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Conversion Factors

Multiply By To obtain
Length
mile (mi) 1.609 kilometer (km)
foot (ft) 0.3048 meter (m)
Area
square mile (mi?) 2.590 square kilometer (km?)
Volume
cubic meter (m?) 0.0008107 acre-foot (acre-ft)
Flow rate
acre-foot per day (acre-ft/d) 0.01427 cubic meter per second (m?/s)
acre-foot per year (acre-ft/yr) 1,233 cubic meter per year (m*/yr)
foot per day (ft/d) 0.3048 meter per day (m/d)
foot per year (ft/yr) 0.3048 meter per year (m/yr)
cubic foot per day(ft’/d) 0.02832 cubic meter per day (m?/d)
gallon per minuter (gal/min) 0.06309 liter per second (L/s)
gallon per day (gal/d) 0.003785 cubic meter per day (m?/d)
million gallons per day (Mgal/d) 0.04381 cubic meter per second (m?/s)

Altitude, as used in this report, refers to distance above the vertical datum, and is referenced to the National Geodetic Vertical
Datum of 1929 (NGVD of 1929).

Latitude and longitude are referenced to the North American Datum of 1983 (NAD of 1983).



Groundwater-Flow Assessment of the Mississippi River
Valley Alluvial Aquifer of Northeastern Arkansas

By John B. Czarnecki

Abstract

The Mississippi River Valley alluvial aquifer is a water-
bearing assemblage of gravels and sands that underlies about
32,000 square miles of Arkansas, Kentucky, Louisiana, Missis-
sippi, Missouri, and Tennessee. Pumping of groundwater from
the alluvial aquifer for agriculture started in the early 1900s in
the Grand Prairie area for the irrigation of rice and soybeans.
From 1965 to 2005, water use in the alluvial aquifer increased
655 percent. In 2005, 6,242 million gallons per day of water
were pumped from the aquifer, primarily for irrigation and
fish farming. Water-level declines in the alluvial aquifer were
documented as early as 1927. Long-term water-level measure-
ments in the alluvial aquifer show an average annual decline
of 1 foot per year in some areas.

In this report, the utility of the updated 2009 MODFLOW
groundwater-flow model of the alluvial aquifer in northeast-
ern Arkansas was extended by performing groundwater-flow
assessments of the alluvial aquifer at specific areas of inter-
est using a variety of methods. One such area is along the
western side of Crowleys Ridge, which includes western parts
of Clay, Greene, Craighead, Poinsett, Cross, St. Francis, and
Lee Counties. This area was designated as the Cache Criti-
cal Groundwater Area by the Arkansas Natural Resources
Commission in 2009 for the alluvial and Sparta/Memphis
aquifers, because of the rate of change in groundwater levels
and groundwater levels have dropped below half the original
saturated thickness of the alluvial aquifer.

Three scenarios were simulated, in part, to allow assess-
ment of the role that pumping in Jackson and Woodruff
Counties has on water levels and flow rates into and out of the
cone of depression located along the western side of Crowleys
Ridge. In scenario 1 (the baseline scenario), the 2005 pump-
ing rate is applied from 2005 through 2050 without change.
In scenario 2, pumping is the same as in scenario 1 except that
the pumping rate in Jefferson and Woodruff Counties is speci-
fied as zero from 1998 to 2050. In scenario 3, pumping is the
same as in scenario 1 except that the pumping rate in Jefferson
and Woodruff Counties is specified as half the rate specified
for stress periods from 1998 to 2050.

Particle tracking using MODPATH was done to assess
the direction and time of travel that particles take from specific

model locations. Factors that affect how far particles will
travel include: (1) pumping rates in the vicinity of particles,
(2) when and if model cells with pumping wells go dry, and
(3) changes in pumping rates during the simulation period.
Particles can travel further if cells do not go dry and pump-
ing in a model cell can continue even if the total pumping

rate from the model is specified with a lesser rate. Particles
introduced in Jackson and Woodruff Counties travel somewhat
further for scenario 2 than for scenario 1.

Flow vectors were generated using the built-in graphics
capability in the Groundwater Modeling System. Ground-
water-flow vectors depict both magnitude and direction of
simulated groundwater flow. Groundwater-flow magnitude is
the product of the hydraulic gradient and hydraulic conductiv-
ity. Only two values of hydraulic conductivity (230 and 730
feet per day) are specified over the model domain. Variability
in groundwater-flow magnitude is caused largely by varia-
tion in hydraulic gradient. Groundwater-flow vectors and
hydraulic-head maps for scenarios 1 and 2 for the beginning
0f 2010 and the beginning of 2050 were generated to allow
for a comparison of flow rates and direction. The lengths of
the vectors presented represent the horizontal magnitude of
flow, and the orientation of each vector indicates the horizontal
direction of flow.

Zone-budget analyses using ZONEBUDGET were
performed to assess the rate of water entering and leaving
specified zones within the model. Zone-budget analysis was
performed on the simulated groundwater flow by dividing the
model into four separate zones and calculating the individual
flow components for each zone at different simulation times
for the three pumping scenarios. Reduction of pumping in
scenarios 2 and 3 resulted in substantially more groundwater
flow into the counties east of Jackson and Woodruff Counties,
and more flow to rivers within the model area.

Introduction

The Mississippi River Valley alluvial aquifer (hereafter
referred to as the alluvial aquifer) is a water-bearing assem-
blage of gravels and sands that underlies about 32,000 square
miles (mi?) of Arkansas, Kentucky, Louisiana, Mississippi,
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Missouri, and Tennessee. In Arkansas, the alluvial aquifer
occurs in an area generally ranging from 50 to 125 miles
(mi) in east to west extent and about 250 mi north to south,
adjacent to the Mississippi River (Holland, 2007). Pump-
ing of groundwater from the alluvial aquifer in Arkansas for
agriculture started in the early 1900s in the Grand Prairie area
for the irrigation of rice and soybeans. From 1965 to 2005,
water use in the alluvial aquifer in Arkansas increased 655
percent. In 2005, 6,242 million gallons per day (Mgal/d) of
water were pumped from the aquifer in the area of this study
(fig. 1), primarily for irrigation and fish farming (Gillip and
Czarnecki, 2009). Water-level declines in the alluvial aquifer
were documented as early as 1927 (Engler and others, 1945).
Long-term water-level measurements in the alluvial aquifer
show an average annual decline of 1 foot per year in some
areas (Schrader, 2006).

A MODFLOW-2000 digital groundwater-flow model
of the alluvial aquifer of northeastern Arkansas (Reed, 2003)
was developed to assist groundwater managers with assessing
the effect of future stresses on the groundwater-flow system
induced by groundwater pumping. Reed’s (2003) model
was updated to include water-use and water-level data from
1998 to 2005 as part of model validation (Gillip and Czar-
necki, 2009). The model area (fig. 1) covers 14,104 mi?, and
includes all or part of 23 counties in Arkansas and all or part
of 5 counties in Missouri.

In a study conducted by the U.S. Geological Survey, in
cooperation with the Arkansas Natural Resources Commis-
sion, the utility of the model of Gillip and Czarnecki (2009)
(hereafter referred to as the updated model) was extended
by performing groundwater-flow assessments of the alluvial
aquifer at specific areas of interest using a variety of meth-
ods. One such area is along the western side of Crowleys
Ridge (fig. 1), which includes western parts of Clay, Greene,
Craighead, Poinsett, Cross, St. Francis, and Lee Counties. This
area was designated as the Cache Critical Groundwater Area
(CCGWA) by the Arkansas Natural Resources Commission
in 2009 for both the alluvial and Sparta/Memphis aquifers,
because groundwater levels have dropped below half the origi-
nal saturated thickness of the alluvial aquifer.

Purpose and Scope

The purpose of this report is to describe a groundwater-
flow assessment of the Mississippi River Valley alluvial
aquifer by documenting various analyses of groundwater flow
using the updated version of the Gillip and Czarnecki (2009)
groundwater-flow model that was adapted to the Groundwater
Modeling System (GMS) platform (Aquaveo, 2009). Ground-
water flow within the model area was assessed using particle
tracking, groundwater-flow vectors, and zone-budget analy-
ses. Three different pumping scenarios were analyzed for the
simulation period of 1918 to 2050. A comparison of dry-cell
distribution for two of the scenarios is presented.

This report highlights the usefulness of using ground-
water-flow models to better understand the dynamics of the
groundwater-flow system of the alluvial aquifer in areas of
interest. Increasing or decreasing groundwater pumping in
one area may have a substantial effect on the movement of
groundwater and associated water-level variations. To illus-
trate the effect that decreasing groundwater pumping in an
area has on groundwater flow within the alluvial aquifer, this
report discusses the effect of setting pumping rates in Jackson
and Woodruff Counties to zero. Jackson and Woodruff Coun-
ties were selected because of their location just to the west of
the CCGWA, which has developed a cone of depression west
of Crowleys Ridge. Conceptually, much of the groundwater
recharge to this cone of depression flows from Jackson and
Woodruff Counties. In 2005, Jackson County pumped 383
Mgal/d and Woodruff County pumped 266 Mgal/d, the sum of
both representing about 10 percent of the 6,242 Mgal/d total
groundwater withdrawals in the model area (Holland, 2007).

Methods

The updated model MODFLOW files were imported into
the GMS software package (Aquaveo, 2009), which uses a
modified version of MODFLOW. GMS incorporates particle-
tracking, zone-budget analyses and groundwater flow-vector
plotting through the use of U.S. Geological Survey (USGS)
MODPATH (Pollock, 1994), ZONEBUDGET (Harbaugh,
1990), and built-in vector plotting software. Importing the
model MODFLOW files into GMS was made possible through
the file/import feature within GMS. However, some file struc-
ture and input specifications were modified for compatibility
between these software applications. GMS also computes
vertical leakage corrections differently than the stand-alone
MODFLOW version. To assess these potential effects, a
comparison of model output between the GMS version and the
stand-alone MODFLOW version was performed by taking the
difference in simulated hydraulic head values at all model cells
at various time steps. In general, the comparison was good, as
illustrated by the preponderance of difference values grouped
between +/-0.5 ft (fig. 2) for scenario | (see Scenarios sec-
tion), which is typical of the other stress periods in the model.
This comparison indicates that the GMS version of the model
calculates similar results to the stand-alone MODFLOW ver-
sion. The period of simulation was from the beginning of 1918
(predevelopment, steady state) to 2050.

Particle tracking using MODPATH was done to assess the
direction and distance of travel that particles take from specific
model locations. Initial locations of particles were selected
to provide an overall assessment of particle paths throughout
the model area and to highlight particle movement in areas of
interest. Particles were introduced at several points within the
model area and their paths tracked forward and backward from
their initial locations. Particle tracks were plotted showing the
location and time of arrival of the particles using animation,
which included the simulation time of the particle-tracking
image.
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Figure 2. Difference in simulated hydraulic head between stand-alone MODFLOW and Groundwater Modeling System for stress

period beginning in 2005, scenario 1.

Flow vectors were generated using the built-in graphics
capability in GMS. Plots of flow vectors were generated to
show the direction and magnitude of groundwater flow over
the entire model area for different periods and pumping condi-
tions.

Zone-budget analyses using ZONEBUDGET were
performed to assess the rate of water entering and leaving
specified zones within the model. A zone assemblage of four
zones was constructed that included a separate zone compris-
ing parts of counties located west of Crowleys Ridge, known
as the CCGWA (Arkansas Natural Resources Commission,
2009). For this set of zones, because of the interest in assess-
ing the effect of external pumping on Craighead and Poinsett
Counties, zone-budget analyses were done with full pumping
and no pumping from Jackson and Woodruff Counties for the
period 1998 to 2050. Differences in groundwater-flow rates
were calculated by subtracting the values obtained from each
zone for scenarios 1 and 2 and for scenarios 1 and 3. An addi-
tional set of zone-budget analyses was done with full pumping
and half pumping from Jackson and Woodruff Counties for
the period 1998 to 2050. Flow into and out of each zone is
represented by various flow components, which may or may
not be present in a zone depending on the zone’s location in
the model. Except for flow out of wells and areally distributed
recharge, flow can be either into or out of the following flow
components in a zone: storage (either water stored in pore
space or water released as the aquifer matrix compresses);
constant heads (this is a line of cells on the north side of the
model area whose hydraulic head is maintained at a specified

altitude, the flow from which is proportional to the gradient
between the constant-head cell and the adjacent model cell

to the south); general-head boundaries (this is similar to a
constant-head cell, but the flow from or to it is proportional to
the hydraulic gradient and a conductance term assigned to the
cell); and river cells.

Scenarios

Three hypothetical scenarios were simulated, in part,
to allow assessment of the role that pumping in Jackson and
Woodruff Counties has on groundwater levels and flow rates
into and out of counties located along the western side of
Crowleys Ridge. The scenarios are as follows:

» Inscenario | (the baseline scenario), the 2005 pump-
ing rate is applied from 2005 through 2050 without change
(full pumping); pumping rates prior to 2005 are variable.

* In scenario 2, pumping is the same as in scenario 1
except that the pumping rate in Jackson and Woodruff Coun-
ties is specified as zero from 1998 to 2050.

» Inscenario 3, pumping is the same as in scenario 1
except that the pumping rate in Jackson and Woodruff Coun-
ties is specified as 50 percent (half pumping) of the rate speci-
fied for stress periods from 1998 to 2050.

Hypothetical scenarios involving reductions in pumping
in Jackson and Woodruff Counties are not intended to imply
that such reductions are likely or even possible. The reduc-
tions in pumping were simulated primarily to evaluate the
effect that pumping has on other parts of the flow system.
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The following sections discuss four different analyses
of the model results. These analyses comprise: (1) particle
tracking, (2) groundwater-flow vector comparison, (3) dry-
cell assessment, and (4) zone-budget analyses. Each of these
analyses provides a means to compare the effect of varying
pumping within the model for different pumping scenarios.

Particle Tracking

Particle tracking was performed using the version of
MODPATH (Pollock, 1994), included as part of the GMS
software package (Aquaveo, 2009). Particles were introduced
at model cell locations shown on figures 3—6. To achieve
the particle tracking, a porosity value of 0.20 was assigned
uniformly thoughout the model domain. Particle positions
were computed by MODPATH at multiple locations in the
model domain and tracked forward from the beginning of the
first model stress period (1918) to the end of simulation in
2050 and backward beginning in 2050 to the first stress period
of the simulation using scenario 1 (the baseline scenario) and
scenario 2. Particle tracking results using scenario 3 are not
presented in this report because they did not show appreciable
differences with scenario 2. Particles are allowed to pass
through weak sinks, such as rivers or general-head boundaries.
Graphical results also are contained within the audio video
interleave (avi) file that accompanies this report. The anima-
tion shows updated particle positions every 10 years along
with updated hydraulic head values going from 1928 to 2050
for scenario 1.

Factors that affect the distance particles will travel
include: (1) pumping rates in the vicinity of particles, (2)
when and if pumping cells go dry, and (3) changes in pump-
ing rates during the simulation period. Particles can travel
further if cells do not go dry and can continue to pump even if
the total pumping rate from the model may be less. Particles
introduced in Jackson and Woodruff Counties travel further
for scenario 2 than for scenario 1. As pumping is turned off
in Jackson and Woodruff Counties, water levels rise causing
an increase in the local hydraulic gradient to the east, which
results in particles moving faster and farther in that direc-
tion (fig. 4). Some forward particle tracks appear to make
abrupt turns (figs. 3 and 4), particularly in Monroe County.
This phenomenon occurs when pumping from one location is
overwhelmed by pumping occurring later in time at a different
location, causing particles to be deflected toward that larger
pumping center.

In the southern part of the model area, particles in Arkan-
sas County are drawn toward the center of the relatively large
cone of depression occurring there. Particles that start near the
center of the large cones travel a shorter distance because the
hydraulic gradient is less than it is toward the margins of the
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cone of depression, and the starting position of particles are
closer to strong sinks where particle movement ends.
Backward particle tracking (figs. 5 and 6) results in
shorter particle track lengths compared to forward particle
tracking (figs. 3 and 4). This occurs because the overall
hydraulic gradients are smaller earlier in the simulation.

Groundwater-Flow Vectors

Groundwater-flow vectors depict both magnitude and
direction of simulated groundwater flow. Groundwater-flow
magnitude is the product of the hydraulic gradient and hydrau-
lic conductivity. Only two values of hydraulic conductivity
(230 and 730 feet per day (ft/d)) are specified over the model
domain; the 230 ft/d value is specified in the southern part of
the model area in Arkansas, Lonoke, and Prairie Counties.
Variability in groundwater-flow magnitude is caused largely
by variation in hydraulic gradient.

Groundwater-flow vectors and hydraulic-head maps for
scenarios 1 and 2 for 2010 and 2050 were generated (figs.
7-10) to allow for a comparison of groundwater-flow mag-
nitude and direction. The lengths of the vectors presented in
figures 7—-10 represent the horizontal magnitude of flow, and
the orientation of each vector indicates the horizontal direction
of flow. Vectors have a vertical component of flow as well,
but that component is not depicted in these figures. To avoid
crowding on the vector diagrams, a flow vector for every elev-
enth model cell was used in the construction of these figures.
The tail of each vector occurs at the center of its correspond-
ing model cell where the flow is calculated. For scenario 1,
flow-vector magnitudes (represented by the apparent length
of each vector) are largest on the western side of the cone of
depression located west of Crowleys Ridge (figs. 7-8). This
indicates that there is a large component of flow that origi-
nates from the west and moves toward the cone of depression
west of Crowley Ridge. The very small vectors in the center
of the cone of depression in the southern part of the model
area (Arkansas, Prairie, and Lonoke Counties) result, in part,
because of the presence of dry cells in which pumping stops
once they become dry. If the water level in a cell drops to
within 10 ft of the bottom of a model cell, the cell is consid-
ered dry and that cell becomes inactive from that point in time
to the end of the simulation. The southern part of the model
area also has the smaller value of hydraulic conductivity (230
ft/d) used in the model.

When pumping from Jackson and Woodruff Counties
is set to zero (scenario 2), the larger hydraulic gradient that
occurs between those two counties and counties to the east
causes flow magnitudes to be larger. This increase can be seen
by comparing figures 7 and 9 and 8 and 10. The largest change
in flow magnitude occurs in eastern Jackson County and west-
ern Poinsett County, although the direction of flow is largely
similar with flow occurring mostly toward the east.
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Figure 3. Forward particle tracks from 1918 to 2050 and simulated hydraulic head in 2050 for scenario 1.
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Dry Cells

If the simulated water level within a model cell drops to
within 10 ft of the altitude of the bottom of the model cell, the
cell is considered dry and becomes inactive until the end of the
simulation. If pumping occurs in a cell and the cell goes dry
during the simulation, then pumping ceases in that cell and
remains off throughout the remaining simulation period. The
occurrence and distribution of dry cells varies between model
stress periods and scenarios.

Evidence of the change in number of dry cells with time
can be seen by comparing their occurrence in 2010 and 2050
for each of the two scenarios presented. For scenario 1, 78
dry cells occur at the beginning of 2010 (fig. 11) compared
to 671 at the beginning of 2050 (fig. 12). When pumping in
Jackson and Woodruff Counties is specified as zero (scenario
2), 78 dry cells occur at the beginning of 2010 (fig. 13) and
476 at the beginning of 2050 (fig. 14). This indicates that with
a relatively small reduction in total pumpage of 10 percent, the
number of simulated dry cells in the model area decreases by
about 29 percent.

Zone-Budget Analysis

Zone-budget analysis was performed on the simulated
groundwater flow by dividing the model into four separate
zones (fig. 15) and calculating the individual flow components
for each zone at different simulation times. Zone 1 (fig. 15)
includes all or part of Randolph, Lawrence, Independence,
Jackson, White, and Woodruff Counties. Zone 2 includes
the CCGWA, which comprises the western parts of counties
that are divided by Crowleys Ridge. These counties include
Clay, Greene, Craighead, Poinsett, Cross, St. Francis, and Lee.
Zone 3 is the part of the model area east of Crowleys Ridge.
Zone 4 represents all or part of the seven southernmost coun-
ties in the model area.

Flow components were obtained from the model for 2010
and 2050. Flow components and their percentage relative to
the total flow in the zone of interest are listed in tables 1-8 (at
end of report). Fractional percentages (absolute values less
than 1) are not shown in these tables.

Zone-budget analysis allows the user to identify where
the largest flow components into and out of each zone occur,
helping to provide an understanding of the overall dynamics
of the flow system. In addition, by using the same zones for
different scenarios, a quantitative comparison may be made
to see how flow rates for each of the flow components differ
given different pumping rates at specific times during a model
simulation.

Most of the flow into zone 1 is from areally distributed
recharge, which ranges from 71 to 86 percent, and from riv-
ers, which ranges from 8 to 16 percent (table 1). Flow out of
zone | occurs largely from pumping from wells, which was
80 to 84 percent of the total flow in 2010 and 2050. Specify-
ing a pumping rate of zero in Jackson and Woodruff Counties

results in a reduction of flow out from wells in zone 1 of 49
and 51 percent in 2010 and 2050, respectively, and an increase
in discharge to rivers of 19 and 23 percent. Flow from zone 1
to zone 2 (located along the eastern side of zone 1) increased
by 11 to 16 percent in 2010 and 2050 when a pumping rate of
zero in Jackson and Woodruff Counties was specified. No flow
is reported between zones 1 and 3 because these two zones
are not connected. Flow between zones 1 and 4 was minor,
representing 4 percent or less of the total.

Flow into zone 2 (fig. 15; table 2), or the CCGWA,
occurs from multiple sources, with the largest component of
flow occurring as areally distributed recharge, which ranges
from 37 to 43 percent depending on the simulation period.
Flow into zone 2 from recharge from rivers ranges from 20
to 34 percent resulting from induced flow toward cones of
depression caused by pumping from wells. Lateral flow from
zone | to zone 2 ranges from 7 to 18 percent depending on the
simulation period and pumping rates in Jackson and Wood-
ruff Counties. If pumping is specified as zero in Jackson and
Woodruff Counties, flow from zone 1 to zone 2 increases by
8 and 14 percent in 2010 and 2050. Flow out of zone 2 occurs
mostly from pumping from wells, which ranges from 95 to 96
percent. An increase in pumping by 17 percent from wells in
2050 occurs if pumping from Jackson and Woodruff Coun-
ties is specified as zero. Because fewer cells go dry by 2050,
an increase in pumping is possible because more model cells
remain active.

Flow into zone 3 is largely from areally distributed
recharge and ranges from 61 to 62 percent (table 3). Flow into
zone 3 from rivers ranges from 24 to 29 percent depending
on the simulation period and specification of pumping rates.
Minor flow into zone 3 occurs from general and constant-head
boundaries in 2010 and 2050. Flow out of zone 3 through
discharge to rivers ranges from 20 to 21 percent of the total
flow. Pumping by wells represents 78 and 79 percent of flow
out of the zone in 2010 and 2050. Specification of a pumping
rate of zero in Jackson and Woodruff Counties (zone 1) results
in negligible changes in the flow components within zone
3, largely because Crowleys Ridge acts as a barrier to flow
between these zones.

Flow into zone 4 is largely from areally distributed
recharge, which ranges from 70 to 78 percent of the total flow
into the zone from 2010 to 2050 (table 4). Recharge from
rivers represents the next largest flow into zone 4 and ranges
from 8 to 14 percent of the total flow into zone 4. In predevel-
opment (not shown in table 4), 96 percent of the flow out of
zone 4 results from discharge to rivers, whereas that number
reduces to 6 percent when pumping from wells occurs, which
represents 92 percent of the total flow out of zone 4. Speci-
fication of a pumping rate of zero in Jackson and Woodruff
Counties has negligible effect on flow components in zone 4.

Another comparison of the effect of varying pumping
rates in the model on flow components within model zones
was made by specifying a 50-percent reduction in pumping
in Jackson and Woodruff Counties (scenario 3) beginning in
1998 until 2050, and comparing the flow budget terms from
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that simulation with those from the simulation without this
reduction in pumping (scenario 1). Tables 5 through 8 show
the flow budget terms for zones 1 through 4 shown in figure
15. In zone 1 (table 5) discharge to rivers increases by 7

and 9 percent in 2010 and 2050 if the reduction in pump-

ing is applied. Flow from zone 1 into zone 2 increased by 5
and 8 percent in 2010 and 2050. Pumping from wells in the
zone was reduced 25 percent. In zone 2 (table 6), the major
changes that occur are an increase in the amount of pumping
from wells (10 percent in 2050) and flow in from zone 1 (8
percent in 2050). In zones 3 and 4 (tables 7 and 8), changes
in flow components were minor when a 50-percent reduction
in pumping in Jackson and Woodruff Counties was specified.

Effects of Pumping on Water Levels

To show the effect that changes in pumping rates have
on simulated water levels, difference maps were prepared
using results from each of the three scenarios. The difference
in simulated water levels between scenario 1 and scenario
2 in 2050 over the entire model area is shown in figure 16.
The largest difference in water levels occurs as an increase
between 60 to 80 ft, mostly over Jackson and Woodruff
Counties, but also over parts of western Cross and Poinsett
Counties. When pumping in Jackson and Woodruff Counties
is reduced to half the original amount (scenario 3), the differ-
ence with that of scenario 1 is between 20 to 40 ft in Jackson
and Woodruff Counties (fig. 17). The difference between
scenarios 2 and 3 is shown in figure 18, with the majority of
the difference occurring as a rise between 20 and 40 ft occur-
ring mostly in Jackson and Woodruff Counties and the western
parts of Cross and Poinsett Counties.

Model Limitations

Simulated water levels within the model represent aver-
age conditions over the one-square-mile grid cells of the
model. Because the model is a simplification of a complex
system, some error in simulated water levels is expected,
similar to the mean absolute difference between observed and
simulated water levels of about 5 ft obtained by Gillip and
Czarnecki (2009). Local variations in hydraulic conductiv-
ity and specific storage not accounted for in the model result
in additional differences between simulated and actual water
level. Hypothetical scenarios involving reductions in pumping
in Jackson and Woodruff Counties are not intended to imply
that such reductions are likely or even possible. The reduc-
tions were simulated merely to evaluate the effect that those
reductions in pumping had on other parts of the flow system.

Summary

The Mississippi River Valley alluvial aquifer is a water-
bearing assemblage of gravels and sands that underlies about
32,000 square miles of Arkansas, Kentucky, Louisiana, Mis-
sissippi, Missouri, and Tennessee. In Arkansas, the alluvial
aquifer occurs in an area generally ranging from 50 to 125
miles in eastern to western extent and about 250 miles north to
south, adjacent to the Mississippi River. Pumping of ground-
water from the alluvial aquifer for agriculture started in the
early 1900s in the Grand Prairie area for the irrigation of rice
and soybeans. From 1965 to 2005, water use in the alluvial
aquifer increased 655 percent. In 2005, 6,242 million gallons
per day of water were pumped from the aquifer, primarily for
irrigation and fish farming. Water-level declines in the alluvial
aquifer were documented as early as 1927. Long-term water-
level measurements in the alluvial aquifer show an average
annual decline of 1 foot per year in some areas.

A MODFLOW digital groundwater-flow model of the
alluvial aquifer of northeastern Arkansas published in 2003
was developed to assist groundwater managers with assessing
the impact of future stresses on the groundwater-flow system
induced by groundwater pumping. The model was updated in
2009 to include water-use and water-level data from 1998 to
2005 as part of model validation. The utility of the updated
model was extended by performing groundwater-flow assess-
ments of the alluvial aquifer at specific areas of interest using
a variety of methods. One such area is along the western side
of Crowleys Ridge, which includes western parts of Clay,
Greene, Craighead, Poinsett, Cross, St. Francis, and Lee Coun-
ties. This area was designated as the Cache Critical Ground-
water Area by the Arkansas Natural Resources Commission
in 2009 because groundwater levels have dropped below half
the original saturated thickness of the alluvial aquifer. The
updated model MODFLOW files were imported into the
Groundwater Modeling System (GMS) software package. A
comparison of model output between the GMS version and the
stand-alone version of MODFLOW was performed by taking
the difference in simulated hydraulic head values at various
time steps. In general, the comparison was good, as illustrated
by the preponderance of difference values grouped between
+/-0.5 ft.

Three scenarios were simulated, in part, to allow as-
sessment of the role that pumping in Jackson and Woodruff
Counties has on groundwater levels and flow rates into and out
of counties located along the western side of Crowleys Ridge.
In scenario 1 (the baseline scenario), the 2005 pumping rate is
applied from 2005 through 2050 without change. In scenario
2, pumping is the same as in scenario 1 except that the pump-
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Figure 18. Simulated water levels from scenario 2 (no pumping in Jackson and Woodruff Counties) minus water levels from scenario 3
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ing rate in Jefferson and Woodruff Counties is specified as
zero from 1998 to 2050. In scenario 3, pumping is the same
as in scenario 1 except that the pumping rate in Jefferson and
Woodruff Counties is specified as half the rate specified for
stress periods from 1998 to 2050.

Particle tracking using MODPATH was done to assess the
direction and distance of travel that particles take from specific
model locations. Factors that affect the distance particles will
travel include: (1) pumping rates in the vicinity of particles,
(2) when and if cells with specified pumping go dry, and (3)
changes in pumping rates during the simulation period. Par-
ticles can travel further if cells do not go dry, because pumping
can continue in them even if the total pumping rate from the
model may be less. Particles introduced in Jackson and Wood-
ruff Counties travel further for scenario 2 than for scenario 1.

Flow-vectors were generated using the built-in graphics
capability in GMS. Groundwater-flow vectors depict magni-
tude and direction of simulated groundwater flow. Groundwa-
ter-flow magnitude is the product of the hydraulic gradient and
hydraulic conductivity. Because only two values of hydraulic
conductivity (230 and 730 feet per day) are specified over the
model domain, variability in groundwater-flow magnitude is
caused largely by variation in hydraulic gradient. Groundwa-
ter-flow vectors and hydraulic-head maps for scenarios 1 and
2 for 2010 and 2050 were generated to allow for a comparison
of groundwater-flow magnitude and direction. The lengths of
the vectors presented represent the horizontal magnitude of
flow, and the orientation of each vector indicates the horizontal
direction of flow.

The occurrence of dry cells was analyzed and observed to
vary between model stress periods and scenarios. For scenario
1, 78 dry cells occur at the beginning of 2010 compared to
671 at the beginning of 2050. When pumping in Jackson and
Woodruff Counties is specified as zero (an overall reduction in
pumping of about 10 percent) (scenario 2), 78 dry cells occur
at the beginning of 2010 and 476 at the beginning of 2050 (a
reduction in dry cells of 29 percent).

Zone-budget analyses using ZONEBUDGET were
performed to assess the rate of water entering and leaving
specified zones within the model. Zone-budget analysis was
performed on the simulated groundwater flow by dividing the
model into four separate zones and calculating the individual
flow components for each zone at different simulation times
for the three pumping scenarios. Reduction of pumping in
scenarios 2 and 3 resulted in substantially more groundwater
flow into the Cache Critical Groundwater Area and more flow
to rivers within the model area.

To show the effect that changes in pumping rates have on
simulated water levels, difference maps were prepared using
results from each of the three scenarios. The largest differ-
ence in water levels occurs as an increase between 60 to 80
ft, mostly over Jackson and Woodruff Counties, but also over
parts of western Cross and Poinsett Counties. When pumping
in Jackson and Woodruff Counties is reduced to half the origi-
nal amount (scenario 3), the difference with that of scenario 1

is between 20 to 40 ft in Jackson and Woodruff Counties. The
difference between scenarios 2 and 3 occurs as a rise between
20 and 40 ft mostly in Jackson and Woodruff Counties and the
western parts of Cross and Poinsett Counties.
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