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Cover.  Left photograph—Example of a stream with low levels of urban stress, which is more likely to have biological condition in 
BCG tiers 1 or 2 as shown by the superimposed probability distribution in green (Thomas F. Cuffney, USGS, September 2011). 
 
Right photograph—Example of a stream with high levels of urban stress, which is more likely to have biological condition in 
BCG tiers 5 or 6 as shown by the superimposed probability distribution in red (Michelle Moorman, USGS, April 2011). 
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Abstract
Urban development alters important physical, chemical, 

and biological processes that define urban stream ecosystems. 
An approach was developed for quantifying the effects of 
these processes on aquatic biota, and then linking those effects 
to endpoints that can be used for environmental manage-
ment. These complex, interacting systems are challenging to 
model from a scientific standpoint. A desirable model clearly 
shows the system, simulates the interactions, and ultimately 
predicts results of management actions. Traditional regression 
techniques that calculate empirical relations between pairs of 
environmental factors do not capture the interconnected web 
of multiple stressors, but urban development effects are not 
yet understood at the detailed scales required to make mecha-
nistic modeling approaches feasible. Therefore, in contrast to 
a fully deterministic or fully statistical modeling approach, a 
Bayesian network model provides a hybrid approach that can 
be used to represent known general associations between vari-
ables while acknowledging uncertainty in predicted outcomes. 
It does so by quantifying an expert-elicited network of proba-
bilistic relations between variables. Advantages of this model-
ing approach include (1) flexibility in accommodating many 
model specifications and information types; (2) efficiency in 
storing and manipulating complex information, and to param-
eterize; and (3) transparency in describing the relations using 
nodes and arrows and in describing uncertainties with discrete 
probability distributions for each variable. 

In realization of the aforementioned advantages, a  
Bayesian network model was constructed to characterize the 
effect of urban development on aquatic macroinvertebrate 
stream communities through three simultaneous, interacting 
ecological pathways affecting stream hydrology, habitat, and 

water quality across watersheds in the Northeastern United 
States. This model incorporates both empirical data and expert 
knowledge to calculate the probabilities of attaining desired 
aquatic ecosystem conditions under different urban stress 
levels, environmental conditions, and management options. 
Ecosystem conditions are characterized in terms of standard-
ized Biological Condition Gradient (BCG) management 
endpoints. This approach to evaluating urban development-
induced perturbations in watersheds integrates statistical and 
mechanistic perspectives, different information sources, and 
several ecological processes into a comprehensive description 
of the system that can be used to support decision making. 
The completed model can be used to infer which management 
actions would lead to the highest likelihood of desired BCG 
tier achievement. For example, if best management practices 
(BMP) were implemented in a highly urbanized watershed to 
reduce flashiness to medium levels and specific conductance 
to low levels, the stream would have a 70-percent chance 
of achieving BCG Tier 3 or better, relative to a 24-percent 
achievement likelihood for unmanaged high urban land cover. 
Results are reported probabilistically to account for modeling 
uncertainty that is inherent in sources such as natural variabil-
ity and model simplification error. 

Introduction
Urban development affects physical, chemical, and  

biological processes that shape the condition of stream  
ecosystems (fig. 1). Impervious surfaces disrupt patterns of 
water movement (Klein, 1979; Poff and others, 1997;  
McMahon and others, 2003), and the resulting flashy stream-
flows can alter the physical habitat of streams, as evident in 
channel scouring and incision (Booth, 1990), sedimentation 
(Wolman and Schick, 1967; Trimble, 1997), floodplain discon-
nection (Haase, 2003), and the removal of riparian habitat. 
Urban storm runoff also contains anthropogenic contaminants, 
such as industrial chemicals, pesticides, and human waste 
(Van Metre and others, 2000; Beck, 2005). Habitat and stream 

1U.S. Geological Survey.
2Nicholas School of the Environment, Duke University, Durham, N.C.
3Tetra Tech, Inc., Owings Mills, Md.
4Maine Department of Environmental Protection.
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Figure 1.  Conceptual diagram of the Effects of Urbanization on Stream Ecosystems (EUSE) National Water-Quality Assessment 
(NAWQA) Program study. Urban stream ecosystems include processes operating at regional, watershed, and stream-reach scales.

chemistry changes can destabilize stream-nutrient, energy, 
and temperature cycles (Jacobson, 2001; Sprague and oth-
ers, 2006). This interacting suite of physical and chemical 
stream factors serves as stressors and can degrade the condi-
tion of aquatic biota (Jones and Clark, 1987; Yoder and others, 
1999). Understanding how a stream ecosystem will respond to 
management actions designed to mitigate the effects of urban 
development first requires understanding how processes are 
linked across spatial scales and how they can interact within 
a given level (indicated in fig. 1 by dashed lines for stream-
reach processes).

As used to understand and quantify the effects of urban 
development on stream macroinvertebrates, traditional 
regression techniques that only calculate empirical relations 
between pairs of environmental factors (Cuffney and others, 
2010) do not account for the complex interactions between 
these multiple stressors. In addition, regression models do not 
incorporate available and information-rich expert knowledge, 
nor do they systematically account for uncertainty associated 
with system complexity, imperfect scientific understanding, 
and environmental variability. 

To address the aforementioned concerns, the U.S. Geo-
logical Survey (USGS), in cooperation with Duke University, 
developed a Bayesian network approach to model the sys-
tem of interacting stressors associated with urbanization and 

their effects on stream biota. This study advances the USGS 
mission by creating a tool that can be used to assess potential 
outcomes of different biological resource management strate-
gies including an explicit incorporation and representation of 
uncertainty associated with those decisions. The study and 
refinement of such tools will enable the public to enjoy healthy 
aquatic resources by identifying sustainable urbanization prac-
tices that minimize negative effects on the environment.  

Purpose and Scope

This report presents a Bayesian network modeling 
approach to (1) understand the relation between urban devel-
opment, reach-scale factors (stressors) that are affected by 
urban development, and the condition of aquatic biota; and 
(2) provide information that can be used to manage water 
quality. A Bayesian network is a probabilistic, graphical model 
that quantifies a network of relations between variables. This 
type of model is flexible in accommodating many model 
structural configurations and input information types, efficient 
in storing and manipulating complex information, efficient 
to parameterize, and transparent in the relations it describes 
through the use of nodes and arrows. In addition, uncertainty 
is clearly represented as discrete probability distributions 
across all possible values of each modeled variable.
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To link scientific understanding to management decision 
making, the Biological Condition Gradient (BCG) (Davies and 
Jackson, 2006) framework is used as the response variable, or 
endpoint, for the Bayesian network model. The BCG defines 
six tiers of biological community condition that can be used 
by managers as reference points for assessing stream health 
and determining management actions. The use of Bayesian 
network models to predict BCG tier membership for individ-
ual streams supports management decision-making objectives, 
including 

1.	Providing objective and replicable characterizations of 
the relation between urban development and end-
points for stream health that can be linked to  
management actions; 

2.	Describing and quantifying how changes in stressors 
can lead to changes in a biological-resource endpoint, 
characterized by the BCG; and

3.	Supporting management decision making by calculat-
ing the probability of attaining aquatic ecosystem 
endpoints (BCG tiers) assuming different levels of 
urban stressors, environmental conditions, and  
ultimately, management options.

This model provides a realistic and applied method for 
resource managers to understand the multiple stressors affect-
ing biological communities and evaluate alternative solutions 
that make sense from an ecological perspective. 

The scope of this report is limited to a description of a 
parsimonious eight-node Bayesian network model constructed 
using the New England Coastal Basins (NECB) subset of the 
USGS Effects of Urbanization on Stream Ecosystems (EUSE) 
data (Cuffney and Falcone, 2008). This report excludes discus-
sion of the original Bayesian network urbanization modeling 
methods development process and justification, which focused 
on the Southeast United States (Kashuba, 2010). The focus of 
this report centers on model application and, as such, excludes 
the details of statistical methods innovations in the parameter-
ization and understanding of Bayesian network modeling.

Methods
This section describes data-collection design, biologi-

cal endpoint standardization and assignment, and the process 
involved in building and updating a Bayesian network model.

USGS Urban Stream Data

A set of nine watershed studies designed to investigate 
the Effects of Urbanization on Stream Ecosystems (EUSE) 
was conducted in major U.S. metropolitan areas during 
1999–2004 as part of the USGS National Water-Quality 
Assessment (NAWQA) Program (fig. 2; Tate and others, 
2005; Giddings and others, 2009). These studies assessed the 

Dallas

Boston

Denver

Raleigh

Atlanta

Portland

Milwaukee

Birmingham

Salt Lake City

Figure 2.  Locations of the nine metropolitan regions and 
surrounding areas of the Effects of Urbanization on Stream 
Ecosystems (EUSE) studies.

physical, chemical, and biological conditions of streams across 
a range of urban development with a common design that 
used standardized measures of urban intensity (Cuffney and 
Falcone, 2008), methods of collection and processing samples, 
and techniques for data analysis (Fitzpatrick and others, 1998; 
Moulton and others, 2002). Within each of the nine metropoli-
tan areas, data were collected at approximately 30 similarly 
sized watersheds. By substituting space for time, the EUSE 
studies quantified many environmental and biological stream 
changes that occur as urban development progresses within 
a watershed. The EUSE study conducted in the Northeastern 
United States, which included the Boston metropolitan area 
(fig. 2), was designated the NECB EUSE study; data from this 
study were used in the modeling effort described herein. New 
England was chosen as the area of focus to take advantage 
of the regional expertise of local biologists who were instru-
mental in developing the BCG concept (Davies and Jackson, 
2006). 

Biological Condition Gradient 

The BCG provides a framework for assessing stream 
health in terms of the condition of resident aquatic biota 
(fig. 3; table 1; Davies and Jackson, 2006). The biological con-
dition of a stream is reported in terms of six tiers that represent 
biological condition endpoints ranging from natural (Tier 1) 
to highly disturbed (Tier 6); these endpoints are suitable for 
determining whether Clean Water Act water-quality standards 
are attained. 

The assignment of a stream to a BCG tier relies on 
the exercise of scientific judgment, dependent on regional 
expertise. Given a taxonomic group of interest (for example, 
macroinvertebrates), experts determine the community char-
acteristics associated with each of 10 BCG attribute classes 
that are appropriate for a given region of the country (table 1). 
The overall assignment of a stream to a BCG tier is done by 
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Figure 3.  Biological Condition Gradient (BCG) tiers relative to increasing stressor gradient (modified from Davies and Jackson, 
2006). The six BCG tiers are defined in terms of biotic community structure and ecosystem function as listed in table 1.

Table 1.  Biological Condition Gradient (BCG) tier and attribute definitions.

[From Davies and Jackson (2006). The six BCG tiers are expressed graphically across increasing 
exposure to stressors in figure 3]

Tier Structure of biotic community Ecosystem function

1 Natural or native condition Natural or native condition
2 Minimal changes Minimal changes
3 Evident changes Minimal changes
4 Moderate changes Minimal changes
5 Major changes Moderate changes
6 Severe changes Major loss

Attribute Characteristics
I Historically documented, sensitive, long-lived or regionally endemic taxa
II Sensitive–rare taxa
III Sensitive–ubiquitous taxa
IV Taxa of intermediate tolerance
V Tolerant taxa
VI Nonnative or intentionally introduced taxa
VII Organism condition
VIII Ecosystem function
IX Spatial and temporal extent of detrimental effects
X Ecosystem connectance
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Sidebar 1.  Comparing Stream Biological Conditions Across Regions 

A major challenge in assessing relative biological conditions for streams in different parts of the country is setting 
expectations for the assessed sites that account for regional differences in the best available, or “reference,” conditions of 
aquatic biota (Herlihy and others, 2008). Macroinvertebrate samples from a U.S. Environmental Protection Agency (USEPA) 
study of the Temperate Plains region, which includes extensive agricultural lands in the eastern Dakotas, through Iowa, 
Minnesota, Missouri, Kansas, and Nebraska, to Indiana and Ohio, can be interpreted in a way that indicates that 62 percent of 
the stream length in this region was in good or fair condition. In contrast, macroinvertebrate sample data from the Northern 
Appalachians region, which includes all the New England states, most of New York, the northern half of Pennsylvania, 
and northeastern Ohio, can be interpreted in a way that indicates that only 
28 percent of the stream length was in good or fair condition. A conclusion 
that could be drawn from these data, collected as part of the USEPA Wadeable 
Streams Assessment, is that the overall biological condition of streams in 
the Midwestern agricultural region is better than the condition of streams in 
the largely forested Appalachian region (fig. 4; U.S. Environmental Protection 
Agency, 2006).

A likely reason for the larger percentage of good and fair stream reaches 
in the Temperate Plains in comparison to the Northern Appalachians is the 
relative difference in the observed biological condition of the reference 
streams in the two regions. Reference streams were selected on the basis 
of the “best available conditions,” those conditions generally present in 
undisturbed watersheds. Macroinvertebrate communities in these streams 
typically have more sensitive species than streams in watersheds that have 
been subject to some degree of human disturbance. However, much of the 
Temperate Plains has been altered by human disturbance, such as agricultural 
activity, and reference streams meeting the criterion of “best available 
conditions” had relatively fewer sensitive species than did reference streams 
in the Northern Appalachians. 

In essence, the regional difference in disturbance led to unequal 
starting points for comparing streams in the Temperate Plains with those 
in the Northern Appalachians. In terms of the Effects of Urbanization on Stream Ecosystems (EUSE) design, the relatively 
limited range of biological conditions in the Temperate Plains streams, including reference streams, resulted in a “truncated 
gradient” in comparison to the Northern Appalachian streams, where reference streams were more likely to have sensitive 
species. Therefore, for a given level of disturbance in a watershed (that is, moving away from reference conditions) a stream 
in the Northern Appalachian region would be likely to show greater departure from reference conditions compared to a 
stream in the Temperate Plains region. Additionally, a truncated gradient for the Temperate Plains region is consistent with the 
EUSE finding that agricultural land use in watersheds in the Milwaukee, Dallas, and Denver study areas had probably led to a 
reduction in the number of sensitive species in streams prior to urban development (Kashuba and others, 2010). 

An issue of potential concern for management in using least-disturbed streams to define “reference conditions” is that 
the qualities of a healthy stream can vary greatly among regions. In cases where assessments of stream health are based 
on regionally distinct reference biological communities, they are often difficult to compare across regions. This situation 
can occur, for example, when tolerant species dominate the biological community in the least-disturbed streams of a region 
because sensitive species have been lost from prior land-use disturbances. One solution that addresses this inconsistency 
is the use of a Biological Condition Gradient (BCG) (Davies and Jackson, 2006). The BCG provides a frame of reference for 
assessing stream biological conditions that can be applied in all parts of the United States. Best available stream conditions 
have reference conditions in BCG Tiers 1 or 2 in parts of the country that include high-quality biological communities. Other 
parts of the country, with degraded biological communities, may have reference conditions in BCG Tiers 3 or 4. Informative 
cross-regional comparisons can only be made when they are based on a common frame of reference.
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characterizing the organisms found in a biological sample in 
terms of these attributes (table 1). This characterization can 
be done by designating the appropriate attribute category for 
individual organisms (for example, sensitive rare taxa) or using 
metrics that provide summaries of the community composition. 
Experts determine the set of metrics that are best suited to rep-
resent the attributes for a given region and the appropriate range 
of metric values associated with each tier. A stream is assigned 
by experts to a BCG tier by weighing evidence from specific 
organisms and summary metrics. For example, a site with many 
sensitive, rare taxa belonging to Attribute II and few tolerant 
taxa belonging to Attribute V may be assigned a BCG Tier 2, 
reflecting a judgment that the overall structure of that site’s 
biotic community differs minimally from the natural condition. 

Implementation of a BCG framework allows water-
quality managers to identify and protect waters of exceptional 
quality and detect incremental improvement or degradation 
in a stream at a finer scale than currently practiced. Managers 
can also use the BCG to set realistically attainable restoration 
goals, diagnose problems and causes with increased detection 
sensitivity, and find problems early and correct them while 
they are still local (Davies and Jackson, 2006). The BCG 
attempts to facilitate comparisons among regions by taking 
into account regional differences in the distribution of fauna 
and differences in methods of data collection and param-
eterization used by State and Federal agencies that monitor 
biological conditions (Davies and Jackson, 2006) (sidebar 1).

Assigning BCG Tier Membership in the 
Northeastern United States

In the Northeastern United States, substantial effort has 
been exerted to derive expert consensus on the classification 
of macroinvertebrate taxa into BCG attributes associated with 
community structure (Attributes I–VI; table 1). Based on 
extensive previous work conducted in the Northeastern United 
States by the U.S. Environmental Protection Agency (USEPA) 
(Snook and others, 2007; Yoder and Barbour, 2009), Tetra 
Tech Inc. (Gerritsen, 2008), and the State of Maine (Shelton 
and Blocksom, 2004), some 700 taxa sampled in the EUSE 
NECB data, hereafter referred to as EUSE Northeast data, 
were classified by attribute characteristics. These character-
istics relate to the relative sensitivity of specific macroinver-
tebrates in the Northeast, but the same taxa would need to 
be re-classified for other ecoregions. For example, caddisfly 
Oecetis is classified as a genus of intermediate tolerance 
(Attribute IV) in the Northeast but as a sensitive-ubiquitous 
genus (Attribute III) in the Midwest (Barbour and others, 
1999). BCG Attributes VII–X describe ecological function and 
are much more challenging to measure than those involving 
community structure. Therefore, these attributes have not yet 
been characterized in implementations of the BCG framework 
(Gerritsen, 2008).

Once EUSE Northeast taxa were classified, biologi-
cal experts were given 30 spreadsheets (one for each NECB 

stream sampled) that characterized each site’s macroinverte-
brate community with a list of taxa found at that site, sorted 
and color-coded by attribute. In addition, spreadsheets also 
contained 20 standard macroinvertebrate metrics describing 
the richness and abundance of common indicator groups of 
taxa (Ephemeroptera, Plecoptera, and Trichoptera (EPT), Chi-
ronomidae, Oligochaeta, and so forth). Using their long-term 
career experience in judging biological condition, experts used 
this information to assign one BCG tier (Tier 1–6) to each 
NECB site. Tiers were first assigned individually, and final 
assignments were reached through expert group discussion 
and consensus. These assignments were then considered part 
of the EUSE Northeast dataset.

To operationalize the BCG approach, results from imple-
menting the BCG framework need to be incorporated into 
a model that predicts membership in a BCG tier for a given 
stream as a function of watershed processes. These processes 
are affected by the degree of urban development in the water-
shed, which interacts with stressors such as hydrology and 
stream chemistry, and affects the aquatic biota found in the 
streams.

Bayesian Network Model

Conventional bivariate analysis of stream ecosystem 
data is often focused on relations between single pairs of 
environmental factors, without incorporating the influence 
of additional interconnected factors or previous ecological 
information about the system. Multiple factors associated with 
reach-scale hydrology, habitat, and water chemistry processes 
can act as stressors that affect the biological community, either 
through direct pathways (solid arrows) or through interactions 
among the processes (dashed arrows) (fig. 1). A Bayesian net-
work modeling approach (Pearl, 1988) examines the relations 
among the processes by dissecting this complex system into 
smaller sets of directly related factors. 

The two main components of a Bayesian network are 
“nodes,” representing important concepts (processes and their 
factors), and “arrows,” representing relations between those 
concepts in the form of conditional probabilities (that is, the 
likelihood of any particular outcome depends on the occur-
rence of preceding events). To depict the structure of a model, 
these nodes and arrows are combined into a graphical repre-
sentation with the use of a directed acyclic graph (DAG). As 
shown in figure 5, for example, Urban development can indi-
rectly affect Biological condition by first disrupting Physical 
condition and Chemical condition. The relations among these 
four major concepts are depicted with a DAG through a set of 
nodes connected by ordered arrows where no pathway follow-
ing the arrows goes through the same node twice; that is, there 
are no cycles (feedback loops) in the model. A DAG describ-
ing this system, therefore, uses four nodes and four arrows.

A node from which an arrow points is called a “parent” 
node and a node toward which an arrow points is called a 
“child” node. Therefore, Urban development is the parent of 
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Biological
condition

Chemical
condition

Physical
condition

Urban
development

Figure 5.  Directed acyclic graph (DAG) showing a simple 
Bayesian network with four nodes and four arrows.

both Physical condition and Chemical condition. This notation 
means that the physical condition and chemical condition are 
both conditional upon a watershed’s urban development level. 
Child nodes relative to one concept can then be parent nodes 
of another concept. That is, in addition to being children of 
Urban development, Physical condition and Chemical condi-
tion are both also parents of Biological condition. 

This modeling structure allows for the deconstruction 
of a complicated system into sets of direct relations between 
every parent node and its children, so that child nodes can then 

be modeled as parents of subsequent child nodes to eventually 
link the entire system into one probabilistic network. Repre-
senting a network of associations as a series of conditional 
relations such as these reduces the difficulty of parameter-
izing such a model and also greatly increases the amount of 
information obtainable from model output. One needs only to 
specify relations between directly linked factors in order to be 
able to create a Bayesian network that describes the interrela-
tions among all factors simultaneously. The effect of changing 
one factor can then be measured on all remaining factors. 

To turn this qualitative model structure into a quanti-
fied Bayesian network, conditional probability tables (CPT) 
are defined, either using expert knowledge or existing data. 
For every possible combination of parent node values, a CPT 
indicates a probability distribution for values likely to occur at 
each child node. In a simplified example where urban develop-
ment can be classified as either low or high, and Urban devel-
opment is the single parent of Physical condition, the CPT for 
Physical condition has two rows: low and high urban develop-
ment (fig. 6). Each row provides the probability of observing 
either good or poor physical condition given a known level of 
urban development. The probabilities in each row must add up 
to 100 percent, because each row describes a complete distri-
bution across all possible child node values. The first row of 
this CPT, relating Urban development and Physical condition, 
indicates that if Urban development is low, there is a 90 per-
cent chance that Physical condition is good, and a 10 percent 
chance that Physical condition is poor. Put differently, if 
100 streams were selected from watersheds having low urban 
land cover, 90 streams are likely to have good physical charac-
teristics, but 10 could have poor characteristics.

Biological
condition

Chemical
condition

Physical
condition

Urban
development

If Physical
condition is… 

and Chemical  
condition is… 

good poor 

good good 95% of the time 5% of  the time

good poor 25% of the time 75% of the time 

poor good 30% of  the time 70% of the time 

poor poor 1% of the time 99% of the time 

Biological
condition will be...

Physical condition as PARENT node:
p(Biological condition|Physical condition, Chemical condition)

If Urban
development is… 

good poor 

low 90% of the time 10% of  the time

high 10% of the time 90% of the time 

Physical 
condition will be...

Physical condition as CHILD node:
p(Physical condition|Urban development)

Figure 6.  Example of simple conditional probability tables (CPT). The relation between each child node and its parents 
(left) is specified with a  CPT (right). The upper CPT describes the relation when Urban development is the parent node 
and Physical condition is the child node. The lower CPT describes the relation when Physical condition is the parent 
node (along with the Chemical condition parent node) and Biological condition is the child node.
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A primary advantage of the Bayesian network over tra-
ditional methods of causal analysis is the ability to simultane-
ously model interacting system components. In the simplified 
example, Biological condition is affected by both Physical 
condition and Chemical condition, so the associated CPT 
shows four probability distributions for Biological condi-
tion that account for all possible combinations of physical 
and chemical stream states (fig. 6, lower table). The first row 
of the CPT for Biological condition indicates a 95-percent 
chance that Biological condition is good if Physical condi-
tion and Chemical condition are both good. The probability of 
observing good Biological condition decreases to 30 percent 
or 25 percent, respectively, if either Physical condition or 
Chemical condition is poor and decreases to 1 percent if both 
Physical condition and Chemical condition are poor.

Creating a Bayesian Network Model
Creating a Bayesian network involves two major steps: 

(1) developing an initial model and distributions, known as 
the prior model, because it is built from information known 
prior to the inclusion of a specific dataset, and (2) updat-
ing the prior model with data to obtain the posterior model, 
which is the model form after data have been incorporated. 
All aspects of the prior model used for the present study were 
based on elicitations from subject experts such as scientists 
and resource managers. The information obtained included the 
model structure (arrangement of nodes and arrows), variable 
selection and discretization (division of a continuous mea-
surement into discrete categories), conditional probabilities 
(the probabilities that child nodes will have certain values 
conditional upon the states of parent nodes), and prior weights 
(the influence of prior information on the model, relative to 
the influence of data). The prior model is then updated with 
the EUSE Northeast data to create the posterior model. As 
per Bayesian philosophy (Bayes, 1763), prior knowledge of 
how a system works is updated when additional information 
about the system is available. Upon completion, this posterior 
model can be used to better understand the relations within 
the parameterized network of nodes through the propagation 
of “evidence,” also called predictive or diagnostic probability 
calculation (Jensen and Nielsen, 2007). By setting the value 
of any parent (driver) node, a Bayesian network can predict, 
in distribution form, the likely values of all child (endpoint) 
nodes ultimately affected by changes to that driver. A Bayesian 
network can also “diagnose” the likely distributions of parent 
nodes required to cause a set child node value. In both cases 
(either following the arrow from parent to child, or in reverse), 
using the probabilistic relations between the nodes and Bayes-
ian statistics, the Bayesian network will update what is known 
about a node on the basis of actual or hypothetical evidence 
about another node. The Bayesian networks presented in this 
report were built using Hugin software (Hugin, 2008).

Developing the Northeastern U.S. Bayesian 
Network Prior Model Using Expert Elicitation 

Expert elicitation specifically refers to the translation of 
expert knowledge into a probabilistic framework (Morgan and 
Henrion, 1990; Winkler, 2003; Reckhow and others, 2005; 
O’Hagan and others, 2006). Scientists often prefer to describe 
the model development process as objective, without acknowl-
edging that model and parameter selections are made by way 
of implicit expert judgment. Expert elicitation, in contrast, is 
an explicit incorporation of expert judgment into the modeling 
process. The goal is to codify expert knowledge, appropriately 
recognizing the degree of uncertainty in that knowledge, and 
then use that knowledge directly in model development and 
parameterization. Using expert elicitation in model develop-
ment thus focuses on the science of the problem by confirming 
or denying expected relations (hypothetico-deductive reason-
ing), instead of calculating statistics for all possible models 
and variable combinations without clear purpose.

Expert knowledge is essential to the development of the 
prior portion of the Bayesian network modeling construct 
described herein. Unlike data gleaned from a single study, 
experts provide an integrated estimate of system relations and 
uncertainties based on all information obtained and synthe-
sized over their respective careers. Weighting prior knowledge 
in which experts have high confidence more heavily than low-
confidence knowledge can help address known problematic 
data concerns. 

To develop this Northeastern U.S. Bayesian network 
prior model, multiple groups of experts were recruited that had 
long-term experience in urban planning, water management, 
water chemistry, basin-scale habitat evaluation, and aquatic 
ecology (table 2). Following a specific methodology that 
was designed for creating an informed expert prior Bayesian 
network (Kashuba, 2010), model structure, variable selection 
and discretization, conditional probabilities, and prior weights 
were elicited from these groups of subject matter experts. 
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Table 2.  Northeastern U.S. urbanization effects model expert teams.

Biologists and aquatic ecologists

Susan P. Davies, Maine Department of Environmental Protection
David L. Courtemanch, Maine Department of Environmental Protection
Thomas J. Danielson, Maine Department of Environmental Protection
Susan K. Jackson, U.S. Environmental Protection Agency, Headquarters
Jeroen Gerritsen, Tetra Tech, Inc.
James F. Coles, U.S. Geological Survey, New Hampshire–Vermont Water Science Center
Thomas F. Cuffney, U.S. Geological Survey, North Carolina Water Science Center
Amanda H. Bell, U.S. Geological Survey, Wisconsin Water Science Center

Water management assessors

Peter K. Weiskel, U.S. Geological Survey, Massachusetts–Rhode Island Water Science Center
Marilee A. Horn, U.S. Geological Survey, New Hampshire–Vermont Water Science Center
Karen M. Beaulieu, U.S. Geological Survey, Connecticut Water Science Center 
Marcus C. Waldron, U.S. Geological Survey, Massachusetts–Rhode Island Water Science Center

Habitat scientists

Faith A. Fitzpatrick, U.S. Geological Survey, Wisconsin Water Science Center
Marie C. Peppler, U.S. Geological Survey, Wisconsin Water Science Center
Barbara C. Scudder, U.S. Geological Survey, Wisconsin Water Science Center
David S. Armstrong, U.S. Geological Survey, Massachusetts–Rhode Island Water Science Center

Urban planners and managers

Paul E. Sturm, Center for Watershed Protection 
William Stack, City of Baltimore Department of Public Works, Water Quality Management Service 
Kernell G. Ries, U.S. Geological Survey, Maryland Water Science Center
Ronald E. Bowen, Anne Arundal County, Maryland, Department of Public Works
Janis S. Markusic, Anne Arundal County, Maryland, Department of Public Works
Christopher Victoria, Anne Arundal County, Maryland, Department of Public Works
Joseph MacDonald, American Planning Association
Karen Cappiella, Center for Watershed Protection 
Hala E. Flores, Anne Arundal County, Maryland, Department of Public Works

Model Structure
Model structure refers to the arrangement of Bayesian 

network nodes and arrows. The goal of structure elicitation 
is to construct a diagram of nodes and arrows that represent 
the chain of events through which urban development affects 
aquatic macroinvertebrate communities. Initial model structure 
was elicited by way of textual analysis of the transcript from 
an open-ended causal narrative interview with a USGS career 
ecologist. Using this causal map development method (Nad-
karni and Shenoy, 2004), the expert was asked to describe, 
step by step, how elements of urban development contribute 
to a biologically degraded stream condition. Then, formal 
textual analysis identified major concepts and causal rela-
tions between concepts. A “concept” is a single idea, such as 
“urban development” or ”habitat.” Environmental processes 
are represented in the causal relations between concepts, for 
example, channel incision is one way in which urban develop-
ment affects habitat. To model the environmental processes 
discussed in the interview, elicited concepts and relations were 
converted into structure nodes and arrows, respectively. In 
model structure development, it is important to eliminate reit-
eration of the same concepts, clearly define causal pathways, 

avoid scale mismatch between concepts, and balance model 
complexity with an ability to parameterize (Reckhow, 1999). 
Therefore, in an iterative process of expert feedback from all 
subject matter groups, the initial causal map was pared down 
to a parsimonious Northeast model structure that was affirmed 
by expert consensus to represent key processes and causal 
influences at the selected scale, while also being of sufficiently 
manageable size to allow for parameterization (fig. 7). 

Macroinvertebrate metrics were selected using a two-
pronged approach. After the process of BCG tier assignment 
(described earlier), experts were asked to identify the three 
most vital macroinvertebrate metrics whose values influenced 
assessment of biological condition. Simultaneously, clas-
sification and regression tree (CART) and ordered logistic 
regression (OLR) models were constructed to evaluate which 
metrics were most predictive of BCG in the USEPA New 
England Wadeable Streams (NEWS) dataset (Snook and oth-
ers, 2007). The three top macroinvertebrate metrics identified 
by both experts and statistical analysis were chosen for use 
in the Bayesian network model: generic richness, filter feeder 
relative abundance, and Plecoptera and Ephemeroptera (P+E) 
relative abundance (fig. 7).
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Habitat

Water
chemistry

Hydrology

Urban
development

Plecoptera + 
Ephemeroptera (P+E)
relative abundance

Generic
richness

Filter feeder
relative abundance

Biological Condition
Gradient (BCG)

Variable Selection and Discretization
Model structure development involves only identifying 

major qualitative concepts (nodes) and their causal connec-
tions with each other (arrows). To transform such a causal 
map into a Bayesian network, a quantifiable variable must be 
assigned to each node, and each assigned continuous variable 
must be converted into a discrete number of mutually exclu-
sive categories. For each model node, experts rely on career 
experience, inter-expert discussion, and consensus building to 
select an EUSE Northeast dataset variable that best represents 
the intended concept of that node (table 3). The choice of how 
many categories a variable should be split into involves a 
tradeoff between the model’s discriminatory strength and the 
accuracy of (potentially complex) parameterization. Having 
few categories limits the ability of the model to differentiate 
between different states of a node and to evaluate changes to 
the variable and the system. As a variable is split into more 

Figure 7.  Parsimonious Northeast Bayesian network model structure.

categories, however, it becomes more difficult to establish 
dependencies between model variables (Uusitalo, 2007) 
because parameter space expands rapidly. In addition, based 
on lessons learned during method development (Kashuba, 
2010), experts often have difficulty distinguishing between 
the middle two of four categories; therefore, each continuous 
variable was split into three categories. For the two selected 
discrete variables (dominant substrate and BCG), model 
categories were chosen to mimic natural, discrete categories; 
dominant substrate is binary (either fine or coarse), and BCG 
has six tiers (table 3). 

Ideally, each category should represent a group of 
values similar to one another and distinct from other catego-
ries, because after discretization, every value within a single 
category will be treated identically by the model. In the 
absence of clear ecological or resource management divid-
ing lines (which dominant substrate and BCG have), this 



Methods    11

Table 3.   Nodes and variables chosen by experts to represent major system components in Northeastern U.S. Bayesian  
network model. 

[%, percent, >, greater than, P+E, Plecoptera and Ephemeroptera; BCG, Biological Condition Gradient]

Node Variable: units
Discrete categories

Low Medium High

Urban development Urban land cover: percentage urban land 
cover in basin area 0–7% >7–31% >31–100%

Hydrology Flashiness: rises greater than 7 times the  
annual median rise 0 1–3 4+

Habitat Substrate: dominant (>50% of transects) 
substrate type

Fine
(sand and smaller)

Coarse
(gravel and larger)

Water quality
Specific conductance: at low base flow, 

microsiemens per centimeter at 25 degrees 
Celsius

0–139 >139–269 >269

Generic richness Generic richness: total number of taxa at the 
genus taxonomic level 0–14 15–37 38+

Filter feeder relative 
abundance

Filter feeder relative abundance: percent of 
total abundance that are filter feeders 0–30% >30–60% >60–100%

P+E relative abundance
P+E relative abundance: percentage of total 

abundance that are Plecoptera and  
Ephemeroptera

0–5% >5–20% >20–100%

BCG Biological Condition Gradient discrete scale 
of 1 (best) to 6 (worst) 1 2 3 4 5 6

Conditional Probability Tables 
Just as variable selection and discretization explicitly 

define model nodes, CPTs explicitly define the relations 
between the nodes (which are represented by arrows). In a 
Bayesian network, a node is modeled in terms of the probabili-
ties that a sample (in this case, a stream measurement) would 
belong to each of its categories. This probability distribu-
tion across the states of a given node changes depending on 
the states of nodes that influence it. Rephrasing in Bayesian 
network parlance, child nodes (into which arrows point) are 
conditionally dependent on their parent nodes (from which 
arrows point). For example, the likelihood of observing high, 
medium, or low flashiness in a stream is conditional on the 
level of urban development in the stream’s watershed. There-
fore, the Hydrology child node is parameterized conditional 
on its Urban development parent node. The Bayesian network 
structure specifies, through its arrow placement, the set of 
CPTs required by the model, where a CPT is created for every 
child node conditional on its parents.

Within each CPT, a probability distribution across all 
possible states of a child node must be elicited for every pos-
sible combination of parent node states. For example, the CPT 
for the Hydrology node conditional on the Urban development 
node has a separate distribution across high, medium, and 
low flashiness for each of the three possible states of urban 
land-cover percentage (table 4A). Each of these distributions 
across child node states is represented in its own CPT row and 

unambiguous distinction between categories is difficult to 
achieve. Therefore, because no clear thresholds existed for 
the seven continuous variables requiring discretization, an 
adaptive, two-criterion category-definition methodology was 
created. This approach starts with defining category endpoints 
such that each category contains an equal frequency of avail-
able data. These initial category endpoints are then adjusted 
as ecologically important cutoff points are identified during 
conditional probability elicitation. Applying this methodol-
ogy, the 30 EUSE Northeast data points for each continuous 
variable were split such that values less than the 33rd percen-
tile defined the “low” category, values between the 33rd and 
67th percentiles defined the “medium” category, and values 
greater than the 67th percentile defined the “high” category. 
Experts were asked whether these three category definitions 
accurately represented what would be considered ecologi-
cally “low,” “medium,” or “high” for each variable, and initial 
endpoint adjustments were made based on expert feedback. 
During conditional probability elicitation, experts refined 
their definitions of each category in the context of describing 
the behavior of variables in relation to other variables. For 
example, the definition of low generic richness was narrowed 
from 0–23 genera to 0–14 genera when it was determined that 
the original range of values was too broad to have a consistent 
effect on BCG tier classification. All generic richness values 
defined as low based on frequency did not belong to the same 
category ecologically, so the category definition was adjusted. 
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Table 4.  “Hydrology” node prior conditional probability table and prior weight (α0),  
data table, and posterior conditional probability table and posterior weights (α0+n).

A.  Prior conditional probability table 

[Flashiness categories in probability units and α0 in equivalent data points; rows selected for prior 
weight elicitation are highlighted in gray]

Urban land 
cover

Flashiness greater than 7 times the median

Low Medium High α0

Low 0.20 0.70 0.10 9.72
Medium 0.15 0.55 0.30 9.72

High 0.10 0.40 0.50 9.72

B.  Data table 

[Flashiness counts and n total number of samples per parent state combination]

Urban land 
cover

Flashiness greater than 7 times the median

Low Medium High n

Low 1 8 1 10
Medium 1 5 4 10

High 2 4 4 10

C.  Posterior conditional probability table

[Flashiness categories in probability units and α0+ n in equivalent data points]

Urban land 
cover

Flashiness greater than 7 times the median

Low Medium High α0+n

Low 0.149 0.751 0.100 19.72
Medium 0.125 0.525 0.351 19.72

High 0.151 0.400 0.449 19.72

described by its own Dirichlet prior distribution (Jensen and 
Nielsen, 2007) (app. 1, eqs. 1.1, 1.2). A Dirichlet distribution 
describes the probabilities of each of three or more mutually 
exclusive events occurring.

To fully characterize the seven CPTs defined by this 
8-node, 17-arrow Bayesian network model (fig. 7), 102 such 
Dirichlet distributions are required, collectively composed 
of a total of 378 Dirichlet θi parameters (where i = 1, 2, or 3 
for all nodes except Habitat, which has two states, or BCG, 
which has six). Nodes with no parents, called “marginal 
nodes,” (such as Urban development) are simply assigned an 
unbiased flat distribution across all possible discrete states, 
such that every state has an equal probability of occurrence. 
Dirichlet distributions for the urban development node are 
never explicitly reported because urban land cover is simply 
distributed equally (0.33 per node state), by design, for both 
the prior distribution and the data distribution and, hence, the 
posterior distribution. The roles of prior, data, and posterior 

are described in further detail later as part of the discussion on 
updating the prior model with data.

The CPTs should be elicited following a systematic, pre-
scribed process designed to guide the experts through a ratio-
nal, judicious evaluation of their expertise. There are several 
documented direct and indirect probability elicitation methods 
for binomial distributions (Winkler, 1967, 2003; Morgan and 
Henrion, 1990); however, the literature remains sparse on ideal 
elicitation methods for the multinomial distributions used in 
this model. Therefore, an adaptation of the direct fixed value 
elicitation method (Clemen, 1991) was developed to apply 
to multinomial elicitations, following the five steps of the 
Stanford Research Institute Elicitation Protocol (Spetzler and 
von Holstein, 1975) to attempt to minimize bias and error. To 
start this elicitation, experts are familiarized with the problem 
context (a process called “motivating”) and specific questions 
of interest (“structuring”) and are then asked to summarize 
and review relevant expert knowledge qualitatively (“con-
ditioning”). After experts are appropriately prepared, prior 



Methods    13

probabilities are assigned (“encoding”) and tested to ensure 
they correctly capture the experts’ opinions (“verifying”). 

Encoding was conducted in frequency units rather than 
probability units to facilitate human conceptualization of the 
information required (Morgan and Henrion, 1990). Using 
direct fixed value multinomial-adapted elicitation, experts 
were asked to divide a fixed total of events into categories 
according to their expected likelihood of occurrence. For 
example, for the first row of the Hydrology child node condi-
tional on the Urban development parent node, the experts are 
asked the following: 

Assume the watersheds of 100 streams in the North-
eastern United States are known to have 0–7 percent 
(low) urban land cover. Assume all other stream 
features are randomly distributed as if you took a 
random sample of northeastern streams with low 
urban land cover. How many of those 100 streams 
would you expect to have low flashiness (no rises 
greater than 7 times the median in a year), medium 
flashiness (between 1 and 3 rises), or high flashiness 
(more than 4 rises)? 

Experts were encouraged to discuss this question until consen-
sus was reached. In this example, experts agreed to report that, 
out of 100 streams in watersheds with low urban land cover, 
they would expect 20 of those streams to have low flashiness, 
70 streams to have medium flashiness, and 10 streams to have 
high flashiness (table 4A, first row). This same exercise was 
then conducted for the remaining possible Urban develop-
ment parent node states (that is, medium and high) and then 
also for each CPT row (that is, parent node state combination) 
of the remaining six child nodes. For the three macroinver-
tebrate metric nodes and BCG node, a total of 1,000 streams 
were postulated to allow for the assignment of very unlikely 
probabilities of less than 1 percent. Frequency results were 
converted into probabilities and normalized when the reported 
total did not equal 100 or 1,000 exactly. The complete elicited 
prior CPT for child node Hydrology is reported in table 4A. All 
other prior CPTs are provided in appendix 2, tables 2–1A to 
2–6A.

Prior Weights
Prior weights were elicited to determine how much to 

weight prior knowledge relative to data during Bayesian 
updating (described later). Prior weights are reported in units 
of “equivalent data points” to allow for comparison with data 
weight reported as a number of actual data points. After evalu-
ation of three different prior weight-elicitation methods, the 
probability range method (Cowell and others, 1999) was found 
to show lowest within-method variability, most consistent 
prior weights among nodes, and was most intuitive for experts 
to communicate (Kashuba, 2010). This method asks experts 
to provide a range of values that represents their certainty 
about a given parameter. For example, experts reported in CPT 
elicitation that, of 100 streams having low urban land cover, 
they would expect 20 to have low flashiness. When asked to 
provide a certainty range of values, they responded that they 
would not be surprised if there were as few as 5 or as many 
as 35 streams that had low flashiness in a sample of 100 low 
urban land-cover streams (table 5, first row). The premise of 
the probability range elicitation method is that small reported 
probability ranges correspond to high certainty (that is, high 
prior weight), and large ranges correspond to high uncertainty 
(low prior weight).

The width of an elicited range has been determined to be 
approximately two standard deviations long around a Dirich-
let θi value (app.1, eq. 1.1) (Spiegelhalter and others, 1994), 
that is, one standard deviation is equivalent to one-half the 
length of the range. Eliciting a prior probability and an uncer-
tainty range of probabilities for a CPT cell, therefore, provides 
values for expected mean (E[θi  ]) and expected variance 
(var[θi  ]), respectively, for the Dirichlet parameter, θi. Equa-
tions for the Dirichlet expected value and Dirichlet expected 
variance can then be solved for prior weight, α0, (app. 1, 
eqs. 1.3–1.5) (Kashuba, 2010). In the example reported earlier, 
E[θi  ] = 0.20, a range of 0.30 translates to a standard deviation 
of 0.15, so var[θi  ] = 0.0225, resulting in α0 = 6.11 for the CPT 
cell representing the probability of observing low flashiness 
given low urban land cover (table 5, first row). Probabil-
ity ranges were elicited and prior weights were calculated 
in this way for two random rows of each child node’s CPT 
(highlighted in table 4A for Hydrology child node, and app. 
2, tables 2–1A to 2–6A for remaining child nodes). These cell-
level prior weight values were then averaged across a child 
node for stability (table 5). Node-averaged prior weights are 
also reported with elicited CPTs in table 4A and appendix 2, 
tables 2–1A to 2–6A. For example, the prior weight for the 
Hydrology child node, 9.72 (table 4A, table 5), is the mean of 
the six elicited probability ranges for the low and high urban 
land cover CPT rows (table 5, first six rows).
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Table 5.  Probability range prior weight elicitation results for all child state probabilities in each of two randomly selected rows from 
each conditional probability table.—Continued

[P+E, Plecoptera and Ephemeroptera; BCG, Biological Condiiton Gradient]

Child node 
(variable)

Parent node
variable states 

(category definition)

Child 
variable 

state

Prior 
expected 

value 
(E[θi  ] )

Elicited 
prior  

probability
range

Standard  
deviation  

calculated  
from range 

Calculated prior 
weight 

(α0)

Hydrology 
(Flashiness)

Urban land cover

Low
Low 0.20 0.05–0.35 0.15 6.11

Medium 0.70 0.50–0.80 0.15 8.33
High 0.10 0.02–0.18 0.08 13.98

High
Low 0.10 0.02–0.18 0.08 13.06

Medium 0.40 0.30–0.60 0.15 9.67
High 0.50 0.30–0.65 0.18 7.16

Mean ± within–method standard deviation 9.72 ± 3.19

Habitat 
(Substrate)

Urban land cover Flashiness

Low High
Fine 0.05 0–0.12 0.06 12.19

Coarse 0.95 0.85–1 0.08 7.44

High Low
Fine 0.40 0.20–0.60 0.20 5.00

Coarse 0.60 0.40–0.80 0.20 5.00
Mean ± within–method standard deviation 7.41 ± 3.39

Water 
quality  

(Specific 
conductance)

Urban land cover Flashiness

Low Low
Low 0.85 0.75–0.95 0.10 11.75

Medium 0.10 0.02–0.20 0.09 10.11
High 0.05 0–0.10 0.05 18.00

High Low
Low 0.02 0–0.05 0.03 30.36

Medium 0.23 0.05–0.30 0.13 10.33
High 0.75 0.65–0.95 0.15 7.33

Mean ± within–method standard deviation 14.65 ± 8.48

Generic 
richness

Flashiness Substrate Conductance

Medium Coarse Medium
Low 0.100 0.010–0.200 0.095 8.97

Medium 0.350 0.100–0.900 0.400 0.42
High 0.550 0.300–0.800 0.250 2.96

High Fine High
Low 0.900 0.500–0.999 0.250 0.45

Medium 0.099 0.050–0.800 0.375 –0.37
High 0.001 0–0.100 0.050 –0.60

Mean ± within–method standard deviation 1.97 ± 3.65

Filter 
feeder relative 

abundance

Flashiness Substrate Conductance

Low Fine High
Low 0.440 0.200–0.800 0.300 1.74

Medium 0.550 0.200–0.800 0.300 1.75
High 0.010 0.001–0.150 0.075 0.78

High Coarse High
Low 0.200 0.100–0.600 0.250 1.56

Medium 0.500 0.100–0.800 0.350 1.04
High 0.300 0.100–0.600 0.250 2.36

Mean ± within–method standard deviation 1.54 ± 0.56

( )var[ ]iθ
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Updating the Prior Model with Data
The mechanism of Bayesian network updating and, 

hence, the ability to combine expert judgment with data 
derives from the principles of Bayes Theorem (Bayes, 1763):

( ) ( ) ( ),p x p p xθ θ θ∝

where
	 p(θ)	 is the prior probability distribution of θ, the 

parameter set of interest, 
	 p(x|θ)	  is the likelihood function characterizing x, the 

data, given θ, and 
	 p(θ|x)	  is the posterior probability distribution of θ, 

given the data, x, which is a combination 
of the prior information and the data 
collected.

(1)

In general, Bayesian analysis attempts to gain under-
standing about the distribution of all possible values of a 
parameter set of interest, θ. This distribution, p(θ), is originally 
constructed from information available prior to the collec-
tion of a specific dataset. Once data are available, the likeli-
hood function, p(x|θ), calculates the likelihood of observing 
those data given each possible value of θ. To update the prior 
information with the additional information from the data, the 
prior distribution is multiplied by the data likelihood function, 
resulting in a posterior distribution of θ, conditional upon the 
data observed. This posterior distribution, p(θ|x), is essen-
tially a weighted average of the prior information and the data 
(sidebar 2).

Table 5.  Probability range prior weight elicitation results for all child state probabilities in each of two randomly selected rows from 
each conditional probability table.—Continued

[P+E, Plecoptera and Ephemeroptera; BCG, Biological Condiiton Gradient]

Child node 
(variable)

Parent node
variable states 

(category definition)

Child 
variable 

state

Prior 
expected 

value 
(E[θi  ] )

Elicited 
prior  

probability
range

Standard  
deviation  

calculated  
from range 

Calculated prior 
weight 

(α0)

P+E relative 
abundance

Flashiness Substrate Conductance

Low Coarse Medium
Low 0.100 0.050–0.300 0.125 4.76

Medium 0.600 0.450–0.900 0.225 3.74
High 0.300 0.200–0.600 0.200 4.25

Medium Coarse Low
Low 0.010 0.001–0.100 0.050 3.04

Medium 0.390 0.200–0.600 0.200 4.95
High 0.600 0.500–0.800 0.150 9.67

Mean ± within–method standard deviation 5.07 ± 2.36

BCG

Generic 
richness

Filter feeder 
relative 

abundance

P+E relative 
abundance

Low High High

1 0.001 0–0.005 0.002 159.48
2 0.001 0–0.005 0.002 159.48
3 0.001 0–0.020 0.010 9.03
4 0.498 0.299–0.697 0.199 5.30
5 0.498 0.299–0.697 0.199 5.30
6 0.001 0–0.100 0.050 –0.60

High High High

1 0.050 0.030–0.151 0.004 12.21
2 0.050 0.040–0.100 0.001 51.83
3 0.450 0.350–0.549 0.010 23.80
4 0.350 0.250–0.450 0.010 21.79
5 0.100 0.050–0.150 0.002 35.04
6 0.001 0–0.002 0.000001 999.00

Mean ± within–method standard deviation 123.47 ± 281.42

( )var[ ]iθ
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Sidebar 2.  How Bayesian Updating Works

Simple Example with Single Probability Parameter 

Bayesian updating is the process of revising a prior distribution of one or more parameters using newly obtained data 
that contain information about those parameters. This simple example shows how to estimate the probability that a random 
stream in the northeastern United States has good biological 
condition. This probability can be represented by the 
parameter, θi. Prior information about θi (from either expert 
knowledge or previous data) can be summarized in this 
case by a beta distribution centered on 0.50 with a standard 
deviation of 0.2 (fig. 8, solid red distribution). This prior 
information is known with a prior weight (hypothetical sample 
size) of 6. This means that, prior to data collection, analysts 
believe there is a 50-percent chance that a random stream in 
the northeastern United States has good biological condition, 
and the certainty of that probability estimate is equivalent 
to the certainty of observing six streams, of which three had 
good biological condition. This prior distribution summarizes 
everything known, and how well it was known, before data 
were collected.

The biological condition of 10 random streams in the 
Northeast are then sampled. The data collected indicate 
that 7 of these 10 streams have good biological condition. 
This means the data are assumed to belong to a binomial 
likelihood distribution centered on the maximum likelihood 
estimate of 0.70 for parameter θi (fig. 8, dashed blue 
distribution). Making an inference about parameter θi based 
on these data alone, there is a 70-percent chance that a 
random stream in the northeastern United States has good 
biological condition with a certainty equivalent to 10 samples. 

Given the sources just described, there are two different 
types of information from which two different conclusions 
can be drawn concerning the probability that a stream in the 
Northeast United States has good biological condition. There 
is slightly more certainty in the conclusions drawn from the 
10 sample units of recently collected data, but that does not 
mean that the 6 sample units of information available prior to 
collecting data should be discounted. 

Ideally, the greatest certainty would be associated with 
a conclusion that could be drawn from both aforementioned 
sources of information. This combining of information is exactly what Bayesian updating allows one to do. By taking a weighted 
average of prior information and data, a posterior (beta) distribution for parameter θi is calculated with an expected value of 
0.625 (fig. 8, solid purple distribution). An analyst can now infer that the probability of a stream in the northeastern United States 
having good biological condition is closer to 62.5 percent, with a certainty equivalent to 16 samples. This greater certainty of the 
posterior state of knowledge is represented by a smaller standard deviation of 0.1 (fig. 8, solid purple distribution) relative to the 
prior distribution standard deviation of 0.2 (fig. 8, solid red distribution).
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Prior: p(θi) → 0.50
Data: xi /n = 7/10 → 0.70
Posterior: p(θi|xi) → 0.625

Figure 8.  Bayesian updating of hypothetical, generic 
parameter θi (which can represent a probability between 
0 and 1). The expected value of the prior distribution (red), 
p(θi), is 0.50. Collected data (blue) shows 7 of 10 samples 
(where xi is number of positive draws and n is total sample 
size), resulting in a maximum likelihood estimate of 0.70. 
The posterior distribution (purple), p(θi|xi), averages prior 
information with data, weighting by prior weight (6) and 
sample size (10), respectively, and yielding an expected 
value of 0.625. Because sample size was slightly greater 
than prior weight, the posterior expected value is slightly 
closer to the maximum likelihood estimate than to the prior 
expected value.
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Bayesian Updating for Multiple Probability Parameters within a Bayesian Network CPT Row 

In the context of a Bayesian network, Bayesian updating of parameters applies to each parameter in each conditional probabil-
ity table (CPT). Rather than using the distribution forms that describe the probability of a single outcome occurring (that is, beta prior 
and posterior distributions for the parameter, θ, and binomial likelihood for the data), each row in the conditional probability table 
uses the distribution forms that describe the probability of one of multiple outcomes occurring. The distribution form for multiple 
(for example, three) possible outcomes is Dirichlet prior and posterior distributions for the parameters, θ1, θ2, θ3, and multinomial 
likelihood for the data, as described in the discussion of model updating with prior data and equations 1.1–1.9 (appendix 1).

The different distribution forms just described follow identical Bayesian principles. Each cell in a CPT shows the expected 
value of the probability that a stream will fall into that child node category given that it belongs to the parent node category for that 
row. For example, the first row of the prior CPT for the Hydrology child node shows that for a stream in a watershed with low urban 
development (parent node category), there is an expected 20-percent chance that stream will have low flashiness, a 70-percent 
chance that stream will have medium flashiness, and a 10-percent chance that stream will have high flashiness (fig. 9, top prior 
row, from table 4A, first row). Similar to the single probability example described earlier, these three probabilities are constructed 
from (expert) knowledge obtained prior to data collection. These three values are considered the expected prior values for 
Dirichlet parameters, θ1, θ2, θ3. The expert-elicited prior weight indicates that this knowledge is equivalent in certainty to 8.3 
hypothetical samples. This prior weight is represented in Dirichlet terminology as α0 (appendix 1, equations 1.1–1.9).

Additionally, Effects of Urbanization on Stream Ecosystems (EUSE) Northeast data measuring flashiness and urban 
land cover are also available to make inference on the likely values of θ1, θ2, θ3. In this case, data show that of 10 streams in 
watersheds having low urban land cover, 1 has low flashiness, 8 have medium flashiness, and 1 has high flashiness (fig. 9, 
middle data row, from table 4B, first row). The maximum likelihood values for θ1, θ2, and θ3, given these data, (from assumptions 
specific to a multinomial distribution) are 0.10, 0.80, and 0.10, respectively. Bayesian updating is then used to combine these 
two sets of information into a posterior conditional probability table that lists the expected values for parameters θ1, θ2, and θ3, 
given both prior information and data, weighting by the prior weight, α0, and sample size, n, respectively (fig. 9, bottom posterior 
row, from table 4C, first row). In this case, because the sample size is slightly greater than the prior weight, posterior expected 
values of the probabilities of having low or medium flashiness given low urban land cover are calculated slightly closer to 
the maximum likelihood values of the data compared to the expected values of the prior distribution. The posterior probability 

of high flashiness remains 
unchanged because both the 
prior distribution and the data 
likelihood have the same 0.10 θ3 
value. This Bayesian updating 
process is followed for every CPT 
row in the model. 

Figure 9.  Bayesian updating 
of parameters θ1, θ2, θ3, within a 
conditional probability table (CPT) 
row in a Bayesian network. The 
posterior expected values, E [θ1|x1], 
E [θ2|x2], and E [θ3|x3], are each 
the weighted average of the prior 
expected values (E [θ1], E [θ2], and 
E [θ3]) and the maximum likelihood 
estimates from the data (x1/n, x2 /n, 
and x3 /n), weighted by the prior 
weight (α0 ) and sample size (n), 
respectively.

PRIOR

Urban development:  
Percent urban land cover
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Flashiness greater than 7 times the annual median rise

Low  
(0–7%)

Low 
(0 rises)

Medium 
(1–3 rises)
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weight

0.20 0.70 0.10 8.3
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E [θ1 ] E [θ2 ] E [θ3 ] α0
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Percent urban land cover
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(0–7%)
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size

1 8 1 10
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x1 x2 x3 n
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Low 
(0–7%)

Low  
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Medium 
(1–3 rises)

High 
(4+ rises)

Posterior  
weight

0.15 0.75 0.10 18.3

E [θ1 | x1 ] E [θ2 | x2 ] E [θ3 | x3 ] α0+ n
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In theory, prior parameter distributions can take any 
functional form conceivable. However, if the posterior distri-
bution function cannot be calculated analytically (for a given 
combination of prior distribution and data likelihood func-
tion), numerical approximation techniques such as Markov 
Chain Monte Carlo (MCMC) sampling are often computation-
ally laborious and time intensive (Lunn and others, 2000). If, 
instead, the prior distribution and the data likelihood function 
belong to what is called a conjugate family, then a posterior 
solution of the same functional form as the prior distribution is 
guaranteed. 

In the context of a Bayesian network, the parameter sets 
of interest are the probabilities that a node’s value will fall 
within each of its possible discrete categories. These prob-
abilities, represented by different θi parameters, can be mod-
eled using a Dirichlet distribution, as explained earlier in the 
discussion of prior model development using expert elicita-
tion. For example, a node representing urban development has 
three possible categories: high (>31–100 percent urban land 
cover), medium (>7–31 percent) and low (0–7 percent). The 
prior probability that a random Northeastern U.S. watershed 
has high, medium, or low urban land cover can be described 
by parameters θ1, θ2, and θ3, respectively. 

Continuous data collected by measuring the urban land-
cover percentages of a random sample of watersheds can be 
converted into discrete data by placing the samples into the 
three defined urban land-cover categories and reporting num-
ber of samples in each category rather than each sample’s orig-
inal continuous value. In this way, 30 continuous x values (for 
example, 0.9, 1.1, 1.8, 2.4, 2.4, 2.6, 3.2, 3.3, 4.9, 6.4, 8.0, 8.0, 
10.3, 15.4, 18.3, 21.5, 23.5, 24.4, 28.5, 30.6, 34.7, 35.7, 38.6, 
43.3, 44.7, 50.2, 53.7, 60.1, 64.4, and 76.4 percent urban land 
cover) can be reported, instead, as three discrete x values (for 
example, 10, 10, and 10 samples in categories high, medium, 
and low urban development, respectively). Data in this dis-
crete form can be described using the multinomial likelihood 
function (app. 1, eqs. 1.6–1.7). The Dirichlet-multinomial 
family is conjugate, which means that if the Dirichlet distribu-
tion is used to quantify prior knowledge about the possible 
values of θ1, θ2, and θ3, and multinomial data are collected, 
then the posterior distribution combining prior knowledge and 
data will also be of the Dirichlet form. To calculate this poste-
rior distribution, the Dirichlet prior distribution is multiplied 
by the multinomial likelihood function as specified by Bayes 
Theorem (eq. 1), resulting in a Dirichlet posterior distribution 
with new coefficient values (app. 1, eqs. 1.8–1.9). 

The Dirichlet posterior estimates are a weighted average 
of prior estimates and data estimates. Hypothetically, assume 
the expected value of θ1 from the Dirichlet prior distribution 
was 0.20 with a prior weight of 5 and data showed that 4 out 
of 10 samples fell into category 1. The posterior expected 
value of θ1 calculated from the Dirichlet posterior distribution 
would then be the average of 0.20 weighted by 5 and 0.40 
weighted by 10, or 0.33. This posterior expected value of θ1, 
0.33, is the average of 0.20 and 0.40, where 0.40 has twice the 
weight of 0.20, as specified by the prior weight relative to the 

data weight (sample size). In this way, prior and data informa-
tion are combined, appropriately weighted (sidebar 2). In other 
words, the prior expected value of θ1 (0.20) is updated with 
information from collected data to yield a posterior expected 
value of 0.33. Specific to the Hydrology child node discussed 
above, the expert elicited prior CPT shows that a watershed 
with low urban land cover, flashiness is 20 percent likely to 
be low, 70 percent likely to be medium, and 10 percent likely 
to be high (table 4A). The EUSE Northeast data show that, of 
10 watersheds with low urban land cover, 1 had low flashiness, 
8 had medium flashiness, and 1 had high flashiness (table 4B). 
Therefore, the posterior CPT for the Hydrology child node 
shows expected values of 14.9 percent low, 75.1 percent 
medium, and 10.0 percent high flashiness, which are each an 
average of the prior probabilities and the data, weighted by the 
prior weight and sample size, respectively (table 4C).

Predicting Effects of Urbanization  
on Biota

Once a prior Bayesian network is built and updated with 
data, the resulting posterior Bayesian network is used to inves-
tigate potential results of applying management practices on 
biological condition. Drawbacks of using only data to param-
eterize this Bayesian network are presented.

Prior Bayesian Network Model

The final prior Bayesian network combines elicited 
model structure, variables, CPTs, and prior weights into a 
single representation of node relations and uncertainties (app. 
2, fig. 2–1). The model shows marginal probability distribu-
tions for each of the eight nodes; marginal probabilities are 
unconditional probabilities for each variable that are calcu-
lated by integrating out information about its parent variables. 
Conditional probabilities and prior weight information are 
embedded in the arrows pointing from parent to child nodes. 
For each node in a parameterized Bayesian network like fig-
ure 2–1 (app. 2), the horizontal blue bars depict the probability 
of a Northeast stream sample falling within each node state, 
with longer bars corresponding to higher probabilities. The 
numeric column superimposed on these bars lists these prob-
ability values as percentages. This prior network can provide 
information such as the probability of observing a “minimally 
changed” BCG Tier 2 condition in a random Northeastern 
U.S. stream is 13.47 percent. More usefully than making an 
average inference for a random stream, hypothetical “evi-
dence” can be entered into the network (shown with horizontal 
red bars) and propagated to predict the effects of one variable 
state change on the rest of the system. For example, under 
conditions of low urban land cover, the predictive probability 
of observing BCG Tier 2 condition increases to 22.78 percent 
(fig. 10). 
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Figure 10.  Prior predictive probabilities of occurrence for each level of each node under low urban development. [Probabilities 
are represented as percentages, numerically and graphically (horizontal colored bars). Factor levels are defined in table 3.]
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In addition, when urban land cover is known to be low, 
the prior predictive probabilities indicate an increased like-
lihood of observing stable hydrology, coarse habitat, low-
conductance water quality, high macroinvertebrate generic 
richness, low filter feeder relative abundance, and high P+E 
relative abundance. These predictions are reversed under 
conditions of high urban land cover, with the probability of 
observing BCG Tier 2 condition decreasing to 5.69 percent 
(fig. 11). Not only does the Bayesian network illustrate the 
direction and magnitude of expected change for every node, it 
also incorporates uncertainties about those changes by report-
ing results in the form of (discrete) distributions. 

Data-Only Bayesian Network Model

Instead of using expert elicitation, a Bayesian network 
can be parameterized using data alone. Data collected for 
the 30 EUSE Northeast watersheds can be discretized and 
organized according to model-structure-specified data tables 
(table 4B for Hydrology child node; app. 2, tables 2–1B to 
2–6B for remaining child nodes). Converting these data tables 
to probabilities creates the CPTs required to specify a data-
only Bayesian network model. For the sake of comparison, 
this data-only model (fig. 2–2) was evaluated. Function-
ally, creating such a Bayesian network requires updating an 
uninformed prior distribution with the dataset, such that the 
posterior model reflects only information from the data.

A major problem with using a data-only approach for 
this model is the small sample size (30 watersheds, per CPT) 
relative to the large number of model parameters (378 θi prob-
abilities to define, total). Because of this disparity, many of the 
variable-state combinations the model attempts to characterize 
are not represented in the dataset because they were not mea-
sured; these include all CPT rows created from data rows in 
table 4B and appendix 2, tables 2–1B to 2–6B for which n = 0. 
One such missing component is the fine-sediment-dominated 
stream. Streams in the Northeastern United States tend to be 
geomorphologically coarser, in general, than streams in EUSE 
studies in other parts of the country, such as in agricultural-
runoff-dominated regions of the Midwest. Because high levels 
of fine sediments are uncommon in the Northeast, no such 
stream was observed during EUSE Northeast data collection in 
this region. Consequently, no data are available to characterize 
any of the CPT probability rows conditional on fine-sediment-
dominated habitat when Habitat is acting as a parent node (a 
total of 81 θi probabilities, created from data tables 2–3B to 
2–5B in app. 2) nor any of the CPT for the Habitat child node 
(18 θi probabilities, created from data table 2–1B in app. 2), 
even though expert biologists emphasized the role of fine sedi-
ments in degrading the macroinvertebrate condition. Because 
of the lack of data, the Habitat node in the data-only model 
never changes state from 100 percent “coarse.”

Similarly, no streams with “low” generic richness (less 
than 15 genera) were sampled, probably because the EUSE 
Northeast study did not include watersheds containing more 
than 77 percent urban land cover. In the Northeast, many of 
the most urbanized streams have been converted into concrete 
culverts or underground pipes. These streams were con-
sciously not sampled as part of EUSE because they were not 
considered natural stream systems. This exclusion resulted 
in undersampling of highly urbanized streams, which are 
the ones most likely to have “low” generic richness. Conse-
quently, any CPT cell involving low generic richness as a  
child or parent state could not be characterized by the data 
(72 θi probabilities, created from data tables 2–3B and 2–6B in 
app. 2).

In addition to the two systematic data gaps just identi-
fied, many of the remaining parent-state combinations have 
no data equivalent, with random data gaps increasing as node 
complexity increases. For the BCG node that has three parents 
with three states each, only 7 of the 27 parent state combina-
tions have available data (app. 2, table 2–6B). This result is 
observed because (1) some parent state combinations are more 
likely to occur than others (for example, 10 of 30 Northeast 
streams had a parent state combination of medium generic 
richness, high filter-feeder relative abundance, and low P+E 
abundance); and (2) small sample sizes often do not capture 
rare state combinations.

Paradoxically, the effect of parameterizing a Bayes-
ian network with limited data is an inflated certainty in the 
marginal distributions of some nodes; for example, Habitat 
shows 100 percent coarse substrate (fig. 2–2). In addition, 
when small-sample-sized data are used to calculate CPTs, 
node distributions exhibit extreme responses to evidence 
propagation. For example, in cases of low urban land cover, 
the data-only model predictive probability of observing BCG 
Tier 2 (53.86 percent, fig. 12) is much greater than the expert-
prior model prediction (22.78 percent, fig. 10), and much less 
than the expert-prior model prediction in cases of high urban 
land cover (0 percent, fig. 13, relative to 5.69 percent, fig. 11). 
This result can be traced to the abundance of data-gap-induced 
CPT zeros in the data-only model, which are probabilisti-
cally interpreted as a total certainty of nonoccurrence. This 
false certainty unrealistically distorts prediction magnitude. 
Although the direction of change is the same in both models, 
showing that experts and data agree on the direction of vari-
able relations, available data alone are insufficient to ade-
quately parameterize this model. In this situation, there would 
be very little confidence in the final model if substantial expert 
information were not included in the prior distributions. 
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Figure 11.  Prior predictive probabilities of occurrence for each level of each node under high urban development. [Probabilities 
are represented as percentages, numerically and graphically (horizontal colored bars). Factor levels are defined in table 3.]
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Figure 12.  Data-only predictive probabilities of occurrence for each level of each node under low urban development. 
[Probabilities are represented as percentages, numerically and graphically (horizontal colored bars). Factor levels are defined in 
table 3.]
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Figure 13.  Data-only predictive probabilities of occurrence for each level of each node under high urban development. 
[Probabilities are represented as percentages, numerically and graphically (horizontal colored bars). Factor levels are defined in 
table 3.]



24    Linking Urbanization to the BCG for Stream Ecosystems in the Northeastern U.S. Using a Bayesian Network Approach 

Posterior Bayesian Network Model

Using Dirichlet-multinomial updating, as described 
earlier, the expert-elicited prior model was updated with the 
EUSE Northeast data to create the posterior model. Posterior 
conditional probability tables, which are a weighted aver-
age of prior information and data, are calculated for every 
child node in the model (tables 4C and app. 2, tables 2–1C 
to 2–6C). To evaluate relations described by the posterior 
model, it is easier to interactively manipulate the Bayesian 
network than to interpret the static, multidimensional series 
of CPTs. By entering the hypothetical evidence about each 
node in turn, system trends can be more clearly understood 
than from discrete tables of numbers. For example, as specific 
conductance increases, generic richness decreases, filter feeder 
relative abundance increases, and P+E relative abundance 
decreases. This means that as water quality becomes impaired, 
macroinvertebrate communities become less diverse because 
the sensitive taxa are lost and the overall community becomes 
more contaminant-tolerant. The posterior Bayesian network 
also quantifies the relative magnitudes of system changes. For 
example, flashiness seems to affect filter-feeder relative abun-
dance more than generic richness. 

To investigate the potential effect of applying best man-
agement practices (BMPs) to urban landscapes, a technique 
known as causal intervention modeling (Pearl, 2000) is used. 
Thus far, the posterior network as described has been used to 
predict states of system variables, conditional upon observ-
ing one of the variables. For example, if it is observed that a 
stream is located in a watershed with high urban land cover, 
the posterior Bayesian network predicts a 24.46 percent likeli-
hood of that stream achieving BCG Tier 3 or better biological 
condition (fig. 14). However, if the objective is to use this 
model to predict the likelihood of achieving a “good” biologi-
cal condition as a result of a management action (such as an 
implemented BMP), this action is no longer a simple observa-
tion of the system, but rather, an intervention to the system. 
To model such an intervention to a particular node, all arrows 
pointing to that node must be removed to show that parent 
nodes are no longer predicting the value of that child node; 
instead, the external intervention is now determining the child-
node state. The statistics of how those parent nodes would 
have likely affected that child node are no longer relevant 
because a definitive intervention, further down the causal 
chain of events, is being simulated instead.

In the case of modeling effects of urban development, 
ideally, BMP nodes would be explicitly included, and the 
effects of those BMPs on the hydrology, habitat, and water 
quality of a system would be quantified. Without specific 
information on those relations, at the very least, it is known 
that implementation of a BMP would disrupt the relations 
between urban development and hydrology, habitat, and water 
quality, which are currently modeled in the absence of BMPs. 

Therefore, it is logically appropriate (as well as statistically 
correct) to remove the arrows to simulate the effects of a BMP 
on each of these three system drivers, because the relation 
originally modeled would no longer apply.

 In terms of notation, the arrow between Urban develop-
ment and Hydrology in the model represents the current under-
standing and quantification of that relation across watersheds 
having different levels of urban development in the absence 
of BMPs developed from expert knowledge and collected 
data. However, managers may want to know which BMPs 
would ultimately improve the biotic condition of a stream the 
most and data to assess that question directly are not currently 
available. It can be assumed that BMPs would change the 
relation (that is, the arrow) between urban development and 
hydrology, ideally reducing flashiness relative to a particular 
level of urban development. Because this new, BMP-mediated 
relation between urban land cover and hydrology is unknown, 
it cannot be modeled directly. Instead, the arrow specifying the 
current relation between Urban development and Hydrology 
(in the absence of BMPs) is removed, and it is assumed that 
some BMP is able to reduce flashiness from high to medium. 
The effects of that hypothetical reduction on the rest of the 
model can then be investigated. When using the technique just 
described to simulate the effects of a BMP that reduces flashi-
ness to medium (shown with a horizontal green bar), while 
still observing high urban land cover (horizontal red bar), 
the likelihood of achieving BCG Tier 3 or better increases to 
28.56 percent (fig. 15) relative to 24.46 percent for an unman-
aged watershed with high urban land cover (fig. 14). 

Alternately, if a BMP is implemented that reduces spe-
cific conductance to “low,” while still observing high urban 
land cover, BCG Tier 3 or better attainment is 56.62 percent 
likely (fig. 16). If both flashiness and specific conductance are 
managed, this likelihood increases to 69.69 percent (fig. 17).

Ultimately, managers would likely use this model to 
determine which manipulation to the system will yield the 
greatest chance of attaining a “good” BCG tier. Averag-
ing across all possible urban land cover scenarios, BCG 
attainment probabilities were determined for each possible 
combination of management actions (affecting one, two, or 
three stressor nodes), and sorted in table 6 according to the 
best BCG Tier 3 or better probability achieved. The greatest 
likelihood of attaining BCG Tier 3 or better (79.55 percent) is 
obtained by managing to achieve medium flashiness, coarse 
substrate, and low conductance (rank 1, table 6). Conversely, 
BCG is least likely to be Tier 3 or better (2.33 percent) if man-
agement actions cause high flashiness, fine substrate, and high 
conductance (rank 47, table 6). 
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Figure 14.  Posterior predictive probabilities of occurrence for each level of each node given an observation of high urban land 
cover and no management interventions. [Probabilities are represented as percentages, numerically and graphically (horizontal 
colored bars). Factor levels are defined in table 3.]
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Figure 15.  Posterior predictive probabilities of occurrence for each level of each node under causal inference: Managing 
flashiness to medium, while still observing high urban land cover. [Probabilities are represented as percentages, numerically and 
graphically (horizontal colored bars). Factor levels are defined in table 3.]
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Figure 16.  Posterior predictive probabilities of occurrence for each level of each node under causal inference: Managing 
specific conductance to low, while still observing high urban land cover. [Probabilities are represented as percentages, 
numerically and graphically (horizontal colored bars). Factor levels are defined in table 3.]
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Figure 17.  Posterior predictive probabilities of occurrence for each level of each node under causal inference: Managing 
flashiness to medium and specific conductance to low, while still observing high urban land cover.  [Probabilities are represented 
as percentages, numerically and graphically (horizontal colored bars). Factor levels are defined in table 3.]
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Table 6.  Driver causal interventions most likely to improve Biological Condition Gradient 
(BCG) tier achievement likelihood given unobserved urban land cover state.  

[BCG goal is the combined probabilities of attaining BCG Tiers 1, 2, or 3; %, percent; BMP, best  
management practice]

Rank Flashiness Substrate Conductance
BCG goal 

(% achievement)
Nodes 

managed

1 Medium Coarse Low 79.55 3
2 Medium NoBMP Low 73.47 2
3 NoBMP Coarse Low 68.32 2
4 NoBMP NoBMP Low 63.39 1
5 Low Coarse Low 62.36 3
6 Low NoBMP Low 54.98 2
7 Medium Coarse NoBMP 50.48 2
8 High Coarse Low 50.22 3
9 High NoBMP Low 47.66 2

10 Medium NoBMP NoBMP 47.45 1
11 NoBMP Coarse NoBMP 45.26 1
12 Low Coarse NoBMP 43.97 2
13 Low Coarse Med 42.38 3
14 Low NoBMP NoBMP 38.82 1
15 Low NoBMP Med 36.65 2
16 Medium Coarse Med 36.23 3
17 Medium NoBMP Med 34.15 2
18 High Coarse NoBMP 33.06 2
19 NoBMP Coarse Med 31.89 2
20 High NoBMP NoBMP 31.45 1
21 NoBMP NoBMP Med 29.77 1
22 Low Fine Low 29.19 3
23 Low Coarse High 28.66 3
24 Medium Coarse High 27.92 3
25 Medium NoBMP High 25.76 2
26 NoBMP Coarse High 25.66 2
27 Low NoBMP High 24.94 2
28 NoBMP NoBMP High 23.59 1
29 Medium Fine Low 23.35 3
30 NoBMP Fine Low 22.28 2
31 High Coarse High 20.05 3
32 Low Fine NoBMP 19.09 2
33 High Coarse Med 18.85 3
34 High NoBMP High 18.68 2
35 High NoBMP Med 18.04 2
36 High Fine Low 17.01 3
37 Medium Fine Med 16.82 3
38 Low Fine Med 16.64 3
39 Medium Fine NoBMP 16.57 2
40 NoBMP Fine NoBMP 14.99 1
41 NoBMP Fine Med 14.30 2
42 Low Fine High 11.96 3
43 High Fine NoBMP 10.21 2
44 High Fine Med 8.52 3
45 Medium Fine High 7.96 3
46 NoBMP Fine High 6.84 2
47 High Fine High 2.33 3
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Assessing the Value of a Bayesian 
Network Approach

Knowing the relative influence of different changes to 
an environmental system on its components can be valuable 
from a management perspective. A manager can use a Bayes-
ian network to assess the relative effect of different model 
drivers on a desired endpoint, such as BCG tier, to determine 
which management actions lead to the greatest improvement. 
In contrast to traditional model prediction, a Bayesian network 
provides a more holistic approach to endpoint evaluation 
because it accounts for multiple interactions among variables 
simultaneously. In addition, the use of Bayesian networks for 
causal inference incorporates uncertainties that are encoded 
by the network when predicting driver effects on the end-
point, and results are reported probabilistically for clearer 
characterization. 

Benefits of Using a Bayesian Network for Urban 
Development Modeling

Using a Bayesian network to evaluate and rank the poten-
tial effects of management interventions has two unique ben-
efits: (1) ability to model nonlinearities and interactions and 

(2) model-wide uncertainty incorporation. Many nonlinearities 
and interactions exist in the process of urbanizing watersheds 
affecting stream biology. For example, a causal intervention 
resulting in low flashiness actually predicts a smaller chance 
of BCG Tier 3 or better attainment than medium flashiness 
(38.82 percent relative to 47.45 percent; rank 14 and 10, 
respectively, table 6). Ecologically, this makes sense because 
low flashiness could be indicative of stagnant flows (such as 
wetland-dominated streams), which may not be optimal for 
macroinvertebrates. Moreover, the prior CPTs elicited from 
experts for the macroinvertebrate metrics show that experts 
designed the system to work this way (table 7). This form 
of model construction acknowledges that biotic response is 
complicated and a function of the interaction between many 
different drivers, nor is it a simple monotonic relation in which 
a biotic response always moves in the same direction relative 
to increasing drivers. A Bayesian network is able to capture 
this real-world complexity in a way that simple linear models 
cannot. 

Another example of a system complexity modeled effec-
tively by a Bayesian network is the nonlinear effect of conduc-
tance on a BCG Tier. Specifically, BCG attainment likelihood 
does not improve as greatly when managing to reduce specific 
conductance from high to medium as when managing to 
reduce specific conductance from medium to low. Managing 
for low conductance may actually be the management action 

Table 7.   Excerpts from macroinvertebrate metric prior expert-elicited conditional probability tables. 

[Experts often report that Medium flashiness results in the greatest probability of “best” invert metric relative to “low” or “high”  
flashiness (shown here in frequency units out of 1,000). <, less than; %, percent] 

Given: How would you distribute 1,000 streams?

Flashiness Substrate Conductance Generic richness

      <15 15–37 38+
Low Fine Low 300 600 100

Medium Fine Low 400 400 200
High Fine Low 500 400 100

Flashiness Substrate Conductance Generic richness

      <15 15–37 38+
Low Coarse High 350 550 100

Medium Coarse High 333 333 333
High Coarse High 590 400 10

Flashiness Substrate Conductance P+E relative abundance

      <5% 5–20% 20% +
Low Coarse Medium 100 600 300

Medium Coarse Medium 10 600 390
High Coarse Medium 500 450 50

Flashiness Substrate Conductance P+E relative abundance

      <5% 5–20% 20% +
Low Fine Low 400 550 50

Medium Fine Low 500 400 100
High Fine Low 490 500 10
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most effective at achieving good biological quality; conduc-
tance is low in eight of the top nine BCG tier probabilities 
(table 6). This is similar to a threshold effect in that reducing 
specific conductance does not appear to help until a thresh-
old point, which the model defines as 139 microsiemens per 
centimeter. The added complexity is a result of interactions 
among nodes such that the influence of low conductance is 
only true at medium or low flashiness and coarse substrate. At 
other flashiness and substrate states, low conductance does not 
increase biological condition status substantially; for example, 
when substrate is fine, low flashiness states are further down 
the BCG probability ranking list, at ranks 22, 29, 30, 36 
(table 6). These permutations and influences are much more 
challenging to account for using a non-network model than a 
network model.

A second benefit of using a Bayesian network is that 
it accounts for these nonlinearities while simultaneously 
incorporating uncertainty in its predictions. The BCG output 
is reported as a probability of attainment to indicate the actual 
certainty with which model predictions are known. Therefore, 
a high probability of desirable BCG attainment is difficult to 
achieve for two reasons:

1.	 The network of stream ecosystem processes is 
complex, and it is unrealistic to expect fixes applied 
to just one node to rectify the entire problem. There 
are many interacting factors that ultimately affect 
biological condition, and a higher probability of 
attainment requires that multiple entities probably 
need to be managed. The best case scenario the cur-
rent model can predict is about 80 percent attainment 
of BCG Tier 3 or better, but this requires managing 
all three drivers (table 6).

2.	 There is still much uncertainty and variability that 
this model is incorporating, including random vari-
ability, model simplification error, imperfect knowl-
edge about how the stream ecosystem works, and 
potentially inaccurate assumptions. Consequently, it 
is not surprising that the model does not yield “per-
fect” high-attainment predictions. Given the limita-
tions of what is known and unknown about a particu-
lar stream ecosystem, it is still not entirely certain 
that adjusting the flashiness, substrate, or specific 
conductance will allow a manager to achieve the 
desired biological endpoint. In all likelihood, many 
other factors can affect the endpoint, and the uncer-
tainty in model output is realistically estimated. The 
level of uncertainty reported is typical for complex 
environmental questions. Model output quantifies 
how well the current state of subject-related exper-
tise and data can predict the result of management 
efforts on the environment. This type of information 
is more useful and credible than overconfident model 
results reported with no accompanying uncertainty 
estimates.

Unresolved Issues

In addition to exploring the aforementioned benefits of 
applying a Bayesian network approach, this modeling effort 
also identified several currently unresolved issues. Primary 
among these is defining data needs relative to the number of 
CPT parameters specified by the model structure and dis-
cretization scheme. Unlike continuous functions in which 
a few parameters can describe relations between variables 
completely, each discrete combination of possible values in a 
Bayesian network has to be specified separately. This means 
that even Bayesian networks with few nodes, arrows, and 
variable categories require many parameters. Although this 
model format is undeniably an advantage in situations where 
functional relations between variables are unknown, it also 
requires large sample sizes in order to be confident of exclu-
sively using data for parameterization. Assessing data require-
ments is important because data gaps often result in false 
certainties. This happens because each CPT row represents 
a discrete multinomial distribution, and the use of only one 
data point to define that distribution will change the expected 
values across categories from flat to extreme probabilities. For 
example, a probability of 0.33 for each of three categories will 
change to a probability of 0 for two categories and 1 for the 
third, if the one data point used for distribution specification 
falls in the third category. This problem is resolved with the 
use of prior expert knowledge to supplement collected data. To 
parameterize Bayesian networks with data alone, future stud-
ies are needed to establish relations between model confidence 
and data sample size for a given number of CPT parameters. 
Until such relations are established, however, Bayesian net-
work users need to be aware of this potentially confounding 
issue.

A second concern with Bayesian network creation is the 
transformation of continuous variables into discrete ones. 
There is no clear method for selecting the optimal number 
of bins and bin interval endpoints during Bayesian network 
parameterization. Criteria that can be considered include sci-
entifically based cutoffs, equivalent data frequencies across all 
bins, equal interval lengths across all bins, and moment match-
ing with data. Further research is needed to better understand 
the benefits and drawbacks of these potential criteria, evaluate 
the sensitivity of model outputs to these different model-
ing choices, and obtain consensus on the appropriate type of 
method to use for a given modeling situation. 

A third issue with using the Bayesian network approach 
is the lack of consensus on the ideal expert elicitation meth-
odology, particularly for multinomial probabilities. Most 
probability elicitation literature focuses on assessing single 
probabilities within a binomial framework (Morgan and 
Henrion, 1990; Winkler, 2003; Reckhow and others, 2005; 
O’Hagan and others, 2006). When a discrete variable is com-
posed of more than two categories, specifying a probability 
(p) no longer signifies that the remaining category is assigned 
the remaining probability (1-p), making a multinomial dis-
tribution more complicated to conceptualize than a binomial 
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distribution. As such, it is not clear which format for elicitation 
questions best accesses and represents expert knowledge with 
more than one degree of freedom.

A related fourth question concerns the elicitation of 
prior weights. The question of how to best assess the strength 
of prior knowledge is a topic of active research. Similar to 
elicitation of the knowledge itself, the goal of prior weight 
determination is to find a method that best captures expert cer-
tainty; however, it is unclear which criteria should be used to 
make that assessment. Other uncertainties include (1) the scale 
at which weights are most reliably appraised (CPT cell, row, 
or entire node), and (2) how to minimize or correct for known 
human biases (in interpreting extremes, anchoring judgments, 
and so forth). It is unknown what contributes to the variability 
in reported weights for a given set of knowledge and how to 
minimize that variability.

Conclusions

This effort of Bayesian network model development 
and updating for the Northeast accomplished three major 
objectives. First, an innovative method of modeling multiple 
ecological compartments was devised and implemented. Sec-
ond, this multicompartment system was linked to a manage-
ment context with a meaningful endpoint. Third, the effects of 
potential management interventions on this explicitly defined 
biological standard were evaluated. Bayesian network analysis 
also filled many previous data-analysis voids by (1) utilizing 
full-system-level parameterization and understanding, (2) thor-
oughly characterizing uncertainty, (3) integrating multiple 
sources of information, (4) supplementing insufficient data 
sample size, and (5) allowing customizing the model to fit data 
structure and problem context by means of the flexibility of 
Bayesian modeling assumptions.

Specifically, the posterior Bayesian network model dem-
onstrated the utility of incorporating existing expert knowl-
edge as a means of addressing data gaps. The network format 
of a conceptual model is a useful way to visualize and commu-
nicate understanding about how a system works. A Bayesian 
network goes a step further and quantifies that understanding 
using all available information. Using the BCG as a model and 
management endpoint allows for a standardized interpretation 
of biological condition. Predicting BCG using a probabilistic 
approach allows one to represent model output realistically 
and aids decision makers in risk assessment.

Causal inference demonstrates the predictive difference 
between observing a variable and manipulating a variable. 
From this evaluation it was learned that managing for low 
rather than medium conductance is vital to achieving a health-
ier stream. Overall, however, this model confirmed that there 
is a complex, nonlinear, interacting set of relations between 
stressors, and that these complexities are well-modeled using 
a Bayesian network. The complexity of the system is so great 

that this model cannot predict any more than about an 80-per-
cent certainty of achieving BCG objectives, even if all three 
major stressors are managed.

From the model results presented herein, it can be con-
cluded that information from experts and collected data are 
in agreement on the general directions of change imposed by 
urban development on hydrology, habitat, water quality, and 
the biological condition of a stream. In both the expert and 
data-only models and, hence, in the posterior model, higher 
urban development levels increased the certainty of observing 
flashy, fine-substrate-dominated, high conductance streams 
with poor biological condition. The magnitudes of these sys-
tem changes relative to each other remain uncertain, however, 
and require further study.

In reinterpreting the Northeast portion of the EUSE 
dataset, this Bayesian network quantifies the simultaneous 
influences of multiple aspects of urban development on macro-
invertebrate condition while also quantifying the uncertainty 
in those relations. Using this framework provides the abil-
ity to think of these relations between variables in terms of 
an interactive cause-and-effect network rather than a list of 
model parameters with error bars. The effects of a change in a 
variable on all other nodes in the system can now be modeled, 
enabling multidimensional data interpretation in a manner 
not previously possible. In addition, outcomes are predicted 
in terms of the probability of attaining each BCG tier, which 
gives the model user a more realistic understanding of out-
come likelihood rather than a pseudo-confident exact predic-
tion. Managers can use this Bayesian network to predict the 
results of possible actions on biological condition and to make 
quantitative, risk-based decisions in terms of a meaningful and 
defined aquatic goal, the BCG tier.

The posterior model shows that, of the three drivers of 
biological change, management actions that reduce specific 
conductance to low levels have the greatest likelihood of 
“good” BCG tier achievement, but not in conjunction with fine 
substrate and, to a lesser extent, high flashiness. In actuality, 
the drivers follow complex, nonlinear, interacting relations 
with biological condition, and more than one driver will likely 
have to be managed to achieve desired BCG endpoints with 
greater certainty. 

Due to the adaptive nature of Bayes Theorem, as more 
data are collected for this Northeast stream urban develop-
ment model, the current posteriors become the new priors and 
the model is further informed. This flexible construct allows 
the model to “learn” as more data are incorporated. Using 
this modeling framework, the process of scientific hypothesis 
creation and verification can be quantified in a transparent 
manner. This is a means of clearly presenting which expert 
prior assumptions were included in a particular iteration of 
the model, instead of not reporting implicit expert input and 
erroneously referring to model building as “objective.” As 
more data on the system become available over time, they can 
override less accurate scientific assumptions and fortify cor-
rect ones, leading to a much more systematic implementation 
of the scientific process.
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Appendix 1.  Distribution Forms for Bayesian Updating

Dirichlet prior distribution:
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where 

31 θθ −  		 are the probabilities of a sample belonging to categories 1–3, respectively;
31 αα −  	 are coefficients describing the possible values of 31 θθ − , respectively; and 

0α  		  is the sum of 31 αα − , also known as total prior weight or equivalent sample size.

Solve for prior weight, 0α , by means of equations for Dirichlet expected value and Dirichlet expected variance:
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Multinomial likelihood function:
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where

31 xx −  		 are the counts of samples belonging to each of three categories, respectively,
n  		  is the sum of all counts (that is, total sample size), and 

31 θθ −  		 are the probabilities of a sample belonging to categories 1–3, respectively.

Dirichlet posterior distribution:
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where 

31 θθ − 	  	 are the probabilities of a sampled basin belonging to categories 1–3, respectively;
31 αα − 	 	 are prior coefficients describing the possible values of 31 θθ − , respectively;

0α  		  is the sum of 31 αα − , also known as total prior weight or equivalent sample size;
31 xx −  		 are the counts of sampled basins belonging to each of three categories, respectively; and

n  		  is the sum of all counts (that is, total sample size).
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Appendix 2.  Supplemental Prior and Posterior Conditional 
Probability Tables, Data Tables, and Bayesian Network Diagrams

Table 2–1.  “Habitat” node prior conditional probability table and prior weight (α0), data table, and posterior conditional probability 
table and posterior weights (α0+n).

A.  Prior conditional probability table 

[Substrate categories in probability units and α0 in equivalent data points; rows selected for prior 
weight elicitation are highlighted]

Urban land 
cover

Flashiness
Dominant substrate

Fine Coarse α0

Low Low 0.15 0.85 7.41
Low Medium 0.10 0.90 7.41
Low High 0.05 0.95 7.41
Medium Low 0.25 0.75 7.41
Medium Medium 0.17 0.83 7.41
Medium High 0.12 0.88 7.41
High Low 0.40 0.60 7.41
High Medium 0.27 0.73 7.41
High High 0.17 0.83 7.41

B.  Data table 

[Substrate counts and n total number of samples per parent state combination]

Urban land 
cover

Flashiness
Dominant substrate

Fine Coarse n
Low Low 0 1 1
Low Medium 0 8 8
Low High 0 1 1
Medium Low 0 1 1
Medium Medium 0 5 5
Medium High 0 4 4
High Low 0 2 2
High Medium 0 4 4
High High 0 4 4

C.  Posterior conditional probability table 

[Substrate categories in probability units and α0+n in equivalent data points]

Urban land 
cover

Flashiness
Dominant substrate

Fine Coarse α0+n
Low Low 0.132 0.868 8.41
Low Medium 0.048 0.952 15.41
Low High 0.044 0.956 8.41
Medium Low 0.220 0.780 8.41
Medium Medium 0.102 0.898 12.41
Medium High 0.078 0.922 11.41
High Low 0.315 0.685 9.41
High Medium 0.175 0.825 11.41
High High 0.110 0.890 11.41
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Table 2–2.  “Water quality” node prior conditional probability table and prior weight (α0), data table, and posterior conditional 
probability table and posterior weights (α0+n). 

A.  Prior conditional probability table 

[Specific conductance categories in probability units and α0 in equivalent data points; rows selected 
for prior weight elicitation are highlighted]

Urban land 
cover

Flashiness
Specific conductance at low base flow

Low Medium High α0

Low Low 0.85 0.10 0.05 14.65
Low Medium 0.90 0.06 0.04 14.65
Low High 0.95 0.04 0.01 14.65
Medium Low 0.20 0.50 0.30 14.65
Medium Medium 0.25 0.50 0.25 14.65
Medium High 0.30 0.50 0.20 14.65
High Low 0.02 0.23 0.75 14.65
High Medium 0.05 0.22 0.73 14.65
High High 0.10 0.19 0.71 14.65

B.  Data table

[Specific conductance counts and n total number of samples per parent state combination]

Urban land 
cover

Flashiness
Specific conductance at low base flow

Low Medium High n
Low Low 0 1 0 1
Low Medium 7 1 0 8
Low High 1 0 0 1
Medium Low 0 1 0 1
Medium Medium 1 3 1 5
Medium High 1 1 2 4
High Low 0 0 2 2
High Medium 0 2 2 4
High High 1 1 3 4

C.   Posterior conditional probability table

[Specific conductance categories in probability units and α0+n in equivalent data points]

Urban land 
cover

Flashiness
Specific conductance at low base flow

Low Medium High α0+n
Low Low 0.796 0.158 0.047 15.65
Low Medium 0.891 0.083 0.026 22.65
Low High 0.953 0.037 0.009 15.65
Medium Low 0.187 0.532 0.281 15.65
Medium Medium 0.237 0.525 0.237 19.65
Medium High 0.289 0.446 0.264 18.65
High Low 0.018 0.202 0.780 16.65
High Medium 0.039 0.280 0.681 18.65
High High 0.079 0.203 0.719 18.65
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Table 2–3.   “Generic richness” node prior conditional probability table and prior weight (α0), data table, and posterior conditional 
probability table and posterior weights (α0+n).

A.  Prior conditional probability table

[Richness categories in probability units and α0 in equivalent data points; rows selected for prior weight elicitation are highlighted]

Flashiness Substrate Conductance
Generic richness

Low Medium High α0

Low Fine Low 0.300 0.600 0.100 1.97
Low Fine Medium 0.400 0.500 0.100 1.97
Low Fine High 0.600 0.390 0.010 1.97
Low Coarse Low 0.010 0.490 0.500 1.97
Low Coarse Medium 0.100 0.350 0.550 1.97
Low Coarse High 0.350 0.550 0.100 1.97
Medium Fine Low 0.400 0.400 0.200 1.97
Medium Fine Medium 0.500 0.400 0.100 1.97
Medium Fine High 0.700 0.299 0.001 1.97
Medium Coarse Low 0.010 0.600 0.390 1.97
Medium Coarse Medium 0.100 0.350 0.550 1.97
Medium Coarse High 0.333 0.333 0.333 1.97
High Fine Low 0.500 0.400 0.100 1.97
High Fine Medium 0.600 0.390 0.010 1.97
High Fine High 0.900 0.099 0.001 1.97
High Coarse Low 0.300 0.600 0.100 1.97
High Coarse Medium 0.450 0.500 0.050 1.97
High Coarse High 0.590 0.400 0.010 1.97

   

B.  Data table 

[Richness counts and n total number of samples per parent state combination]

Flashiness Substrate Conductance
Generic richness

Low Medium High n
Low Fine Low 0 0 0 0
Low Fine Medium 0 0 0 0
Low Fine High 0 0 0 0
Low Coarse Low 0 0 0 0
Low Coarse Medium 0 1 1 2
Low Coarse High 0 2 0 2
Medium Fine Low 0 0 0 0
Medium Fine Medium 0 0 0 0
Medium Fine High 0 0 0 0
Medium Coarse Low 0 1 7 8
Medium Coarse Medium 0 6 0 6
Medium Coarse High 0 3 0 3
High Fine Low 0 0 0 0
High Fine Medium 0 0 0 0
High Fine High 0 0 0 0
High Coarse Low 0 0 2 2
High Coarse Medium 0 2 0 2
High Coarse High 0 5 0 5
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Table 2–3.   “Generic richness” node prior conditional probability table and prior weight (α0), data table, and posterior conditional 
probability table and posterior weights (α0+n).—Continued

C.  Posterior conditional probability table

[Richness categories in probability units and α0+n in equivalent data points]

Flashiness Substrate Conductance
Generic richness

Low Medium High α0+n
Low Fine Low 0.300 0.600 0.100 1.97
Low Fine Medium 0.400 0.500 0.100 1.97
Low Fine High 0.600 0.390 0.010 1.97
Low Coarse Low 0.010 0.490 0.500 1.97
Low Coarse Medium 0.050 0.426 0.525 3.97
Low Coarse High 0.174 0.777 0.050 3.97
Medium Fine Low 0.400 0.400 0.200 1.97
Medium Fine Medium 0.500 0.400 0.100 1.97
Medium Fine High 0.700 0.299 0.001 1.97
Medium Coarse Low 0.002 0.219 0.779 9.97
Medium Coarse Medium 0.025 0.839 0.136 7.97
Medium Coarse High 0.132 0.736 0.132 4.97
High Fine Low 0.500 0.400 0.100 1.97
High Fine Medium 0.600 0.390 0.010 1.97
High Fine High 0.900 0.099 0.001 1.97
High Coarse Low 0.149 0.298 0.553 3.97
High Coarse Medium 0.223 0.752 0.025 3.97
High Coarse High 0.167 0.830 0.003 6.97
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Table 2–4.   “Filter feeder relative abundance” node prior conditional probability table and prior weight (α0), data table, and posterior 
conditional probability table and posterior weights (α0+n).

A.  Prior conditional probability table

[Relative abundance categories in probability units and α0 in equivalent data points; rows selected for prior weight elicitation are  
highlighted]

Flashiness Substrate Conductance
Filter feeder relative abundance

Low Medium High α0

Low Fine Low 0.600 0.390 0.010 1.54
Low Fine Medium 0.550 0.440 0.010 1.54
Low Fine High 0.440 0.550 0.010 1.54
Low Coarse Low 0.001 0.600 0.399 1.54
Low Coarse Medium 0.001 0.299 0.700 1.54
Low Coarse High 0.010 0.290 0.700 1.54
Medium Fine Low 0.700 0.299 0.001 1.54
Medium Fine Medium 0.700 0.299 0.001 1.54
Medium Fine High 0.500 0.400 0.100 1.54
Medium Coarse Low 0.600 0.390 0.010 1.54
Medium Coarse Medium 0.250 0.500 0.250 1.54
Medium Coarse High 0.100 0.400 0.500 1.54
High Fine Low 0.800 0.199 0.001 1.54
High Fine Medium 0.800 0.199 0.001 1.54
High Fine High 0.750 0.200 0.050 1.54
High Coarse Low 0.700 0.290 0.010 1.54
High Coarse Medium 0.300 0.400 0.300 1.54
High Coarse High 0.200 0.500 0.300 1.54

   

B.  Data table 

[Relative abundance counts and n total number of samples per parent state combination]

Flashiness Substrate Conductance
Filter feeder relative abundance

Low Medium High n
Low Fine Low 0 0 0 0
Low Fine Medium 0 0 0 0
Low Fine High 0 0 0 0
Low Coarse Low 0 0 0 0
Low Coarse Medium 0 1 1 2
Low Coarse High 0 0 2 2
Medium Fine Low 0 0 0 0
Medium Fine Medium 0 0 0 0
Medium Fine High 0 0 0 0
Medium Coarse Low 4 4 0 8
Medium Coarse Medium 0 0 6 6
Medium Coarse High 0 0 3 3
High Fine Low 0 0 0 0
High Fine Medium 0 0 0 0
High Fine High 0 0 0 0
High Coarse Low 1 1 0 2
High Coarse Medium 0 0 2 2
High Coarse High 0 1 4 5
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Table 2–4.   “Filter feeder relative abundance” node prior conditional probability table and prior weight (α0), data table, and posterior 
conditional probability table and posterior weights (α0+n).—Continued

C.  Posterior conditional probability table

[Relative abundance categories in probability units and α0+n in equivalent data points]

Flashiness Substrate Conductance
Filter feeder relative abundance

Low Medium High α0+n
Low Fine Low 0.600 0.390 0.010 1.54
Low Fine Medium 0.550 0.440 0.010 1.54
Low Fine High 0.440 0.550 0.010 1.54
Low Coarse Low 0.001 0.600 0.399 1.54
Low Coarse Medium 0.000 0.413 0.587 3.54
Low Coarse High 0.004 0.126 0.869 3.54
Medium Fine Low 0.700 0.299 0.001 1.54
Medium Fine Medium 0.700 0.299 0.001 1.54
Medium Fine High 0.500 0.400 0.100 1.54
Medium Coarse Low 0.516 0.482 0.002 9.54
Medium Coarse Medium 0.051 0.102 0.847 7.54
Medium Coarse High 0.034 0.136 0.830 4.54
High Fine Low 0.800 0.199 0.001 1.54
High Fine Medium 0.800 0.199 0.001 1.54
High Fine High 0.750 0.200 0.050 1.54
High Coarse Low 0.587 0.409 0.004 3.54
High Coarse Medium 0.131 0.174 0.695 3.54
High Coarse High 0.047 0.271 0.682 6.54
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Table 2–5.   “P+E relative abundance” node prior conditional probability table and prior weight (α0), data table, and posterior 
conditional probability table and posterior weights (α0+n).

A.  Prior conditional probability table

[Relative abundance categories in probability units and α0 in equivalent data points; rows selected for prior weight 
elicitation are highlighted]

Flashiness Substrate Conductance
P+E relative abundance

Low Medium High α0

Low Fine Low 0.400 0.550 0.050 5.07
Low Fine Medium 0.700 0.290 0.010 5.07
Low Fine High 0.700 0.299 0.001 5.07
Low Coarse Low 0.010 0.390 0.600 5.07
Low Coarse Medium 0.100 0.600 0.300 5.07
Low Coarse High 0.300 0.600 0.100 5.07
Medium Fine Low 0.500 0.400 0.100 5.07
Medium Fine Medium 0.550 0.400 0.050 5.07
Medium Fine High 0.699 0.300 0.001 5.07
Medium Coarse Low 0.010 0.390 0.600 5.07
Medium Coarse Medium 0.010 0.600 0.390 5.07
Medium Coarse High 0.400 0.550 0.050 5.07
High Fine Low 0.490 0.500 0.010 5.07
High Fine Medium 0.700 0.290 0.010 5.07
High Fine High 0.700 0.299 0.001 5.07
High Coarse Low 0.400 0.400 0.200 5.07
High Coarse Medium 0.500 0.450 0.050 5.07
High Coarse High 0.600 0.399 0.001 5.07

   

B.  Data table 

[Relative abundance counts and n total number of samples per parent state combination]

Flashiness Substrate Conductance
P+E relative abundance

Low Medium High n
Low Fine Low 0 0 0 0
Low Fine Medium 0 0 0 0
Low Fine High 0 0 0 0
Low Coarse Low 0 0 0 0
Low Coarse Medium 0 2 0 2
Low Coarse High 1 1 0 2
Medium Fine Low 0 0 0 0
Medium Fine Medium 0 0 0 0
Medium Fine High 0 0 0 0
Medium Coarse Low 0 5 3 8
Medium Coarse Medium 3 3 0 6
Medium Coarse High 1 2 0 3
High Fine Low 0 0 0 0
High Fine Medium 0 0 0 0
High Fine High 0 0 0 0
High Coarse Low 0 1 1 2
High Coarse Medium 2 0 0 2
High Coarse High 4 1 0 5

 



Appendixes    43

Table 2–5.   “P+E relative abundance” node prior conditional probability table and prior weight (α0), data table, and posterior 
conditional probability table and posterior weights (α0+n).—Continued

C.  Posterior conditional probability table

[Relative abundance categories in probability units and α0+n in equivalent data points]

Flashiness Substrate Conductance
P+E relative abundance

Low Medium High α0+n
Low Fine Low 0.400 0.550 0.050 5.07
Low Fine Medium 0.700 0.290 0.010 5.07
Low Fine High 0.700 0.299 0.001 5.07
Low Coarse Low 0.010 0.390 0.600 5.07
Low Coarse Medium 0.072 0.713 0.215 7.07
Low Coarse High 0.357 0.572 0.072 7.07
Medium Fine Low 0.500 0.400 0.100 5.07
Medium Fine Medium 0.550 0.400 0.050 5.07
Medium Fine High 0.699 0.300 0.001 5.07
Medium Coarse Low 0.004 0.534 0.462 13.07
Medium Coarse Medium 0.276 0.546 0.179 11.07
Medium Coarse High 0.375 0.593 0.031 8.07
High Fine Low 0.490 0.500 0.010 5.07
High Fine Medium 0.700 0.290 0.010 5.07
High Fine High 0.700 0.299 0.001 5.07
High Coarse Low 0.287 0.428 0.285 7.07
High Coarse Medium 0.641 0.323 0.036 7.07
High Coarse High 0.699 0.300 0.001 10.07
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Table 2–6.  “BCG” node prior conditional probability table and prior weight (α0), data table, and posterior conditional probability table 
and posterior weights (α0+n).

A.  Prior conditional probability table 

[BCG tier categories in probability units and α0 in equivalent data points; rows selected for prior weight elicitation are highlighted]

Generic 
richness

Filter 
feeder 

relative 
abundance

P+E 
relative 

abundance

BCG tier

1 2 3 4 5 6 α0

Low Low Low 0.001 0.001 0.001 0.127 0.571 0.299 123.47
Low Low Medium 0.001 0.001 0.001 0.127 0.571 0.299 123.47
Low Low High 0.001 0.001 0.001 0.127 0.571 0.299 123.47
Low Medium Low 0.001 0.001 0.001 0.225 0.572 0.200 123.47
Low Medium Medium 0.001 0.001 0.001 0.299 0.598 0.100 123.47
Low Medium High 0.001 0.001 0.001 0.498 0.498 0.001 123.47
Low High Low 0.001 0.001 0.001 0.001 0.598 0.398 123.47
Low High Medium 0.001 0.001 0.001 0.575 0.384 0.038 123.47
Low High High 0.001 0.001 0.001 0.498 0.498 0.001 123.47
Medium Low Low 0.001 0.001 0.001 0.299 0.598 0.100 123.47
Medium Low Medium 0.010 0.196 0.294 0.490 0.010 0.001 123.47
Medium Low High 0.099 0.297 0.396 0.198 0.010 0.001 123.47
Medium Medium Low 0.001 0.010 0.296 0.494 0.198 0.001 123.47
Medium Medium Medium 0.050 0.300 0.300 0.300 0.050 0.001 123.47
Medium Medium High 0.150 0.399 0.399 0.050 0.001 0.001 123.47
Medium High Low 0.001 0.001 0.050 0.449 0.449 0.050 123.47
Medium High Medium 0.001 0.050 0.449 0.449 0.050 0.001 123.47
Medium High High 0.001 0.050 0.449 0.449 0.050 0.001 123.47
High Low Low 0.001 0.001 0.001 0.100 0.896 0.001 123.47
High Low Medium 0.105 0.420 0.420 0.053 0.001 0.001 123.47
High Low High 0.199 0.499 0.299 0.001 0.001 0.001 123.47
High Medium Low 0.001 0.001 0.249 0.499 0.249 0.001 123.47
High Medium Medium 0.001 0.091 0.454 0.408 0.045 0.001 123.47
High Medium High 0.100 0.200 0.499 0.200 0.001 0.001 123.47
High High Low 0.001 0.001 0.050 0.449 0.449 0.050 123.47
High High Medium 0.001 0.001 0.100 0.449 0.449 0.001 123.47
High High High 0.050 0.050 0.450 0.350 0.100 0.001 123.47
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Table 2–6.  “BCG” node prior conditional probability table and prior weight (α0), data table, and posterior conditional probability table 
and posterior weights (α0+n).—Continued

B.  Data table

[BCG tier counts and n total number of samples per parent state combination]

Generic 
richness

Filter 
feeder 

relative 
abundance

P+E 
relative 

abundance

BCG tier

1 2 3 4 5 6 n

Low Low Low 0 0 0 0 0 0 0
Low Low Medium 0 0 0 0 0 0 0
Low Low High 0 0 0 0 0 0 0
Low Medium Low 0 0 0 0 0 0 0
Low Medium Medium 0 0 0 0 0 0 0
Low Medium High 0 0 0 0 0 0 0
Low High Low 0 0 0 0 0 0 0
Low High Medium 0 0 0 0 0 0 0
Low High High 0 0 0 0 0 0 0
Medium Low Low 0 0 0 0 0 0 0
Medium Low Medium 0 0 0 0 0 0 0
Medium Low High 0 0 0 0 0 0 0
Medium Medium Low 0 0 0 0 0 1 1
Medium Medium Medium 0 0 1 0 0 0 1
Medium Medium High 0 0 0 0 0 0 0
Medium High Low 0 0 0 2 6 2 10
Medium High Medium 0 0 2 6 0 0 8
Medium High High 0 0 0 0 0 0 0
High Low Low 0 0 0 0 0 0 0
High Low Medium 0 1 0 0 0 0 1
High Low High 0 4 0 0 0 0 4
High Medium Low 0 0 0 0 0 0 0
High Medium Medium 0 3 2 0 0 0 5
High Medium High 0 0 0 0 0 0 0
High High Low 0 0 0 0 0 0 0
High High Medium 0 0 0 0 0 0 0
High High High 0 0 0 0 0 0 0
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Table 2–6.  “BCG” node prior conditional probability table and prior weight (α0), data table, and posterior conditional probability table 
and posterior weights (α0+n).—Continued

C.   Posterior conditional probability table

[BCG tier categories in probability units and α0+n in equivalent data points]

Generic 
richness

Filter 
feeder 

relative 
abundance

P+E 
relative 

abundance

BCG tier

1 2 3 4 5 6 α0+n

Low Low Low 0.001 0.001 0.001 0.127 0.571 0.299 123.47
Low Low Medium 0.001 0.001 0.001 0.127 0.571 0.299 123.47
Low Low High 0.001 0.001 0.001 0.127 0.571 0.299 123.47
Low Medium Low 0.001 0.001 0.001 0.225 0.572 0.200 123.47
Low Medium Medium 0.001 0.001 0.001 0.299 0.598 0.100 123.47
Low Medium High 0.001 0.001 0.001 0.498 0.498 0.001 123.47
Low High Low 0.001 0.001 0.001 0.001 0.598 0.398 123.47
Low High Medium 0.001 0.001 0.001 0.575 0.384 0.038 123.47
Low High High 0.001 0.001 0.001 0.498 0.498 0.001 123.47
Medium Low Low 0.001 0.001 0.001 0.299 0.598 0.100 123.47
Medium Low Medium 0.010 0.196 0.294 0.490 0.010 0.001 123.47
Medium Low High 0.099 0.297 0.396 0.198 0.010 0.001 123.47
Medium Medium Low 0.001 0.010 0.294 0.490 0.196 0.009 124.47
Medium Medium Medium 0.050 0.297 0.305 0.297 0.050 0.001 124.47
Medium Medium High 0.150 0.399 0.399 0.050 0.001 0.001 123.47
Medium High Low 0.001 0.001 0.046 0.430 0.460 0.061 133.47
Medium High Medium 0.001 0.047 0.437 0.467 0.047 0.001 131.47
Medium High High 0.001 0.050 0.449 0.449 0.050 0.001 123.47
High Low Low 0.001 0.001 0.001 0.100 0.896 0.001 123.47
High Low Medium 0.104 0.425 0.417 0.052 0.001 0.001 124.47
High Low High 0.193 0.514 0.290 0.001 0.001 0.001 127.47
High Medium Low 0.001 0.001 0.249 0.499 0.249 0.001 123.47
High Medium Medium 0.001 0.111 0.452 0.392 0.044 0.001 128.47
High Medium High 0.100 0.200 0.499 0.200 0.001 0.001 123.47
High High Low 0.001 0.001 0.050 0.449 0.449 0.050 123.47
High High Medium 0.001 0.001 0.100 0.449 0.449 0.001 123.47
High High High 0.050 0.050 0.450 0.350 0.100 0.001 123.47
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Figure 2–1.  Prior Northeast Bayesian network. [Probabilities are represented as percentages, numerically and graphically 
(horizontal colored bars).  Factor levels are defined in table 3.]
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Figure 2–2.  Data-only Northeast Bayesian network (uninformed prior updated with data). [Probabilities are represented as 
percentages, numerically and graphically (horizontal colored bars). Factor levels are defined in table 3.]
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