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Abstract  
 
Water availability and efficient use of nitrogen are 
critical components of a sustainable and profitable 
agricultural system. Since nitrogen is typically 
excessively applied, considerable amounts of nitrogen 
may leach to and move through the subsurface to 
surface water  resources. Our hypothesis is that 
knowledge of the subsurface hydrology can be utilized 
to reduce nitrogen applications by identifying where 
pathways serve as a subsurface irrigation system. This 
research was conducted at the U.S. Department of 
Agriculture–Agricultural Research Service’s 
Optimizing Production Inputs for Economic 
Enhancement site in Beltsville, MD. In this study, two 
corn production fields about 4 ha each were studied 
over 9 years to evaluate nitrogen use efficiency with 
and without a knowledge of the subsurface water flow 
pathways determined using primarily ground-
penetrating radar (GPR) and digital surface elevation 
maps. Since the depth to the GPR-identified subsurface 
water flow pathways typically varied along the 
pathway, the site has both capillary and lateral flow 
components. Field B received uniform applications of 
nitrogen with 34 kg N/ha applied at planting and then 
about 134 kg N/ha as sidedressing when the corn was 
about 60–80 cm high. The second field, field D, was 
under precision management receiving 34 kg N/ha at 
planting and then 0–134 kg N/ha as variable-rate 
sidedressing (same time as field B). The amount of N 
applied in field D, for each 8 × 8 m unit area, at 

                                                      
Gish is a soil scientist, Daughtry is a research agronomist, 
Russ is a remote sensing specialist, and McKee is a support 
scientist, all with the U.S. Department of Agriculture–
Agricultural Research Service, Hydrology and Remote 
Sensing Laboratory, Beltsville, MD 20705. Prueger is a soil 
scientist with the U.S. Department of Agriculture–
Agricultural Research Service, National Laboratory for 
Agriculture and the Environment, Ames, IA. Email: 
timothy.gish@ars.usda.gov. 

sidedressing depended primarily upon the location and 
characteristics of the subsurface water flow pathways. 
Knowing where the subsurface flow channels existed 
allowed us to apply less N downslope along the 
subsurface flow pathways where they approached the 
surface. As a result, the precision N site generally 
received about 34 percent less nitrogen than the 
uniform N application site, yet there was no significant 
reduction in yields. This work demonstrates that 
knowledge of the subsurface hydrology can improve 
nitrogen use efficiency and thereby increase farm 
sustainability. 
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Introduction 
 
Sustainable agriculture is typically defined as an 
integrated system of animal management and crop 
production practices that in the long term enhance 
environmental quality and sustain natural resources 
while maintaining productivity. Although nitrogen is 
frequently overapplied, Keeney and Deluca (1993) 
showed that considerable N loss was occurring on 
agricultural land well before the widespread use of 
inorganic fertilizers. As a result, some N loss will occur 
regardless of agricultural management strategies. 
However, by improving water quality and productivity 
as goals, the concept of “sustainable agriculture” will 
require innovative solutions 
 
Nitrogen is frequently overapplied as insurance against 
low yields, and that poses a risk to surface and 
groundwater quality. Jaynes et al. (2001) observed in 
tile drains (installed at 1.45 m) that nitrate leaching 
increased with increasing N application. In the lowest 
level of N applied (57–67 kg N/ha), nitrate losses in the 
tile drain were typically above the U.S. Environmental 
Protection Agency maximum contamination level of 10 
mg NO3-N/L. Unfortunately, at these lower N 



application rates, corn yields suffered and were 
significantly lower that the medium and high rates of N 
applied. 
 
Including a nonlegume winter cover crop into the 
production management system has been found to 
reduce nitrate leaching since the cover crop reduces 
percolation to groundwater and utilizes nitrate that 
would otherwise leach to groundwater (Francis et al. 
1998, Shepherd 1999). Unfortunately, when cover crop 
planting is delayed due to poor weather conditions the 
cover crop may not become established well enough to 
absorb significant quantities of soil water and N 
(Shepherd 1999). Furthermore, growth of the 
succeeding crop may be reduced if the cover crop has a 
high C/N ratio (Francis et al. 1998). 
 
A growing crop management strategy to reduce 
agrichemical pollution is site-specific or precision 
farming. Historically, farmers have treated a field as a 
single unit applying the same nutrient practice to the 
entire field. However, since soils are inherently 
variable, a field can typically be divided into discrete 
areas, with each area managed according to its needs 
rather than by field averages. Birrell et al. (1996) found 
that much of the crop yield variability could be 
explained by the depth to the claypan layer. Depth to 
the claypan was readily measured using 
electromagnetic techniques (Sudduth et al. 1995), and 
nutrient management plans developed on the basis of 
claypan depth since this feature strongly influences soil 
water relationships for the crop (Kitchen et al. 1997).  
 
To develop an accurate nutrient management plan, it 
would be useful to have reliable estimates of water and 
chemical movement through and along subsurface 
layers. Traditional methods for assessing the spatial 
nature of hydraulic properties include the collection of 
soil core and well log data (Sudicky 1986, Ritzi et al. 
1994). These methods are of limited benefit for large 
fields as only a fraction of the field can be reasonably 
sampled. Additionally, it is virtually impossible to 
ascertain the spatial behavior of water and chemical 
movement using point data because the sampling 
density of soil core and well log data is considerably 
below the inherent spatial variability of soil hydraulic 
properties. As a result, uncertainty associated with 
estimating water movement where no samples were 
acquired can be significant. 
 
Soil layers can significantly affect water movement and 
chemical transport because abrupt changes in texture or 
density across the boundary of two adjacent layers 
causes a discontinuity of soil pores. Research has 

shown that this mismatch of pore entry value and soil 
hydraulic conductivity can trigger funnel flow (Kung 
1990 a and b, 1993; Ju and Kung 1993). Under this 
condition, uniform matrix flow could converge and 
form discrete subsurface preferential flow pathways, 
especially when these soil layers are inclined. 
Accordingly, Gish et al. (2002) identified subsurface 
restricting layers (typically a clay lens) using ground-
penetrating radar (GPR). The depths to these restricting 
layers were evaluated and subsurface flow pathways 
identified. The subsurface flow pathways were then 
used to show that during a drought year, yields 
decreased with distance from the GPR-identified 
subsurface flow pathway (Gish et al., 2005). These 
studies indicate that with a knowledge of the 
subsurface stratigraphy a nutrient management plan 
could be developed that could reduce N inputs without 
a significant reduction in productivity.  
 
The objective of this research was to determine if a 
multiyear nutrient management plan can be developed 
using knowledge of the subsurface hydrology 
constructed primarily with GPR data. 
 
Methods 
 
Site Description  
 
The research site is a 21-ha agricultural production 
farm located at the U.S. Department of Agriculture 
Henry A. Wallace Beltsville Agricultural Research 
Center in Beltsville, MD (near 39°01'44" N., 76°50'46" 
W.). A variety of data including general soil properties, 
crop parameters, and geophysical, meteorological, and 
remotely sensed data are acquired annually on this site, 
which is identified as OPE3: the Optimizing Production 
Inputs for Economic and Environmental Enhancement 
site. One of the principal objectives of OPE3 is to 
determine field and catchment-scale fluxes of 
agricultural inputs. The site contains four fields that 
range from 3.6 to 4.2 ha, each draining into a 1st-order 
stream and riparian wetland and each delimited with 
earthen berms. The soils are variable but mostly sandy, 
with the majority being Typic Hapludults, coarse-
loamy, siliceous, mesic, and are well drained. The 
surface soil textures range from sandy loam to loamy 
sand, have an average organic matter content of <3 
percent.  
 



Figure 1. Depth to the subsurface restricting layers and 
location of GPR-identified subsurface flow pathways. 
 
Subsurface Flow Pathways 
 
OPE3 field boundaries, subsurface restricting layer 
elevations, and the corresponding GPR-identified 
subsurface flow pathways are shown in Figure 1. 
Specifically, a subsurface interface radar system-2, 
with a 150-MHz antenna (Geophysical Survey Systems 
Inc., North Salem, NH) was used to identify subsurface 
reflections that could represent the depth of soil layers 
restricting vertical water movement (i.e., clay lenses). 
Over 40 km of ground-penetrating radar data were 
acquired for the OPE3 site, and a digital trace of the 
subsurface reflections were produced using RADAN 
Software (1999, Geophysical Survey Systems Inc.). 
The spatial autocorrelation of these subsurface 
reflections that restrict water movement for the entire 
research site were determined using GEO-EAS (1991, 
U.S. Environmental Protection Agency) and GS+ 
(2001, Gamma Design Software) geostatistical 
software packages. To determine the elevation of the 
subsurface restricting layer, the depth of these 
subsurface reflections was averaged over each 8×8-m 
cell and was subsequently subtracted from a digital 
elevation map (DEM) averaged over the corresponding 
8×8-m cell. The DEM was developed by analyzing 

real-time kinematic global positioning system (GPS) 
data acquired on a 5-m grid over the entire research site 
(Trimble, Sunnyvale, CA).  
 
The subsurface restricting layers that have been 
identified with GPR reside between 1 and 4 m below 
the soil surface (Gish et. al. 2002). However, 
groundwater above these soil restricting layers can be 
much shallower. Thus, although the average restricting 
layer depth at this site is at a depth of 1.5 m, the water 
table may be well within 1 m of the soil surface. 
Although Gish et al. (2005) demonstrated that averaged 
corn grain yields decreased with increasing distance 
from the subsurface flow pathways (during a drought 
year) they also showed that there were areas where the 
restricting soil layers (and water above them) were too 
deep to influence soil water contents and crop yield. 
Additionally, since the subsurface flow pathways are 
three-dimensional, the depth to the restricting layer 
varies along the length of the GPR-identified 
subsurface flow pathway. Depressions along the GPR-
identified subsurface flow pathway are common, and 
these depressions form cascading pools of water when 
the pathways are actively flowing (Figure 2).  
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Figure 2. Schematic of a GPR-identified subsurface 
flow pathway with typical variations in elevation and 
formation of localized pools. 
 
If there is no flow along the subsurface pathways are 
then water that has accumulated previously within 
these localized pools will behave as a local perched 
water table. As a result, the GPR-identified subsurface 
flow pathways have both lateral flow and perched 
water table components.  
 
Figure 2 is a schematic that depicts the effect of the 
subsurface on corn growth during a drought year. 
Region A is at the top of the field were the subsurface 
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C 
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flow pathways are initiated. Region B represents areas 
within the field were the subsurface restricting layers 
have formed pools of subsurface water that may 
provide water and nutrients to the crop root zone. 
Region C denotes areas within the field that are located 
near a subsurface flow pathway but where the 
pathways are too deep to affect plant growth and yield. 
Additionally, as more water is likely to drain into a 
specific GPR-identified pool, less N would need to be 
applied as side dressing`. In this study, The ARC-GIS 
(2002, ESRI) hydrologic modeling tools 
FLOWDIRECTION and FLOWACCUMULATION 
programs were applied to the raster grid of elevation 
corrected subsurface topography to determine the 
amount of water draining into each GPR-identified 
pool within the field. 
 
Nitrogen Applications 
 
For each of the 9 years, 34 kg N/ha were banded in 
fields B and D during planting of corn (Zea mays L.). 
The amount of N applied during side dressing varied 
from year to year. During the first two years (1998 and 
1999), fields B and D received the same N treatment 
with 134 kg N/ha applied at side dressing (see Table 1 
for total N inputs). Beginning in 2000, fields B and D 
received different N treatments with B representing 
uniform applications of N and field D the precision N 
treatment. Side dressing of N generally occurred 4–5 
weeks after planting. No data is shown for 2003 
because the crop was destroyed during Hurricane 
Isabelle.  
 
Table 1. Nitrogen application rates for each year. 

Year 
Total N applied  

(kg N/ha) 
Sidedressing N  

(kg N/ha) 
Field B Field D Field B Field D 

1998 168 168 134 134 
1999 168 168 134 134 
2000 168 140 134 107 
2001 140 98 106 98 
2002* 103 80 69 46 
2004 172 109 138 75 
2005 164 121 131 87 
2006 164 121 131 87 
2007 164 121 131 87 

*No data for 2003 are shown as the crop was totally destroyed by 
Hurricane Isabelle. 
 
The pre-side dress nitrate test (PSNT) was used from 
2000 to 2004 in field B. As a result, field B received 34 
kg N/ha at planting and the PSNT determined the side 
dressing N rate (Meisinger et al. 1992). Starting in 

2005, however, PSNT values were no longer acquired 
and a constant side dressing rate of 131 kg N/ha was 
applied in field B. 
 
Nitrogen side dressing on field B occurred on the same 
dates as field D for all years. From 2000 to 2004, field 
D received a side dress N prescription based on the 
subsurface hydrology and PSNT values. For example, 
in areas corresponding to regions A and C in Figure 2, 
the N rate prescribed by the PSNT values were applied. 
However, in regions within the field that correspond to 
region B in Figure 1, no nitrogen was applied at side 
dressing, regardless of PSNT values. Beginning in 
2005, PSNT values were no longer acquired, so the N 
side dressing rate was determined by subsurface 
hydrology alone. Regarding the subsurface hydrology, 
the amount of N applied at sidedress was determined in 
an algorithm that accounted for several factors: (1) the 
proximity of the nearest GPR-identified subsurface 
flow pathways; (2) the depth to these subsurface flow 
pathways; and (3) the amount of land draining into the 
GPR-identified pools (depicted in Figure 2). Briefly, 
using Figure 2 as an example, areas within the field that 
correspond to region A, where the subsurface flow 
pathway initiated (no convergence of subsurface flow), 
or region C, where the pathways were located too deep 
(>3 m), the highest rate of about 134 kg/ha was applied 
at side dressing. In general, as the regions within the 
field approached a subsurface flow pathway (vertically 
or laterally), N application amounts were reduced 
linearly until the within-field region was within 1 m of 
the subsurface flow pathway, indicating that no N 
would be applied at side dressing.  
 
Yield Monitoring 
 
Corn grain yields for all 8 years were acquired with a 
yield monitor (AgLeader 2000, Roswell, GA) 
interfaced with a differential GPS. Yield data were 
processed to eliminate measurement errors resulting 
from harvester detours around field instrumentation 
and other obstacles. The spatial autocorrelation of corn 
grain yields were determined using GEO-EAS 
packages. To make direct comparison of yield data to 
the GPR-identified flow pathways, the GEO-EAS 
(1991, U.S. Environmental Protection Agency) and 
GS+ (2001, Gamma Design Software) geostatistical  
software yield data was then kriged at 8×8 m. In 
general, corn grain yield values were collected every 
1.4 m in the row direction.  
 
 



Results 
 
Field Comparisons 
 
Fields B and D have nearly identical soil textures in the 
top 0.3 m with an average sand content ranging 
between 61 and 63 percent. Surface slopes are about 1 
percent greater in field D than field B, but the depth of 
the restricting layer (orthogonal to the soil surface) is 
similar, about 1.5 m. 
 
For the first two years of this study, fields B and D 
received the same tillage and agrichemical treatment 
and as such generated similar yield responses. In 1998, 
both fields generated a corn grain yield of 3.8 Mt/ha. 
Although 1998 had precipitation below normal, 1999 
was a severe drought (Table 2). As a result, field B 
generated a corn grain yield of 1.3 Mt/ha while field D 
generated a yield of 1.5 Mt/ha. Since soil properties, 
depth to the subsurface restricting layers, and even 
yields over two years are nearly identical, a direct 
comparison of the subsequent yield data should be 
appropriate. 
 
Weather conditions varied a great deal for the next 
eight years, with total rainfall amounts (from planting 
to plant senescence) ranging from 0.6 to 3.3 m. During 
this time, yields in the uniform N treatment varied from 
3.4 to 7 Mt/ha. Meanwhile, corn grain yield varied 
from 3.6 to 7.4 Mt/ha for the precision N field. Figure 3 
compares the corn grain yield in both fields for all 
years except 2003, which was never harvested due to 
being destroyed during Hurricane Isabelle. 
 
Statistical analysis revealed that there was no 
significant difference in corn grain yields between the 
two fields even though the precision N field (D) 
received much less N at sidedressing. Although both 
field received 34 kg N/ha at planting, averaged 
sidedressing on field B was 120 kg N/ha compared to 
only 79 kg N/ha on field D. As a consequence, field D 
received about 41 kg/ha less N with no significant 
reduction in yield, a reduction in sidedress N of over 34 
percent.  
 

 
Figure 3. Yield comparison between uniform side 
dressed N (field B) and precision side dressed N (field 
D). 
 
Table 2. Rainfall and yields. 

Year Rainfall* (m) 
Corn grain yield (Mt/ha) 

Field B Field D 
1998 1.1 3.8 3.8 
1999 0.6 1.3 1.5 
2000 2.9 9.0 7.7 
2001 3.1 7.6 7.1 
2002† 1.6 5.2 6.2 
2004 3.3 7.5 6.3 
2005 2.6 6.8 6.5 
2006 3.4 7.6 7.4 
2007 1.0 3.4 3.6 

*Rainfall reported here was measured from the day of planting until 
plant senescence.  
†No data for 2003 are shown as the crop was totally destroyed by 
Hurricane Isabelle. 
 
Conclusions 
 
Corn grain yields from two nitrogen application 
treatments were compared for 9 years at the OPE3 site 
in Beltsville, MD. The uniform N treatment received 
34 kg N/ha starter N at planting and the bulk of the N at 
sidedressing, 4–5 weeks after planting. The precision N 
treatment also received 34 kg N/ha starter N at 
planting, with the bulk of the N applied at sidedressing. 
However, in the precision treatment, the sidedressed N 
was determined primarily as a function of subsurface 
hydrology. Corn grain yields varied significantly over 
the nine years, in part because of the amount of rainfall 
received.  
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Over the nine years there was no difference in corn 
grain yields between the two treatments even though 
the precision N treatment received 34 percent less N at 
sidedressing. This research indicates that knowledge of 
the subsurface hydrology determined with ground-
penetrating radar can be useful in reducing N inputs 
without having a detrimental effect on yields.  
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Abstract

Several Agricultural Research Service watershed locations and long-term experimental/monitoring sites have 
been measuring water, energy, and carbon fluxes using eddy covariance techniques. Several sites have been 
collecting flux data for the last 5–10 years, while other locations have only recently started a monitoring program. 
The measurement sites from east to west include corn in Beltsville, Maryland, at the OPE3 watershed; pasture and 
switchgrass fields near State College, Pennsylvania; corn and soybean rotation in the Walnut Creek and South 
Fork watersheds near Ames, Iowa; corn and soybean rotation near St. Paul, Minnesota; grassland near Mandan, 
North Dakota; grassland and shrubland sites at the Jornada Experimental Range near Las Cruces, New Mexico; 
riparian, grassland, and shrubland in Walnut Gulch watershed and San Pedro river basin near Tombstone, 
Arizona; grassland and savanna sites in the Santa Rita Experimental Range near Tucson, Arizona; a riparian site 
near Reno, Nevada; and high elevation shrubland and forest sites in Reynolds Creek watershed near Boise, Idaho. 
This presentation provides an overview of the measurements conducted at these sites and comparisons of energy 
flux partitioning, water use, and net carbon exchange during the growing season. In addition, there will be a 
discussion of possible future multi-location research projects and inter-comparison studies involving the eddy flux 
measurements and ancillary data. 
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Integrating Watershed- and Farm-Scale 
Models to Target Critical Source Areas 
While Maintaining Farm Economic Viability 
 

Lula T. Ghebremichael, Tamie L. Veith 
 
Abstract  
 
Nonpoint source pollution from agriculture and the 
effects best management practices for mitigation are 
commonly evaluated based on hydrologic boundaries 
using watershed models. However, management 
practice effectiveness is affected by which of the 
feasible practices are actually selected, implemented, 
and maintained. It is increasingly recognized that 
alternative management practices to mitigate nutrient 
losses from agricultural watersheds are applied at the 
field and farm levels and are usually selected and 
maintained at the farm level. To be successful, 
watershed- and farm-scale models must be combined in 
such a way that environmental concerns, such as 
identification and mitigation of critical source areas, are 
addressed while farm production systems are 
maintained or improved. This study develops a 
modeling framework for integrating watershed- and 
farm-scale models that is based on experience from 
numerous location-specific studies at both scales in the 
northeastern United States.  
 
Keywords: critical source area, model scale, net 
profit, phosphorus balance 
 
Introduction 
 
Targeting critical source areas (CSAs) of pollution for 
best management practices (BMPs) is important in 
successfully controlling nonpoint source pollution 
(Walter et al. 2000, McDowell et al. 2001, Weld et al. 
2001). Critical source areas are relatively small 
proportions of a watershed that contribute 
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disproportionately high pollutant loads to nearby 
streams (Gburek and Sharpley 1998, Pionke et al. 
2000). Many studies have demonstrated the potential of 
watershed-based simulation models and geographic 
information systems (GIS) in assessing pollutant losses 
from CSAs and associated BMP effectivenesses 
(Zollweg et al. 1996, Secchi et al. 2007, Busteed et al. 
2009). Watershed-scale models, simulating pollutant 
transport to water bodies, commonly involve 
representations of complex watershed systems based on 
hydrologic boundaries. These models use input data of 
physical landscape properties taken from geodatabases 
(e.g., digital elevation models [DEMs], soil maps, 
property lines, and land cover data). Despite the 
environmental potentials for watershed-scale tools to 
aid in targeting, these tools are limited in practical 
application by conservation specialists for on-farm 
CSA delineation and BMP targeting. A few of the 
challenges can be mentioned. 
 
First, information acquired from these tools is not 
easily transferred into simplified forms suitable for 
interpretation by conservation specialists involved with 
practical aspects of pollution control. Transferring 
CSA-related findings obtained from hydrologic-scale 
models to individual farms in a multi-farm and multi-
owner watershed remains particularly challenging. 
Second, BMP evaluations made by watershed models 
are based primarily on environmental performance, 
without considering economic and environmental 
feasibility at the farm-system level. Third, most 
watershed model tools lack a detailed representation of 
farm system changes (i.e., labor, resources, and animal 
feed availability) that are core influencers of farm 
sustainability and water quality conditions.  
 
To use these tools for practical applications in 
delineating CSAs and targeting on-farm BMPs, a 
framework is needed that (1) transfers CSA-related 
findings obtained from complex models into forms that 
can be applied at a field level and then into farm-level 
plans, (2) evaluates farm-scale CSAs and associated 
mitigation measures with regard to their feasibility and 



economic aspects, and (3) incorporates farm systems 
and farm-level plans into watershed-based tools to 
assess their effects on the quality of larger water 
bodies. This study discusses and demonstrates a 
comprehensive modeling framework that meets these 
needs by integrating watershed- and farm-level 
assessments. Integrating the two scales allows 
environmental concerns to be addressed while the 
farmers’ production systems are maintained or 
improved. The framework is demonstrated by 
combining portions of previous studies from the 
northeastern United States that used the Soil and Water 
Assessment Tool (SWAT, Neitsch et al. 2002) and the 
Integrated Farm System Model (IFSM, Rotz et al. 
2011). 
 
Modeling Framework

The modeling framework (Figure 1) aids in the design 
of environmentally targeted BMPs in agricultural 
watersheds such that they are also economically viable 
at the farm level. The watershed-level assessments are 
driven by the environmental quality goal, while the 
farm-level assessment is primarily driven by the farm 
sustainability goal. The framework applies a tiered 
approach in identifying CSAs at a watershed scale and 
in planning targeted BMPs at both watershed and farm 
scales. In task 1, CSAs of pollution that should receive 
higher priority for potential BMPs are identified. Then, 
in task 2, potential BMPs needed to treat these CSAs 
are evaluated at a watershed scale with respect to their 
potential for preventing water pollution. Both tasks use 
a hydrologic watershed-level water quality model such 
as SWAT. CSA data obtained from the watershed 
model are simplified into a form applicable at the field-
level and then into farm-level plans. When modeling is 
performed with known field boundaries and land 
ownership, CSAs can be specifically located, and key 
land owners can be encouraged to participate in 
targeted nonpoint source pollution control programs. 
Otherwise, CSA characteristics identified from the 
model can be developed as a reference; then, by 
performing field surveys or farm-by-farm assessments, 
farm fields can be checked against the reference for 
similarity in characteristics. Once these farm fields are 
identified, task 3 applies a whole-farm model, such as 
IFSM, to assess farm-specific feasibility and the 
economic and environmental effects of implementing 
the CSA BMPs identified in task 2. Task 3 also 
incorporates a farm-level assessment that includes 
farmers’ inputs in the process of planning effective 
CSA BMPs. Finally, task 4 goes back to the watershed 
level to evaluate the collective effects of farm-level 

BMPs on the water quality of streams and water bodies 
fed by the watershed. In addition, some farm factors 
that are important at a local farm scale (such as labor 
availability and animal rations), but that are not easily 
represented at the watershed scale where broader 
hydrologic processes are modeled, are reevaluated for 
their effect on watershed-level water quality by 
integrating farm-scale results across farms. 
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Figure 1. Modeling framework integrating watershed-
level (shaded) and farm-level (unshaded) assessments.  
 
Integrating watershed- and farm-level assessments 
ensures not only that targeted water pollution 
preventive managements planned at a watershed scale 
can be linked to farms, but also that farmers’ 
management decisions and BMPs can be tied more 
directly to downstream pollution of the streams and 
water bodies. The modeling framework is a 
comprehensive system approach that incorporates 
multiple objectives of water quality and farm 
profitability at appropriate hydrologic and management 



 

scales. It can be used to guide implementation of 
targeted strategies that are both environmentally and 
economically sustainable.  
 
Typical Application 
 
The modeling framework demonstration draws from 
previous studies of a 163-ha watershed that 
encompasses a single 102-cow dairy farm (R-farm). 
Various watershed- and farm-scale modeling studies 
have been done in the R-farm watershed to address 
phosphorus (P) related water quality problems while 
maintaining the farmer’s economic viability. 
 
Task 1: Identify CSAs for Targeting 
 
When using SWAT to model a watershed, the 
hydrologic response units (HRUs), which are 
composed of distinct soil, land use, and slope 
combinations, become the building blocks of the CSAs. 
HRUs must be transferred to the field level to be used 
for practical application because the field is the 
smallest scale recognized by farmers and planners at 
the ground level. Gitau and Gburek (2005) provide an 
example of the most direct way to link HRU 
predictions to specific fields. In SWAT, they used 
field-distinct land use and detailed field-level 
management input data to represent the R-farm 
watershed. With each field uniquely coded and 
represented by several HRUs, they then calibrated 
SWAT with respect to streamflow, sediment, and total 
P (TP) losses and identified variable TP losses by HRU 
within the fields (Figure 2A). 
 
In this paper, field-by-field based average TP losses 
were estimated by calculating area-weighted averages 
of the HRU-based TP losses within each field (Figure 
2B). Because these model predictions are field specific 
and ownership of the fields is known, these predictions 
can be directly used in planning targeted remedial 
strategies for this farm. However, when crop fields are 
in rotation, the rate of TP loss from a particular field 
may vary from year to year depending on the type of 
crop and associated management (see graphs for 1993, 
1994, 1995 in Figure 2). Therefore, it is important to 
recognize these year-to-year spatial and temporal 
variations when interpreting model outputs for practical 
use.  
 
In many cases, watershed modeling efforts involve land 
use input data that may not be field specific and (or) 
management input data that reflect typical practices 
obtained from extension personnel or other agencies 

working with farmers. Even when field-specific data 
are available, the number of fields in larger watersheds 
may be too large to identify the owners explicitly and 
represent them in the model. In these cases, it may be 
necessary to extract important information from 
modeling outputs regarding specific landscape 
characteristics, including land use, soil types, and 
slope, that are likely to result in CSAs. When farm 
fields and land uses with characteristics similar to these 
modeled CSAs are identified, they can be selected as 
priority fields for further analysis and targeting. 
 
Task 2: Evaluate Watershed-Level BMPs 
 
Once priority CSAs for targeting are identified, the 
next step is to assess and prioritize BMPs needed to 
remediate each CSA based on the BMPs relative 
effectiveness toward meeting pollution reduction goals. 
For example, when a no-till management practice was 
imposed on all corn and alfalfa fields from 1993 to 
1995, SWAT predicted a 15 percent reduction in TP 
losses compared to the baseline condition (no-till; 
Figure 3). In addition, the watershed-level SWAT 
prediction for converting corn to grass (Ghebremichael 
et al. 2008) reduced TP losses by 9 percent from the 
baseline (no-corn; Figure 3). This process of BMP 
analysis continues with as many individual BMPs and 
combinations as possible until the target water quality 
goal is achieved. 
 
Task 3: Evaluate Farm-Level CSAs and BMPs 
 
For environmentally-sound measures to be potentially 
implemented by farms, they have to be feasible for both 
their practical and economical aspects. Task 3 uses 
IFSM, a farm-scale model, to assess how BMPs 
designed at the watershed level affect different factors 
of the farm production system and its profitability. This 
analysis should be performed on selective farms 
identified as critical in Tasks 1 and 2.  
 
Strategies evaluated at a watershed level for their 
environmental benefits need to be reevaluated at the 
farm level. For example, a farm-level evaluation of the 
watershed-level strategies of no-till corn fields and of 
converting corn land to grass production was developed 
for the R-farm, which is the only farm within the R-
farm watershed. Using IFSM, Ghebremichael et al. 
(2007) predicted negative economic consequences to 
the R-farm when corn land was converted to grassland. 
Although the strategy reduced TP loading at the 
watershed level, IFSM predicted a $68/cow/yr decrease 
in farm profit (Table 1).  
 



Figure 2. Predicted average total-P losses for the R-farm watershed (A) by hydrologic response units (HRUs) as 
output by SWAT (Gitau and Gburek 2005), and (B) by fields, calculated as the HRU weighted averages. 
 

 

   Field BMPs      Farm-based BMPs  

Figure 3. SWAT-predicted effectiveness for two management practices for the R-farm watershed compared with a 
31 percent target phosphorus reduction from the baseline. (PFM, or Precision Feed Management, reduces dietary 
phosphorus and increases forage productivity and utilization.) 
 
Table 1. IFSM-predicted outputs for a baseline scenario and alternative management scenarios for the R-farm. 

 
Baseline2 Change in value1 as compared to baseline

No-corn2 No-till3 PFM2 PFM + No-corn
Environmental aspects of the farm 

P balance, kg/ha 9.6 +1.8 0 –9.6 –9.8 
Economic aspects of the farm, $/year/cow 

Milk and animal income 3,318 0 0 0 0 
Total production cost 2,880 +68 –43 –237 –253
    Cost of production 2,152 –43 –43 +98 +64 
    Cost of purchased feed 728 +111 0 –335 –318
Farm net return 438 –68 +43 +237 +253 
1change in value = alternative scenario value – baseline scenario value 
2data from Ghebremichael et al. (2007); No-corn scenario changed all corn land to grass; PFM (Precision Feed 
Management) reduced dietary phosphorus and increased forage productivity and utilization 
3data from Ghebremichael et al. (2009); No-till scenario removed the conventional tillage from the corn land 
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The predicted reduction in farm profit was due to an 
increase in purchased animal feed as more feed 
energy was required to offset reductions in on-farm 
corn silage production. Also, as more P was brought 
onto the farm in the increased feed purchases, the 
predicted P surplus increased slightly.  
 
However, switching from conventional to no-till 
corn (Ghebremichael et al. 2009) slightly increased 
the farm’s net return compared to the baseline level 
by lowering production costs, including fuel, tillage 
equipment, and labor (Table 1). Because Task 2 also 
predicted that the no-till practice would reduce TP 
losses from the watershed, the no-till BMP 
positively addresses both the water quality and farm 
economic goals. Conversely, some management 
solutions planned at a watershed level, such as 
conversion of corn land to grass production, may 
have negative farm-level consequences. Such 
negative consequences are likely to hinder 
successful BMP adoption by farmers unless 
compensatory changes can be made elsewhere on 
the farm.  
 
For example, as demonstrated by Ghebremichael et 
al. (2007), strategies of increasing forage 
productivity and utilization in animal diet and 
reducing dietary P can be added to the strategy of 
converting corn land use to grass production in order 
to lessen the negative economic effects and address 
the farm’s impending P imbalance. With these 
strategies combined, Ghebremichael et al. (2007) 
predicted increased farm net return as the farm 
utilized more on-farm produced forage and reduced 
purchased dietary P supplements (Table 1). As the 
farm used more on-farm produced feeds and less 
purchased feeds, the P imported through feed also 
decreased, resulting in a reduced farm P surplus, 
which is a potential root cause for soil P buildup and 
subsequent loss in runoff.  
 
Task 4: Reevaluate Farm-Level BMP at the 
Watershed Scale 
 
Finally, combined effects of farm system and (or) 
farm-level land use changes on watershed-level 
water quality should be assessed using watershed-
scale tools. Data from farm-level modeling can also 
be used to supplement inputs to watershed models. 
For example, as demonstrated by Ghebremichael et 
al. (2008) through SWAT modeling, farm-level 
changes that increased forage productivity and 
decreased dietary P levels were predicted to be 

environmentally beneficial by reducing P loss at the 
outlet of the R-farm watershed (PFM in Figure 3).  
 
In the same study, when these strategies were 
complemented with the strategy of converting corn 
land use to grass production, SWAT reaffirmed a 
positive environmental effect by predicting reduced 
P losses at the watershed outlet (Figure 3). To use 
SWAT in evaluating farm system changes that are 
not directly included in the SWAT processes, 
information resulting from IFSM simulations were 
used. For example, IFSM was used to determine the 
change in P content of manure as a result of altering 
dietary P in cow feed. Then, changes in dietary P in 
SWAT were modeled by representing the 
consequential effects in the concentrations of 
different P forms in the applied manure.  
 
Task 4 of the modeling framework helps assess the 
expected environmental effects at a watershed level 
resulting from the implementation of farm-level land 
use changes and other BMPs. It also helps evaluate 
collective effects of the farmers’ management 
decisions and BMP implementations on the water 
quality of downstream rivers and water bodies. 
 
Conclusions 
 
In this paper, a modeling framework integrating 
appropriate hydrologic and farm scale tools is 
described and demonstrated for a small watershed in 
the northeastern United States. The framework 
provides a guideline for developing and 
implementing targeted agricultural management 
strategies that are both environmentally and 
economically sustainable to the farmers and to the 
watershed. The modeling framework applies a tiered 
approach in identifying CSAs at a watershed scale 
and planning targeted measures at both watershed 
and farm scales.  
 
Examples are provided for transferring CSA-related 
findings obtained from complex watershed models 
into forms that can be applied at a field level and 
then into farm-level plans. The integration of 
watershed- and farm-scale models allows an all-
inclusive assessment of CSAs and associated 
measures for both watershed-level strategic planning 
and farm-level tactical management within an 
agricultural watershed. The integration of watershed 
and farm models also allows the transfer of 
important information across scales. 
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