Skip Links

USGS - science for a changing world

Scientific Investigations Report 2012–5044

Prepared in cooperation with the Montana Department of Environmental Quality

Travel Times, Streamflow Velocities, and Dispersion Rates in the Missouri River Upstream from Canyon Ferry Lake, Montana

By Aroscott Whiteman

Thumbnail of and link to report PDF (19.4 MB)Abstract

In 2010, the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality, initiated a dye-tracer study to determine travel times, streamflow velocities, and longitudinal dispersion rates for the Missouri River upstream from Canyon Ferry Lake. For this study, rhodamine WT (RWT) dye was injected at two locations, Missouri River Headwaters State Park in early September and Broadwater-Missouri Dam (Broadwater Dam) in late August 2010. Dye concentrations were measured at three sites downstream from each dye-injection location. The study area was a 41.2-mile reach of the Missouri River from Trident, Montana, at the confluence of the Jefferson, Madison, and Gallatin Rivers (Missouri River Headwaters) at river mile 2,319.40 downstream to the U.S. Route 12 Bridge (Townsend Bridge), river mile 2,278.23, near Townsend, Montana. Streamflows were reasonably steady and ranged from 3,070 to 3,700 cubic feet per second.

Mean velocities were calculated for each subreach between measurement sites for the leading edge, peak concentration, centroid, and trailing edge at 10 percent of the peak concentration of the dye plume. Calculated velocities for the centroid of the dye plume ranged from 0.80 to 3.02 feet per second within the study reach from Missouri River Headwaters to Townsend Bridge, near Townsend. The mean velocity of the dye plume for the entire study reach, excluding the subreach between the abandoned Milwaukee Railroad bridge at Lombard, Montana (Milwaukee Bridge) and Broadwater-Missouri Dam (Broadwater Dam), was 2.87 feet per second. The velocity of the centroid of the dye plume for the subreach between Milwaukee Bridge and Broadwater Dam (Toston Reservoir) was 0.80 feet per second. The residence time for Toston Reservoir was 8.2 hours during this study.

Estimated longitudinal dispersion rates of the dye plume for this study ranged from 0.72 feet per second for the subreach from Milwaukee Bridge to Broadwater Dam to 2.26 feet per second for the subreach from the U.S. Route 287 Bypass Bridge over the Missouri River north of Toston, Montana to Yorks Islands. A relation was determined between travel time of the peak concentration and the time for the dye plume to pass a site (duration of the dye plume). This relation can be used to estimate when the decreasing concentration of a potential contaminant is reduced to 10 percent of its peak concentration for accidental (contaminant or chemical) spills into the upper Missouri River.

Revised May 4, 2012

First posted March 5, 2012

For additional information contact:

Director, USGS Montana Water Science Center
3162 Bozeman Ave.
Helena, MT 59601

http://mt.water.usgs.gov

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Whiteman, Aroscott, 2012, Travel times, streamflow velocities, and dispersion rates in the Missouri River upstream from Canyon Ferry Lake, Montana: U.S. Geological Survey Scientific Investigations Report 2012–5044, 20 p. Revised May 2012.



Contents

Abstract

Introduction

Methods for Determining Travel Times, Streamflow Velocities, and Dispersion Rates

Travel Times, Streamflow Velocities, and Dispersion Rates in the Upper Missouri River

Summary and Conclusions

References Cited

Appendixes


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2012/5044/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Thursday, 10-Jan-2013 19:48:51 EST