 
(weight decay). The number of units in the hidden layer (size 
parameter) generally determines the complexity of the neural-
network model and is relative to the complexity of the dataset 
that is being used to train or calibrate the model. The weight 
decay (decay parameter) is dependent on the size parameter, 
such that the former will not have much effect until the latter 
is of a sufficient value. Therefore, the minimum number of 
hidden-layer units (size) was determined first, as it primarily 
determined the complexity of the ANN. After size was 
determined, the optimum decay value was determined while 
holding size constant. The best model results were achieved 
through an optimization process in which size and decay were 
adjusted by trial-and-error iteratively until model-fit statistics 
from the calibration and validation time periods matched as 
closely as possible. The goal of this optimization process was 
to obtain parameter values, which resulted in models that 
could accurately simulate a wide range of wind conditions.

MARS is a multiple-regression technique that allows 
for nonlinearity between the dependent and independent 
variables described by a discrete change in slope between 
linear segments. MARS can achieve a closer fit to measured 
data using a larger number of input variables than least-
squares regression while still utilizing recursive linear-
regression techniques (Friedman, 1991). The R-package earth 
incorporates the MARS algorithms and has the ability to 
sort through a large initial set of input variables by removing 
input variables stepwise from this initial model framework 
until the most statistically effective subset of variables is 
left, resulting in a model that is not overfit (Milborrow, 
2009). The nondefault parameter in the earth package that 
was manipulated for this work was nk, which is one of the 
criteria used to limit the number of input variables that are 
used to predict the dependent variable in the MARS model 
construction process. The value of nk was set to the smallest 
possible value (thereby limiting the complexity of the model) 
that did not show a substantial degradation in performance 
over a more complex model (one with a higher nk value). This 
iterative process was guided by minimizing the difference 
between fit statistics calculated over the calibration and 
validation time periods. 
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Gap-Filling Wind Models

The dependent variables of the gap-filling models 
numbered four: the east-west and north-south components 
of the wind at two sites, MDN and MDL. The independent 
(explanatory) variables were the east-west and north-south 
components of the wind at six sites (HDB, BLB, WMR, 
SSHR, AGKO, KFLO), and air temperature at one site 
(WMR, fig. 1). Each time series was passed to both ANN 
and MARS models in three ways—with no preprocessing 
(NOPPM) and with two types of preprocessing with different 
degrees of smoothing. These two methods are denoted as 
preprocessing method 1 (PPM1), in which the original data 
were decomposed into low- and high-frequency components, 
and preprocessing method 2 (PPM2), in which an eigenvector 
filter was used to smooth the data (fig. 2).

The first preprocessing method (PPM1) consisted of 
decomposing each measured wind time series into low- and 
high-frequency components. The low-frequency component 
was a 24-hour moving average of the original data. The 
high-frequency component was obtained by subtracting 
the low-frequency component from the original data. This 
high-frequency component was smoothed using a 3-hour 
moving average. The low- and high-frequency components 
were passed to separate models that were used to simulate 
the low- and high-frequency components of the dependent 
variables with both ANN and MARS. Low-frequency model 
output was added to the list of possible inputs that were used 
in the high-frequency models. The final output time series was 
obtained by adding the two simulated components together 
(fig. 3). 

tac10-0520_fig02

Projection of wind speed and direction onto north-south and east-west components

Low freq. component High freq. component

Lags

ANN/MARS

Low/high frequency
decomposition (PPM1) 

Eigenvector
filtering (PPM2) 

Recombine components

Calculate goodness-of-
fit statistics

Calculate goodness-of-
fit statistics

Lags

Interpolate 10-minute data
from hourly or 15-minute data

Lags

ANN/MARS

ANN/MARS

3-hour moving average

Scale variables

Scale
variables 

No Preprocessing
(NOPPM) 

Calculate goodness-of-
fit statistics

Lags

ANN/MARS

Scale
variables 

Scale variables

Rescale output Rescale output Rescale output

Figure 2. Steps in the construction of gap-filling models for wind time series on Upper Klamath Lake, Oregon. 



6  Empirical Models of Wind Conditions on Upper Klamath Lake, Oregon

The second method of preprocessing the input data made 
use of an eigenvector filter, essentially performing a principal 
component analysis on the original time series and lagged 
copies of the time series. The function decevf in the R-package 
pastecs was used to perform this calculation (Ibañez and 
others, 2009). The parameter lag, in this filtering algorithm, 
was set to 4 hours after a trial-and-error optimization process. 
The goal of this filter optimization was to smooth each time 
series while minimizing the loss of important high-frequency 
fluctuations. The time series was then reconstructed using 
only the two most important eigenvectors, resulting in a 
smoothed version of the original time series. The preprocessed 
time series was then passed to both ANN and MARS models 
(fig. 2). 

In order to incorporate the large-scale spatial features 
of the wind over the lake, time series of estimates of the 
two-dimensional divergence (the amount of spreading of 
the wind vectors) and curl (the amount of rotation of the 
wind vectors) of the wind were calculated and used as 
two additional inputs to the wind models. Based on a two-
dimensional representation (at ground level) of the wind 
at sites WME (the northernmost lake sites) and SSHR (the 
southernmost lake sites), the divergence (div) and curl (curl) 
of the wind field  W (x,y) were calculated at each observation 
time as follows:
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The final preprocessing step was to scale the magnitude 
of each time series to the interval [0,1]. This assured that the 
range of all model inputs was the same, and in the case of the 
ANN model, that the range matched the range of the internal 
ANN output units (Venables and Ripley, 2002). Model inputs 
were scaled linearly using a method adopted from Rajee and 
others (2009):

( min( )) ,
(max( ) min( ))

where
is the original time series, 
is the scaled time series,

max( ) is the maximum of the time series, and
min( ) is the minimum of the time series.

s

s

x xx
x x

x
x
x
x

−
=

−
 (3)

This scaling was repeated for each time series; thus, the values 
of min(x) and max(x) were unique to each time series, and 
furthermore, were calculated for the calibration dataset and 
used unchanged in the validation dataset. The output of all 
models was postprocessed using equation 4: 

( )max( ) min( ) min( ),

where
is the output time series.

o s

o

x x x x x

x

= − +  (4)

In addition to preprocessing, lags were applied to each 
input variable to create additional model inputs that were 
mathematically independent. All variables were lagged by 
-6, +6, +12, or +24 hours, where a positive lag indicates that 
the time series was shifted forward in time and a negative lag 
indicates that it was shifted backward in time. All gap-filling 
models were calibrated using data from May 12, 2007, to 
September 29, 2007, and validated with data from May 12, 
2006, to September 30, 2006. These dates bracketed the period 
when the rafts were located at sites MDN and MDL. 

Historical Wind Models

Two methods were used to simulate a daily wind record 
over a long period of time. The first method, denoted HIST1, 
used as a dependent variable the daily mean wind speed at 
WMR (fig. 1). For HIST1, the daily mean wind direction at 
the Klamath Falls Airport (KLMT), with a constant rotation, 
was used as a proxy for the wind direction at WMR. (For 
this purpose, the daily mean wind direction is defined as 
the direction of the vector whose orthogonal components 
are the daily mean of the east-west and north-south wind 
components.) The rotation of +5 degrees was determined from 
the distribution of the difference between the daily mean wind 
direction at WMR and KLMT over the calibration time period 
(fig. 4). The independent (explanatory) variables for this 
method were the daily mean wind speed, relative humidity, air 
temperature, and daily cumulative solar radiation measured at 
AGKO and KFLO, as well as the daily mean wind speed, sky 
cover, dew point temperature, air temperature, and altimetric 
pressure at KLMT. 

The second method, denoted HIST2, used as dependent 
variables the daily mean of the east-west and north-south 
components of the wind at WMR and simulated each 
component separately (fig. 5). The independent variables 
for HIST2 were the daily mean east-west and north-south 
components of the wind, daily cumulative solar radiation, 
daily mean relative humidity, and daily mean air temperature 
measured at AGKO and KFLO, as well as, the daily mean 
east-west and north-south components of the wind, sky cover, 
dew point temperature, air temperature, and altimetric pressure 
at KLMT. 

Both historical wind models were calibrated using 
data from 2006 through 2007 and validated using data from 
2008 through 2009. Preprocessing for HIST1 and HIST2 
methods consisted of scaling each input variable to [0,1], as 
was done for the gap-filling models. The scaled time series 
were then passed to both MARS and ANN models (eq. 3). 
Postprocessing consisted of rescaling the output using 
equation 4.



8  Empirical Models of Wind Conditions on Upper Klamath Lake, Oregon
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Figure 4. Wind direction at the mouth of the Williamson River (WMR) and Klamath Falls Airport (KLMT) near 
Upper Klamath Lake, Oregon (see fig. 1 for site locations): (A) daily mean wind direction at sites WMR and 
KLMT during 2005–09; (B) difference between the daily mean wind direction at KLMT and WMR during 
2005–09. The daily mean wind direction is defined as the direction of the vector whose orthogonal 
components are the daily mean of the east-west and north-south wind components.
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Figure 5. Steps in the construction of the historical wind models for Upper Klamath Lake, Oregon.
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Results of Gap-Filling Wind Models
The MARS algorithm was used to determine which 

explanatory variables were the most significant (based on 
optimized values of nk, table 1) and should be kept in each 
model. These selected variables were then used as inputs to 
both the ANN and MARS models. The optimized, nondefault 
values of parameters size and decay for the ANN models are 
provided in table 1. 

A different set of the most significant explanatory 
variables was determined for each dependent variable and 
for each of the preprocessing methods used (table 2). Some 
features of the different sets are consistent with the geographic 
context. For example, site BLB is in the sets of explanatory 
variables for MDN models more than in the sets for MDL 
models. Similarly, site SSHR is in the sets of variables for 
MDL models more than in the sets for MDN models. These 
results reflect the closer proximity of BLB to MDN and 
SSHR to MDL. In general, the sets of variables in table 2 are 
notable for the number and variety of variables that contribute 
significantly to the models. The set for each dependent 
variable contains data from all sites around the lake, as well as 
the east-west and north-south components. 

Goodness-of-fit statistics for the MARS models 
(MARS_PPM1, MARS_PPM2, and MARS_NOPPM) and 
the neural network models (ANN_PPM1, ANN_PPM2, and 
ANN_NOPPM) are shown in table 3. The Nash-Sutcliffe error 
(Weglarczyk, 1998), defined as 2NASH 1 MSE / os= − , where 
MSE is the mean-squared-error of the computed values, an

2
os is the variance of the observed values. NASH is a measure 

of the error between the simulated and observed time series 
normalized by the variability in the original time series, and 
approaches 1 as the mean-squared-error approaches zero. 
In general, NASH values greater than zero indicate a model 
fit that is more valuable than simply using the mean of the 
measured data. Likewise, NASH values less than zero indicate 

that a more accurate model could be achieved by using 
the mean of the measured data. The mean error, defined as 
BIAS c om m= −  (where mc = mean of simulated values and 
mo = mean of observed values), was calculated as a measure of 
the relative skewness of model results. 

During calibration, ANN and MARS models resulted 
in similar fit statistics, whereas the validation period resulted 
in better statistical fits (indicated by higher NASH values 
and lower absolute BIAS values) for ANN models than for 
MARS models (table 3). The difference between validation 
and calibration of NASH values ranged from -0.07 to 0.05 for 
all ANN models, and from -0.26 to 0.06 for MARS models, 
indicating that ANN models resulted in a more consistent 
fit between validation and calibration periods than MARS 
models. This trend was most evident in the north-south 
MDL component MARS models during validation, where 
all three MARS models resulted in higher BIAS values than 
the north-south MDL ANN models. Overall, NASH values 
were higher (indicating more accurate fits) for models of the 
MDL north-south component than for the MDL east-west 
component, but the opposite was true for the models of the 
MDN north-south and east-west components. At site MDL, 
the north-south component was larger in magnitude than 
the east-west component, and at site MDN, the east-west 
component was larger in magnitude than the north-south 
component (figs. 6 and 7). Thus, the models generally do 
a better job of fitting the dominant component of the wind 
vector at both sites. Among all models, peak winds generally 
were underpredicted. Comparisons of the three most accurate 
models are shown in figures 6 and 7. Of these three models, 
peak winds tended to be simulated more accurately by the 
ANN_NOPPM model at both MDN and MDL, which captures 
the high-frequency signal better than the other models. 
Possibly indicative of this ability to model the high-frequency 
signal, the NOPPM models had a greater number of significant 
inputs and greater input variable diversity than the PPM1 and 
PPM2 models (table 2). 

Table 1. Nondefault parameter values used in ANN and MARS wind models for Upper Klamath Lake, Oregon. 

[Abbreviations: PPM1, preprocessing (filtering) method 1; PPM2, preprocessing (filtering) method 2; NOPPM, unfiltered data; n-s, north-south wind 
component; e-w, east-west wind component; ws, wind speed]

Model 
algorithm

 R 
function 

name

Parameter 
name

Gap-filling model preprocessing method Historic model method

PPM1  PPM2  NOPPM
HIST1

 
HIST2

MDN  MDL  MDN  MDL  MDN  MDL  

n-s e-w  n-s e-w  n-s e-w  n-s e-w  n-s e-w  n-s e-w ws  n-s e-w

MARS earth nk 24  32 8  16 16

ANN nnet
size 1 1 1 1  2 1 4 1  3 3  5 1 2  2 1

decay 1.0E-02  1.0E-03  1.0E-02 1.0E-04  1.0E-04 1.0E-03 1.0E-03  1.0E-02 1.0E-02
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Table 3. Goodness-of-fit statistics for the Upper Klamath Lake, Oregon, gap-filling wind models during the 
calibration (May 12–September 29, 2007) and validation periods (May 12–September 30, 2006). 

[NASH and BIAS are the Nash-Sutcliffe error and bias error respectively, between the simulated and observed time series. NASH 
values are unit-less, BIAS values are in meters per second. Abbreviations: PPM1, preprocessing (filtering) method 1; PPM2, 
preprocessing (filtering) method 2; NOPPM, unfiltered data; n-s, north-south wind component; e-w, east-west wind component] 

Model

NASH  BIAS

MDN   MDL  MDN  MDL

n-s e-w   n-s e-w  n-s e-w  n-s e-w

Calibration

ANN_PPM1 0.44 0.83   0.70 0.68  0.00 0.00  0.00 0.00
ANN_PPM2 .48 .83  .73 .67  .00 .00  .01 .01
ANN_NOPPM .49 .84  .75 .67  .00 .00  .01 .01
MARS_PPM1 .51 .84  .74 .69  .00 .00  .00 .00
MARS_PPM2 .49 .84  .72 .68  .00 .00  .00 .01
MARS_NOPPM .47 .82  .70 .67  .00 .00  .00 .01

 Validation

ANN_PPM1 0.49 0.78  0.75 0.62  0.17 0.09  -0.01 -0.12
ANN_PPM2 .53 .79  .70 .60  .25 .04  .04 -.06
ANN_NOPPM .53 .78  .76 .61  .16 .09  .02 -.04
MARS_PPM1 .25 .76  .70 .58  .04 -.10  .27 -.02
MARS_PPM2 .51 .78  .67 .61  .17 -.01  .28 -.07
MARS_NOPPM .53 .76  .73 .51  .17 .07  .13 -.12

Validation-calibration

ANN_PPM1 0.05 -0.05  0.05 -0.06  0.18 0.09  -0.02 -0.12
ANN_PPM2 .05 -.04  -.03 -.07  .24 .04  .03 -.07
ANN_NOPPM .04 -.06  .00 -.06  .16 .09  .01 -.05
MARS_PPM1 -.26 -.08  -.04 -.12  .04 -.10  .27 -.03
MARS_PPM2 .01 -.06  -.05 -.07  .17 -.01  .27 -.08
MARS_NOPPM .06 -.06  .03 -.16  .17 .07  .13 -.13
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One objective of the gap-filling models is to generate 
wind data at the raft sites on the lake for use in a spatial 
interpolation that incorporates data from these sites as well 
as sites on the shoreline into a spatially variable wind field 
to drive the hydrodynamic model. A measure of how well 
the gap-filling models meet this objective is how well the 
hydrodynamic model, using the wind forcing created using 
the simulated winds over the lake, is able to simulate observed 
water currents. The most accurate gap-filling models (ANN 
models) were used to simulate the winds at sites MDN and 
MDL from mid-July through August 2006. These simulated 
winds were then used in combination with the measured 
winds at the other four sites around the lake to create a 
spatially variable wind. The three-dimensional UnTRIM 
hydrodynamic model of the lake, which is described in Wood 
and others (2008), was then used to simulate water currents 
and water temperature with this new wind forcing. The period 
July 26–August 31, 2006, was selected because this was the 
period selected previously for model validation (Wood and 
others, 2008). Goodness-of-fit statistics for currents simulated 
using only observed winds and observed winds at shoreline 
sites in combination with winds simulated with the gap-filling 
models were compared to site ADCP1 (table 4, fig. 1), where 
measurements from an Acoustic Doppler Current Profiler 
(ADCP) were available (Gartner and others, 2007). 

The root-mean-square error and particularly the bias 
as measured by the mean error increased substantially with 
the use of the simulated winds at MDN and MDL. From the 
comparison of the simulated currents (fig. 8), it seems that the 
increased error largely is attributable to weaker peak currents 
resulting from the model forced with simulated winds. This 
is true on a daily basis, but particularly is noticeable during 
times of high velocities. Simulated currents derived from 
observed winds also underpredicted measured currents, but the 
error is greater when the simulated winds are used to force the 
hydrodynamic model. The increase in the mean error (bias) 
when the best ANN wind model is used to simulate the winds 
is 0.7 cm/s, and the increase in the root-mean-squared error 
is about 1.2 cm/s. In general, the gap-filling models seem to 
be adequate to fill data gaps over short periods of time (a few 
days or less). Given the increase in the error statistics, the use 
of the gap-filling models over periods of many days should be 
evaluated in the context of the problem being addressed. 

The accurate simulation of the water currents in the lake 
is important in part because the transport of water-quality 
constituents and passively drifting larval fish is determined 
by the water currents. Errors in the simulation of currents 
will propagate into errors in the simulation of transport. 
A numerical tracer was used to assess the difference in 
simulated transport resulting from the use of the simulated 
winds instead of the observed winds at the two raft sites. The 
numerical tracer was initialized to zero at the beginning of the 
simulation. The only source of the tracer during the simulation 
was the Williamson River, where the tracer was put into the 
lake at a concentration of 10 (units are arbitrary). The time 
evolution of the concentration of the tracer at two sites in the 
lake, in Goose Bay (GBE) and north of Buck Island (NBI; 
fig. 1), is shown in figure 9. Overall, the tracers derived from 
simulated winds closely matched those derived from observed 
winds. Specifically, the mean absolute difference over the 
47-day simulation between the concentration of the tracer as 
simulated using only observed winds and the concentration 
of the tracer as simulated using simulated winds at the raft 
sites was 0.052, 0.031, and 0.047 (units are arbitrary) at site 
GBE for ANN_NOPPM, ANN_PPM1, and ANN_PPM2, 
respectively. At site NBI, the mean absolute difference was 
0.022, 0.023, and 0.011 for ANN_NOPPM, ANN_PPM1, 
and ANN_PPM2, respectively. Equally as important as the 
mean absolute difference is the lack of error propagation in 
the simulated tracers through time. That is, small differences 
occurring earlier in the tracer concentration time series do not 
compound and result in much larger differences later in the 
simulation. 

Table 4. Upper Klamath Lake UnTRIM model goodness-of-fit 
velocity statistics at site ADCP1, Upper Klamath Lake, Oregon.

[The time period for the calculation is July 26–August 31, 2006. Data are 
in centimeters per second. Abbreviations: NOPPM, unfiltered data; PPM1, 
preprocessing (filtering) method 1; PPM2, preprocessing (filtering) method 2]

Type of wind Mean error
Root-mean- 
square error 

Winds as observed 2.3 3.9
ANN_NOPPM 3.0 5.1
ANN_PPM1 3.2 5.3
ANN_PPM2 3.4 5.5
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Results of Historical Wind Models 
Similar to the gap-filling models, the MARS algorithm 

was used to select the most significant explanatory variables 
for the ANN and the MARS historical wind models. These 
selected variables are shown in table 5. The model of the 
north-south wind component at WMR selected a greater 
diversity and larger number of input variables than that 
selected for the model of the east-west component—notably, 
relative humidity at AGKO and sky cover at KLMT were 
added. Solar radiation was selected by the MARS algorithm 
as a significant variable for all three dependent variables in the 
historical models (table 5).

Using the same statistical measures as above, the 
historical wind models are compared in table 6. For all 
models, NASH values ranged from 0.63 to 0.87 while BIAS 
values ranged from -0.24 to 0.11 m/s. HIST2 models had 
higher NASH values and lower BIAS values than HIST1 
values, indicating a better statistical fit to measured data. Thus, 
the historical wind models that use the individual components 
of the wind as dependent variables (both ANN and MARS 
models) perform better than the historical wind models that 
use wind speed only as the dependent variable. Figure 10 
displays the close fit to measured data that simulated HIST2 
models obtained. As was the case for the gap-filling models, 
peak winds are the most difficult for the models to simulate 
consistently, and the models for the dominant (north-south) 
component of the wind perform better. 

Winds reconstructed with the ANN_HIST2 model and 
measured wind at WMR during the calibration and validation 
period were aggregated on a weekly basis in order to visualize 
wind patterns for multiple years simultaneously (fig. 11). To 
create these “vector-bar” plots, the mean daily north-south 
wind components and east-west wind components were first 
converted to wind speed and direction. Next, the daily mean 
wind direction occurring each day was compartmentalized into 
eight directional bins. The maximum wind speed occurring 
in the most populated direction bin was used to determine 
the height of each bar. The mean of the wind-direction values 
associated with maximum wind-speed values determined 
the direction of the arrows. The maximum wind speeds 
and associated wind direction were used because they are 
assumed to be most environmentally significant for Upper 
Klamath Lake. The seasonal reconstructed winds generally 
matched the seasonal change in measured winds at WMR 
(red and black “vector-bars”). A closer agreement generally 
was observed during summer, when the winds are weaker. In 
cases where simulated wind direction differed from measured 
wind direction, the difference was infrequently more than 
45 degrees. 

To demonstrate the use of the ANN_HIST2 model 
to reconstruct a long-term record, the model was used to 
reconstruct the daily wind record at WMR from January 1, 
2004, through June 12, 2005, prior to the time when data 
were collected at this site (fig. 12). This approach has the 
potential to expand the length of the wind record at WMR or 
other sites around the lake backward in time to at least 2000 
(when collection of the AgriMet data began) for the purpose of 
statistical investigation of the relation between wind and water 
quality in the lake. 

Table 5. Daily time series used in the historical wind models of 
Upper Klamath Lake, Oregon. 

[Abbreviations: n-s, north-south wind component; e-w, east-west wind 
component; ws, wind speed; rh, relative humidity; sc, sky cover; sr, solar 
radiation]

Order of  
importance as 
determined by 

MARS

HIST1  HIST2

Wind speed at 
WMR

 

North-
south wind 

component at 
WMR

 
East-west wind 
component at 

WMR

Site    
Type 

of 
data

   Site   
Type 

of 
data

  Site    
Type of 

data

1 AGKO  ws  KLMT  n-s  KLMT  e-w
2 KLMT  ws  AGKO  n-s  AGKO  e-w
3 AGKO  sr   AGKO  sr  KLMT  n-s
4     KFLO  n-s  AGKO  n-s
5     AGKO   rh AGKO  sr
6     KLMT  sc    
7     KLMT  e-w    

Table 6. Goodness-of-fit statistics for the historical wind 
models of site WMR during the calibration and validation period.

[NASH and BIAS are the Nash-Sutcliffe error and mean error, respectively, 
between the simulated and observed time series. NASH values are unit-less. 
BIAS values are in meters per second. Abbreviations: n-s, north-south wind 
component; e-w, east-west wind component]

Model

NASH BIAS

Calibration Validation Calibration Validation

n-s e-w n-s e-w n-s e-w n-s e-w

MARS_HIST1 0.84 0.63 0.81 0.70 0.10 -0.16 0.06 -0.24
MARS_HIST2 .87 .78 .87 .73 .00 .00 .05 -.17
ANN_HIST1 .84 .63 .82 .69 .11 -.15 .07 -.23
ANN_HIST2 .87 .73 .87 .74 .00 .00 .07 .16
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Summary and Conclusions
Nonlinear empirical models were developed using 

artificial neural networks (ANN) and multivariate adaptive 
regressive splines (MARS) to simulate wind data on Upper 
Klamath Lake. Both types of models were able to successfully 
simulate the wind on Upper Klamath Lake based on wind and 
other meteorological variables measured nearby. By using 
the MARS method of selecting model input variables prior 
to using the ANN, some insight into the dependence of wind 
on various meteorological variables at other land-based sites 
around the lake was gained. The most successful models were 
dependent on a diverse set of input variables measured at 
several sites around the lake.

MARS and ANN were used successfully to simulate 
wind data at two floating raft sites on Upper Klamath Lake. 
Both methods were able to capture most of the variability in 
the 10-minute wind time series. Two different preprocessing 
methods to smooth the input variables were investigated, 
but the preprocessing did not improve the performance of 
the models greatly, and the extra step of smoothing the data 
may not be necessary. Gap-filling models based on ANN 
performed moderately better than those based on MARS. 
Although the ANN approach does not directly reveal the 
nature of dependencies between input and output variables as 
well as the MARS approach, the greater accuracy achieved 
with the ANN approach may justify the added opacity. The set 
of explanatory variables that contributed to the “best” models 
as determined by the MARS algorithm included wind from 
all sites around the lake, as well as wind divergence and curl, 
and air temperature. The best models for the raft sites included 
both east-west and north-south wind components from other 
land-based sites and comprised from 11 to 15 independent 
variables.

The winds simulated with the ANN gap-filling models 
were used in the spatially variable wind forcing for the 
hydrodynamic model of Upper Klamath Lake. The error 
statistics for the simulated currents, when the simulated winds 
were used to force the model, were comparable to those for 
the currents that were simulated when only observed winds 
were used to force the model. It can be concluded that this 
technique is adequate for filling gaps of several days in the 
wind data collected from the rafts on the lake. A numerical 
tracer experiment indicated that the errors in transport 
that result when simulated winds are used to drive the 
hydrodynamic model probably are small, particularly when 
averaged over periods of several days or more. 

The ANN and MARS were used to accurately reconstruct 
wind data at the Williamson River Delta site WMR on a daily 
timestep over several years. Both ANN and MARS historical 
models performed similarly. The datasets long enough to 
be useful as input to these models were more limited than 
those available for input to the gap-filling model. Significant 
explanatory variables selected by the MARS algorithm 
included wind, solar radiation, and relative humidity at 
AgriMet sites (AGKO and KFLO), as well as wind and sky 
cover at the Klamath Falls Airport site (KMLT). The most 
successful historical wind model simulated the north-south 
and east-west components separately. The accuracy was 
higher for this historical wind model than for the gap-filling 
model, and indicates the potential to simulate the wind on 
a daily timestep going backward in time at least to the year 
2000, when the AgriMet data were first collected. Given the 
long data record at KMLT, there is a potential to develop an 
historical wind model based only on data collected at that site 
to reconstruct the wind at sites around UKL back to 1959, but 
that is beyond the scope of the current work and the accuracy 
of such a model has not been investigated for this report.
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