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Estimating Basin Lagtime and Hydrograph-Timing
Indexes Used to Characterize Stormflows for

Runoff-Quality Analysis

By Gregory E. Granato

Abstract

A nationwide study to better define triangular-hydrograph
statistics for use with runoff-quality and flood-flow studies was
done by the U.S. Geological Survey (USGS) in cooperation
with the Federal Highway Administration. Although the
triangular hydrograph is a simple linear approximation,
the cumulative distribution of stormflow with a triangular
hydrograph is a curvilinear S-curve that closely approximates
the cumulative distribution of stormflows from measured data.
The temporal distribution of flow within a runoff event can be
estimated using the basin lagtime, (which is the time from the
centroid of rainfall excess to the centroid of the corresponding
runoff hydrograph) and the hydrograph recession ratio (which
is the ratio of the duration of the falling limb to the rising limb
of the hydrograph). This report documents results of the study,
methods used to estimate the variables, and electronic files that
facilitate calculation of variables.

Ten viable multiple-linear regression equations were
developed to estimate basin lagtimes from readily determined
drainage basin properties using data published in 37 stormflow
studies. Regression equations using the basin lag factor (BLF,
which is a variable calculated as the main-channel length, in
miles, divided by the square root of the main-channel slope in
feet per mile) and two variables describing development in the
drainage basin were selected as the best candidates, because
each equation explains about 70 percent of the variability in
the data. The variables describing development are the USGS
basin development factor (BDF, which is a function of the
amount of channel modifications, storm sewers, and curb-
and-gutter streets in a basin) and the total impervious area
variable (IMPERYV) in the basin. Two datasets were used to
develop regression equations. The primary dataset included
data from 493 sites that have values for the BLF, BDF, and
IMPERYV variables. This dataset was used to develop the
best-fit regression equation using the BLF and BDF variables.
The secondary dataset included data from 896 sites that have
values for the BLF and IMPERYV variables. This dataset was
used to develop the best-fit regression equation using the BLF
and IMPERYV variables.

Analysis of hydrograph recession ratios and basin
characteristics for 41 sites indicated that recession ratios
are random variables. Thus, recession ratios cannot be
estimated quantitatively using multiple linear regression
equations developed using the data available for these sites.
The minimums of recession ratios for different streamgages
are well characterized by a value of one. The most probable
values and maximum values of recession ratios for different
streamgages are, however, more variable than the minimums.
The most probable values of recession ratios for the
41 streamgages analyzed ranged from 1.0 to 3.52 and had a
median of 1.85. The maximum values ranged from 2.66 to
11.3 and had a median of 4.36.

Introduction

For runoff-quality modeling, information about the
timing of runoff from a site of interest and from the upstream
basin of the receiving stream at the location of the stormflow
outfall is necessary to estimate the quantity of the upstream
flow that occurs concurrently with runoff from the site of
interest. The focus of planning-level analyses of runoff quality
has traditionally been on event-mean concentrations and total
storm loads for the entire runoff event rather than on processes
that occur during events. Differences in the locations, sizes,
and drainage characteristics of the site of interest and the
upstream basin, however, may cause differences in the timings
and durations of runoff from each area. If the drainage arca
of the site of interest is small and the runoff drains directly
to the stream, the duration of appreciable runoff from the
site of interest may be approximated by the duration of the
precipitation event. If the drainage area of the upstream basin
is relatively large and more pervious than the drainage area of
the site of interest, the duration of appreciable runoff from the
basin may continue for hours or days longer than runoff from
the site of interest. In this case, only a small proportion of the
upstream runoff may be available to dilute runoff constituents
from the site of interest in the receiving waters. However, if a
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structural best management practice (BMP) is used at the site
of interest to attenuate and extend the runoff hydrograph, then
much more of the upstream runoff may be available to dilute Runoff duration

runoff constituents in the receiving waters. This concept is Duration1

demonstrated schematically in figure 1. In this hypothetical Duration 2;
example, the triangular runoff hydrograph for the upstream :
basin is superimposed on a rectangular representation of /
the prestorm base flow (fig. 1A). The durations of runoff Upstream

A. Hypothetical triangular hydrographs

hydrographs from a highway or small urban area with and E runoff
without BMP modification are labeled “Duration 1” and 2 '
“Duration 2,” respectively. As indicated in the figure, a small % Upstream
increase in the duration of runoff from the site of interest may 5 g;eszt?Iromw
be accompanied by a large increase in the cumulative amount

of concurrent runoff and base flow from the upstream basin,
especially in the rising limb of the upstream storm-event ; ;
hydrograph (fig. 1B). Highway or urban runoff
Granato (2010) demonstrated that triangular runoff ; . with 10-percent retention
hydrographs commonly are used to model intra-event /></ and extended detention
stormflows in hydraulic and water-quality models and are : i
adequate for producing planning-level estimates for dilution
analyses. The triangular hydrograph commonly is used in
hydrology. For example, the Soil Conservation Service (SCS) 100 B. Hypothetical cumulative volumes
triangular hydrograph commonly is selected because it is
easier to parameterize than other distributions, has an upper
bound to define the end of runoff, and may provide results that
are as accurate as a curvilinear hydrograph for ungaged basins
(Jens and McPherson, 1964; Ogrosky and Mockus, 1964;
Kent, 1973; Ward and others, 1981; Stricker and Sauer, 1982;
Koutsoyiannis and Xanthopoulos, 1989; Wanielista, 1990;
Wanielista and Yousef, 1993). The triangular distribution is
commonly used as a synthetic unit hydrograph to estimate
runoff flows from within-storm precipitation-excess
increments (Granato, 2010). For planning-level analyses,
however, the entire precipitation event may be characterized
by a single increment. The triangular hydrograph has been
shown to provide a good representation of the cumulative

Unmodified highway or
urban runoff

\ 4

Time

90 -
80 — -
70 - -
60 | -

50— pyration 2 -
»/

40

30

Percentage of total upstream flow

amount of stormflow that occurs during a storm. For example, Expﬂ':g:guw
Naef (1981) indicated that many different unit-hydrograph 20 ’ components  —
shapes would produce similar levels of uncertainty and that Total storm flow
complex models may not provide substantial improvements 10 Runoff —
for characterizing rainfall-runoff transformations. Similarly,  Duration 1 Prestorm flow

Guo and Adams (1998) compared results calculated by a 0 :

A\ 4

comprehensive watershed model and a simple stochastic
model based on a triangular hydrograph for a 33-year period.
They found that the simple triangular-hydrograph model
provided runoff-population estimates that compared well with  Figure 1. Simplified schematic diagrams showing

Time

the watershed-modeling results. A, hypothetical triangular hydrographs and B, the

The triangular hydrograph can be fully parameterized hypothetical cumulative upstream storm volume that
with the total runoff volume, the start of runoff (7)), the would occur concurrently with the duration of unmodified
end of runoff (7)), and the time to peak (Tp) (fig. 2). With runoff from a highway or urban site of interest and
this information, the cumulative volume of runoff within a with the duration of runoff from an extended detention
given time interval is simple to compute with a triangular structure. This diagram shows the hypothetical runoff
hydrograph. Although the triangular hydrograph is a simple event with two upstream flow components (runoff and

linear approximation, the cumulative distribution of stormflow  prestorm base flow), an unmodified runoff hydrograph,
with a triangular hydrograph is a curvilinear S-curve that will and a runoff hydrograph from a site of interest with
closely approximate the cumulative distribution of stormflows  retention and detention.



from measured data. The proportion of total runoff at time 7,
from the beginning of the storm for a triangular hydrograph is
expressed as

(,-T,)
C(T-T)x(1,-T,)

(-1

" (m-1)x(n-1)

if7, <=7, <=T,and (1)

if7, <=T <=T, )

where

R is the cumulative proportion of the total runoff
at time 7,

is the end time of the runoff hydrograph,

is any selected time step within the runoff
hydrograph,

T is the begin time of the runoff hydrograph,

and
T, is the peak time of the runoff hydrograph.

If the begin time is set to zero, the end time (7)) is equal to the
duration of the runoff hydrograph (7,) (fig. 2).

The time to peak is commonly calculated as one-half the
precipitation duration (D/2) plus a basin lagtime (LAGTIME,
in hours) that depends on basin characteristics. Although there
are many definitions of the basin lagtime in the literature
(Rao and Delleur, 1974; Linsley and others, 1975; Chow and
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others, 1988; Fang and others, 2005), the Stochastic Empirical
Loading and Dilution Model (SELDM) uses the basin lagtime
defined as the time from the center of mass (centroid) of
rainfall excess to the centroid of the corresponding runoff
hydrograph (Granato, 2010). This definition was selected
because U.S. Geological Survey (USGS) runoff studies
commonly use this definition. The relation between the time
to peak 7 (in hours) and the time to the centroid 7, (in hours)
of the runoff hydrograph is a function of the unitless ratio of
the duration of the falling to the rising limb of the hydrograph
(R)). For a triangular hydrograph this may be calculated as:

D

—+ LAGTIME
5 3

T =3x| &#¥————
’ R, +2

Thus, LAGTIME is an important factor for quantifying
the time response of runoff in a given basin. This factor is used
in hydraulic design and analysis and in many precipitation
runoff models (Eagleson, 1962; Leopold, 1968; Rao and
Delleur, 1974; Linsley and others, 1975; Laenen, 1980; Chow
and others, 1988; Sutherland, 1988; Fang and others, 2005;
Ries, 2007; Simas and Hawkins, 2011). A number of formulas
have been developed for calculating the basin lagtime from
basin characteristics (Carter, 1961; Chow, 1964; Kent, 1973;
Laenen, 1980; Sauer and others, 1983; Franklin, 1984; Chow

D  Duration of rainfall-excess increment
D BL Basin lagtime
A
Tp Time to peak (rising-limb time)
Wolume not T, Recession (falling-limb time)
> < > Tb Hydrograph base time
D BL T0 Begin time of the runoff hydrograph
2 Te End time of the runoff hydrograph

(5] \
IS
3
o
=
=
o
= @ Centroid
= (center of mass)

- > |

Tp T,
< >
TU 7-b Te

Figure 2. Schematic diagram showing time factors for a triangular storm-event hydrograph (modified from Kent, 1973).
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and others, 1988; Sutherland, 1988; Wanielista, 1990; Muzik,
1992; Pilgrim and Cordery, 1993; Wanielista and Yousef,
1993; Ries, 2007). Most basin lag equations include some
measure of the basin slope and the length of flow along the
main channel within the basin. Some equations also include
factors that account for differences in overland or channel
flow such as a runoff coefficient, SCS curve number (CN), or
a channel roughness factor. Some equations account for storm
characteristics (usually rainfall intensity), but basin lagtime
is primarily associated with basin characteristics rather than
storm characteristics (Sauer and others, 1983). Commonly
used basin lag equations are based on data from a limited
number of sites with limited ranges in basin characteristics.
For example, the Kirpich equation (1940) is based on data
from only seven rural basins (Pilgrim and Cordery, 1993;
Chow and others, 1988). Carter (1961) used 24 suburban
basins with total impervious area (TIA) values ranging from
0 to 12 percent. Chow (1962) used data from 20 basins in
[llinois, but did not use land-use factors. Schulz and Lopez
(1974) used data from 9 urban basins. McCuen and others
(1984) used data from 48 urban basins with drainage areas less
than 6.25 square miles (mi?). Watt and Chow (1985) used data
from 44 basins, but did not include any land-use information.
Sauer and others (1983) had the most comprehensive study to
date. They used data from 170 basins throughout the United
States with drainage areas ranging from 0.2 to 100 mi?, basin
lengths from 0.47 to 88.1 miles (mi), main channel slope
from 3 to 500 feet per mile (ft/mi), total impervious area
(IMPERV, USGS Streamstats variable for TIA) values from
3 to 50 percent of the basin area, and basin development
factors from 0 to 12 to develop basin lagtime and flood-
flow equations.

Although the basin lagtime equations provided by
Sauer and others (1983) were recognized as being the most
comprehensive available, there were several concerns about
the application and use of these equations. The first concern
was about extending use of the USGS equations beyond
the limits of the input dataset (Andrew H. McDaniel, North
Carolina Department of Transportation, written commun.,
2011). Specifically, extending its use to very small sites (less
than 0.2 mi? or about 128 acres) and to highly impervious sites
greater than 50 percent /IMPERV. The second concern was
about properly specifying a basin development factor for use
in the equation. The third was about the feasibility (or lack
thereof) for developing an automated method for calculating a
basin development factor (Peter A. Steeves, written commun.
U.S. Geological Survey, October, 2010).

The basin lagtime in equation 3 commonly is defined
as a characteristic of the basin rather than a characteristic
of individual storms, so this variable is fixed in the SELDM
water-quality analyses. However, SELDM uses Monte Carlo
methods to generate a random population of each of the
other hydrograph properties in equation 3, so 7 is calculated
as a random variable, which is consistent with observed
hydrographs. Precipitation event durations (D) are generated

using synoptic precipitation statistics (selected or input on
the synoptic storm event precipitation statistics form) with
a two-parameter exponential distribution, and the upstream
hydrograph recession values (R /) are generated using user-
defined values (Granato, 2010). Thus, estimates of R are
needed to calculate T, (equation 3), which is used with R ! to
calculate 7 as:

C:Tp+Tpfo )

If T’ is set to the beginning of the runoff event, then the
proportion of total upstream stormflow that occurs concurrent
to discharge from the site of interest, or concurrent to
discharge from a BMP treating runoff from the site of interest,
is calculated using either equation 1 or equation 2. The total
volume for dilution is the sum of stormflow and prestorm
base flow that occurs during the period of concurrent flow
(Granato, 2010).

Hydrograph recession-time studies are not common in the
literature because most high-flow studies focus on the basin
lag and magnitude of the peak flow to provide information
for flood control. Several approximations are commonly
used without supporting data. A rough recession-time
approximation, in which the falling-limb duration (in days) is
equal to the drainage area (in square miles) raised to the power
0.2, commonly is used for base-flow separation (Linsley and
others, 1975; Sloto and Crouse, 1996). This approximation,
however, does not account for the basin slope or drainage
features that affect the recession time. The rational method
is based on the assumption that the runoff hydrograph is an
isosceles triangle with equal rising- and falling-limb durations
(Linsley and others, 1975; Pilgrim and Cordery, 1993). Thus,
the rational method hydrograph-recession ratio is equal to one.
The falling-limb duration of the SCS triangular hydrograph
has a standard hydrograph-recession ratio of 1.67 times the
duration of the rising limb (Ogrosky and Mockus, 1964;

Kent, 1973; Pilgrim and Cordery, 1993). Wanielista (1990)
provides hydrograph-recession ratios ranging from 1.25 to 12
and qualitatively links his recession ratio values to basin slope
and land use. However, the underlying interpretation, data,
and basin characteristics used for derivation of these ratios
are not published (Wanielista, 1990; Wanielista and Yousef,
1993). Other studies provide the information and data that are
needed to estimate recession ratios but do not provide actual
recession-ratio values (Craig and Rankl, 1978; Stricker and
Sauer, 1982; Franklin, 1984; Inmann,1986; Gamble, 1989;
Neely, 1989; Becker, 1986, 1990; Bohman, 1990; Bohman,
1992; Holnbeck and Parrett, 1996; Mason and Bales, 1996;
Liscum and others, 1997; Liscum, 2001; McCuen and others,
2002; Weaver, 2003; Shamir and others, 2005; Shuster and
others, 2008).



Purpose and Scope

This report documents data and methods that are used
to estimate basin lagtimes and hydrograph-recession ratios.
The data, information, and statistics developed in this analysis
are intended to facilitate stochastic planning-level analysis of
the potential effects of highway runoff on receiving waters at
unmonitored sites (or sites with limited monitoring data) in the
conterminous United States. This study was done by the USGS
in cooperation with the Federal Highway Administration
(FHWA) to better define triangular-hydrograph statistics for
use with runoff-quality and flood-flow studies. The statistics
developed in this analysis are intended, primarily, for use with
SELDM. However, regression estimates of the basin lagtime
may be used to develop planning-level estimates of the effect
of development on stormflows from a basin and for evaluating
the potential effectiveness of low-impact-development (LID)
practices to mitigate such stormflows. These methods meet
data-quality objectives (DQOs) for developing planning-level
water-quality estimates at unmonitored sites. The methods
and statistics that are described in this report should be useful
for other stormwater analyses. Detailed information about
the sites (including location, storm events, and sources of
data), geographic information system (GIS) files, computer
programs, and regression results are documented in the digital
media accompanying this report.

Estimating Basin Lagtimes

The regression equations developed in this report can be
used to estimate the basin lagtime, which is defined as the time
from the center-of-mass of rainfall excess to the center-of-
mass of the corresponding runoff. There are many definitions
of the basin lagtime in the literature (Rao and Delleur, 1974;
Linsley and others, 1975; Chow and others, 1988; Fang and
others, 2005). For this study, the center-of-mass definition
was selected because the data used in the regression analysis
were primarily derived from USGS runoff studies with
basin lagtimes that were calculated using the center-of-mass
definition. Information and data from 37 studies including
21 USGS studies (which accounted for about 95 percent of
the basin lag values) were used to formulate the regression
equations (table 1). The data in the report by Sauer and
others (1983) includes data for 57 metropolitan areas and was
compiled from 36 earlier USGS studies

To be included in the dataset for regression analysis,
sites were selected from reports with documented values of
the basin lagtimes, drainage areas, basin lengths and channel
slopes (or the associated basin lag factor). Each selected
report also had documented values of the IMPERV or the
basin development factor (BDF). Some data were obtained
from ancillary sources such as related reports, written
communication with the author, or written communication
with the surface-water specialist in the local USGS Water
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Science Center. Once the data were assembled from the
published documents and ancillary sources, two datasets
were selected for analysis. The primary dataset includes

all sites with a basin lagtime, drainage area, basin length,
channel slope, and both /MPERV and BDF values; 22 of the
37 studies (table 1) had one or more sites that were used in the
primary dataset. This primary dataset included 495 sites from
different areas of the United States, but two sites (database
site-identification numbers 741 and 742) were identified as
high-leverage far outliers and were not used for regression
analysis (fig. 3). The secondary dataset, assembled using data
from all 37 studies (table 1), includes 896 sites (fig. 3) with a
basin lagtime, drainage area, basin length, channel slope, and
IMPERYV. The basin characteristics, basin lagtime values, and
source citations for all the sites in the primary and secondary
datasets are recorded in the database “Compilation.mdb” on
the digital media accompanying this report.

Definition of Selected Basin Characteristics
for Estimating Basin Lagtimes

Physiographic, land-cover, and land-use factors are
considered as the primary basin variables controlling factors
that define the characteristics of storm hydrographs for a
given basin (Eagleson, 1962; Linsley and others, 1975;
Spencer and Alexander, 1978; Laenen, 1980; Subramanya,
1984; Chow and others, 1988; Wanielista, 1990; Wanielista
and Yousef, 1993). Commonly used physiographic variables
include drainage area, basin shape, basin length, basin slope
(commonly, the main channel slope), drainage density,
channel length, and channel slope. Commonly used land-cover
variables include soil type, vegetative cover, and percent
of surface storage (lakes, ponds, and wetlands). Commonly
used land-use variables include the percent developed area,
IMPERYV, directly connected (or effective) impervious area,
and percent sewered area (percentage of an area drained
by storm sewers). It is also recognized that climatic factors
such as temperature, potential evapotranspiration, rainfall
intensity, rainfall duration, and (for large basins) primary
direction of storm movement can affect average characteristics
of storm hydrographs for a given basin, as well as storm-to-
storm characteristics. However, most studies focus only on
basin properties for estimating average-storm hydrograph
characteristics because of the complexities involved in
quantifying characteristic climatic factors.

Seven basin characteristics were selected as possible
explanatory variables in the regression analysis for estimating
the basin lagtime based on the availability of these variables
in the existing hydrologic studies used to compile the basin
lagtime dataset. These basin characteristics were considered
sufficient for this study because they have consistently been
shown to be important hydrologic variables for describing
the basin lagtime (Benson, 1962; Linsley and others, 1975;
Harley, 1978; Sauer and others, 1983; Masch, 1984; Chow and
others, 1988; Sutherland, 1988; Wanielista, 1990; Wanielista
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Table 1.

[Report citations in bold were used in the primary dataset. mi?, square miles; USGS, U.S. Geological Survey; IMPERYV, total impervious area (percent);
BDF, basin development factor (unitless); STORAGE, storage (percent)]

Studies used to compile data for developing basin lagtime equations.

Number of sites

Study Report citation Drainage area (mi?) with the variable USGS USGS
number — - streamgages study
Minimum Maximum IMPERV  BDF  STORAGE
1 Anderson, 1970 0.00034 570 71 5 22 57 Y
2 Bailey and others, 1989 1.06 5.98 13 0 5 13 Y
3 Becker, 1990 0.14 38.9 61 61 25 61 Y
4 Beighley and others, 2009 0.0232 3.14 9 0 0 N
5 Bhat and others, 2007 0.293 9.77 5 0 N
6 Bohman, 1992 0.18 9.05 30 30 0 30 Y
7 Burns and others, 2005 0.174 0.216 2 0 0 N
8 Cristina and Sansalone, 2003 0.000116 0.000116 1 1 1 N
9 Espey and others, 1969 0.00033 72.8 16 6 0 N
10 Franklin and Losey, 1984 0.21 15.9 15 15 15 15 Y
11 Gambel, 1989 0.043 19.4 32 0 0 32 Y
12 Holnbeck and Parrett, 1996 58.7 1477 12 12 3 12 Y
13 Hood and others, 2007 0.00656 0.0212 3 0 N
14 Hubbard, 1992 0.03 214 7 7 Y
15 Inman, 2000 0.04 19.1 69 0 69 Y
16 Laenen, 1983 0.27 12.6 18 18 18 18 Y
17 Leopold, 1991 0.25 81.7 28 11 7 10 Y
18 Liscum, 2001 0.5 95.1 26 26 26 Y
19 Martens, 1968 6.98 41 6 0 6 Y
20 Martin and others, 1997 1.66 64 13 13 13 13 Y
21 Mason and Bales, 1996 0.04 14.8 50 29 2 50 Y
22 McEnroe and Zhao, 1999 0.83 10.3 19 1 17 19 N
23 McEnroe and Zhao, 2001 0.28 28.3 14 0 0 4 N
24 Meierdiercks and others, 2010 0.494 0.741 3 3 0 N
25 Neely, 1984 0.05 19.4 27 1 0 27 Y
26 Neely, 1989 14.2 535 2 2 0 Y
27 Rao and Delleur, 1974 0.0455 19.3 13 4 5 N
28 Robbins, 1984 0.21 24.3 22 22 0 22 Y
29 Robbins and Pope, 1996 0.06 2.85 17 17 0 17 Y
30 Sauer and others, 1983 0.12 630 208 208 208 208 Y
31 Sherwood, 1994 0.026 4.09 1 30 0 30 Y
32 Straub and others, 2000 0.06 37 9 0 4 9 Y
33 Veenhuis and Gannett,1986 2.31 51.3 14 0 0 14 Y
34 Viessman, 1968 0.000617 0.00149 4 4 4 0 N
35 Weaver, 2003 0.123 92.4 24 0 1 24 Y
36 Wibben, 1976 0.17 64 29 0 29 29 Y
37 Williams, 1980 1.62 28.2 3 0 1 3 N
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and Yousef, 1993; McCuen and others, 2002; Fang and

others, 2005). Four primary physiographic variables, drainage
area, basin length, main channel slope, and percent storage
were compiled from available basin lagtime studies for use

in this analysis. One secondary physiographic variable, the
basin lag factor, was calculated from the compiled basin-
length and channel-slope data and used in this analysis. Two
anthropogenic basin properties, the IMPERV and the BDF also
were compiled and used to develop regression equations.

Physiographic Basin Characteristics

Basin Drainage Area (DRNAREA): The basin drainage
area is defined as the area of a river basin, measured in a
horizontal plane that is enclosed by a topographic divide,
such that direct surface runoff from precipitation normally
would drain by gravity into the river basin (U.S. Geological
Survey, 1977). To determine the DRNAREA manually, mark
the point of interest, mark the high points on the topographic
map around the stream and its tributaries, and draw lines
that follow the ridges to connect the high points all around
the basin. The curvilinear segments of the resulting basin-
delineation polygon between the high points should cross
contour lines perpendicularly at the point where the bulge
follows the ridge toward the next point. Runoff flows
perpendicular to the contours so the curvilinear segments
between high points should split bulges in the contours
that point downhill. Any arrow drawn perpendicular to the
basin-delineation segments into the resulting polygon should
represent a flow path toward the stream or its tributaries.
Amman and Stone (1991) provide a step-by-step example with
illustrations. Once the watershed divide has been delineated,
the area of the polygon can be determined using a grid, a
planimeter, a digitizer, or GIS software. The contributing
drainage area is calculated by subtracting areas within the
watershed that do not drain to the main stem or a tributary.
Noncontributing areas may include topographic depressions
and areas where runoff is diverted across a topographic divide.
The USGS StreamStats Web application can be used for the
States for which it is available to quickly and easily delineate
basins and determine the drainage area at any point on a
stream defined in the National Hydrography dataset (Ries,
2007; Ries and others, 2008; U.S. Geological Survey, 2011).

Drainage areas in urban areas and in very small, highly
impervious sites can be difficult to determine because of
substantial effects of microtopography and drainage diversions
on the amount of runoff that may flow to one outlet or another
(Strecker and others, 2001; Church and others, 2003; Lee
and Heaney, 2003; Richards and Brenner, 2004; Smith and
Granato, 2010; Liu and others, 2011). Strecker and others
(2001) noted that it is difficult to accurately delineate a small
low-slope catchment, because small surface features have an
inordinate effect on drainage patterns in these catchments. In
such catchments the drainage area may change from storm
to storm. For example, Smith and Granato (2010) noted
that periodic bypass flows from neighboring drainage areas

along ruts in the roadway and along the road edge around
neighboring catch basins occurred during some storm events
with high-intensity rainfall at one site in Massachusetts. Lee
and Heaney (2003) noted that topographic contours of about
2 feet (ft) and manual inspection of drainage basins were
necessary to delineate basins on the scale of a city block
(about 0.02 mi?, which is about 14 acres) in a suburban area
with storm sewers. Differences between natural topographic
divides and anthropogenic divides can be substantial even
in relatively large urban basins. For example, Richards and
Brenner (2004) noted that sewer-drainage delineation for
Mallets Creek in Michigan more than doubled the drainage
area from about 3.9 to 8 mi%. Liu and others (2011) used
digital datasets with GIS technology to delineate small urban
catchments and discovered substantial differences in drainage
areas (greater than 20 percent) in 17 of 18 basins based on
substantial differences between expected and measured
median runoff coefficients. In this study, several order-of-
magnitude differences were confirmed by obtaining detailed
drainage plans and by doing site inspections

Basin Length (LENGTH): The basin length, also known
as the main-channel length (fig. 4), is the total distance in
miles from the point of interest to the highest point on the
basin boundary following the main-channel route (Benson,
1962, U.S. Geological Survey, 1977, 1980; Sauer and others,
1983; Federal Emergency Management Agency, 2001a). The
main-channel length may be much longer than the straight-line
length between the point of interest and the selected point on
the basin divide if the channel is sinuous. The primary method
for identifying the main channel at each bifurcation is by
following the fork that has the largest drainage area (Benson,
1962, U.S. Geological Survey, 1977). A secondary, but
acceptable method is to follow the forks that have the longest
watercourses (Langbein, 1947; U.S. Geological Survey, 1977).
The upstream end of the system is determined by extending
the main channel from the end of the mapped representation
of the stream (blue line on a USGS 1:24,000 map) to the
basin divide. To do this, the channel is extended so that it
crosses crenulations in topographic contours that point uphill
perpendicularly. If the length is measured manually then a
minimum chord length of 0.1 mi is recommended for maps
with scales greater than or equal to 1:24,000, and a chord
length of 0.25 mi is recommended for maps with scales less
than or equal to 1:250,000 (U.S. Geological Survey, 1977).
The USGS StreamStats Web application has several tools that
can be used to determine the natural basin length and will
output a table of distance and elevations along the path of
interest (Ries and others, 2008; U.S. Geological Survey, 2011).
In sewered areas, the designated main channel may follow
the storm-drain system from the outfall to the basin divide
if the upstream drainage area of the storm-drain system is
larger than the drainage area obtained by following the natural
channel upstream.

Main Channel Slope (CSL/0_85): The main channel
slope (also known as the basin slope) is the average slope of
the main channel of the stream upstream from the point of
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Figure 4. Simplified schematic diagram showing the physiographic basin characteristics used by Sauer and others

(1983) to estimate basin lagtime.

interest (Benson, 1962; U.S. Geological Survey, 1977, 1980;
Sauer and others, 1983; Federal Emergency Management
Agency, 2001a). There are a number of different measures
of basin slope and channel slope (U.S. Geological Survey,
1977), and it is not always clear which method has been
used in a given report because the terms are commonly used
interchangeably. The main channel slope selected for this
analysis is known as the 10-85 slope because it is calculated
by determining the locations and elevations of points at

10- and 85-percent along the main channel from the point of
interest to the basin divide and then by dividing the difference
in elevations by the distance in miles between these points
(fig. 4). Historically, this was done by delineating the main
channel as described above and selecting the topographic
contours that were closest to the selected points or by visual
interpolation between contours in areas of very low slope. The
main-channel slope commonly is reported as feet per mile
(ft/mi). Benson (1962) selected the 10-85 slope for several
reasons. He postulated that the steep headwaters near and
above the uppermost part of the stream probably affect the
slope out of proportion to the volume of water furnished by
the headwater area. He also postulated that the low slopes
commonly found at the downstream end of monitored
drainage basins may not represent flows from steeper slopes
in the majority of the monitored basin. Benson (1962) did
exhaustive tests to determine the best measure of slope using

data from 164 streamgages with drainage areas ranging from
1.64 to 9,661 mi*. He determined that the 10-85 slope yielded
the minimum standard error and maximum accuracy for
regression models for different flood sizes among different
measures of slope. USGS flood studies commonly use the
10-85 slope based on Benson’s findings. As such, all the slopes
from the source documents that were reported in feet per mile
were assumed to be the 10-85 main channel slope. The USGS
StreamStats Web application will calculate the 10-85 slope of
the natural channel if this slope was used to develop regional
regression models; if this variable was not used this slope can
be derived using the output of the stream-network- and basin-
profiling tools (U.S. Geological Survey, 2011).

Percent Storage (STORAGE): The STORAGE is defined
as the percent of contributing area occupied by the surface of
lakes, ponds, swamps, and wetlands (Langbein, 1947; Benson,
1962, U.S. Geological Survey, 1977; Sauer and others, 1983;
Federal Emergency Management Agency, 2001b). STORAGE
is measured using the same basic methods that are used for
other areal measurements. Areas of interest are identified
and delineated on a map, areas are measured using a grid,

a planimeter, a digitizer, or GIS software and all such areas
are summed and divided by the total basin area (Benson,
1962; U.S. Geological Survey, 1977; Federal Emergency
Management Agency, 2001b).
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Basin Lag Factor (BLF): The BLF is used to calculate
a number of hydrograph-timing variables including the basin
lagtime, the time to peak, and the time of concentration in
many hydrologic studies (Benson, 1962; Linsley and others,
1975; Sauer and others, 1983; Masch, 1984; Chow and others,
1988; McCuen and others, 2002; Fang and others, 2005).
The BLF is a secondary physiographic variable because it is
calculated from primary variables as the main channel length
(in mi) divided by the square root of the channel slope (in
ft/mi). The BLF was available in most of the datasets compiled
for this study or could be calculated from information
documented in the reports used to compile the data.

Anthropogenic Basin Characteristics

Total Impervious Area (IMPERV): The total impervious
area, commonly abbreviated as “TIA” is defined as the
percentage of contributing area covered by anthropogenic
impervious surfaces, which primarily consist of paved surfaces
and roofs. IMPERYV can be expressed as the fraction (0—1) or
the percentage (0—100) of the total drainage area. IMPERYV is
an important explanatory variable for characterizing rainfall-
runoff transformations because impervious areas can rapidly
convey runoff towards the channel network. Impervious
areas that drain directly to streams or storm drains with
sewer outfall are known as effective impervious area (EIA)
or directly connected impervious area (DCIA). Some parts
of the IMPERYV, however, may convey runoff to adjacent
pervious (or semipervious) areas that may retain or retard
this part of runoff. Granato (2010, appendix 6) provided an
overview of methods used to estimate /[MPERV and DCIA in
a drainage basin. Granato (2010) tabulated /MPERYV values
by land-cover category in 30 studies from the literature
and compiled 11 equations from the literature to estimate
IMPERYV using various land-cover characteristics. Granato
(2010) developed a regression equation to estimate /MPERV
from the percent developed area (PDA); commonly defined
as area being covered by at least 30 percent of constructed
materials, which includes pavement, rooftops, and other
structures) within a basin using data from 262 stream basins
in 10 metropolitan areas of the conterminous United States
with drainage areas ranging from 0.35 to 216 mi* and PDA
values ranging from 0.16 to 99.06 percent. Granato (2010)
developed a multisegment regression equation for estimating
IMPERYV from population density using data from 6,255
stream basins in the United States with drainage areas ranging
from 0.62 to 19,229 mi?. Granato (2010) also developed two
multisegment regression equations to correct bias in IMPERV
estimates derived using the 2001 National Land Cover Dataset
(NLCD). If IMPERY is to be determined manually from maps
or aerial photographs (for example, using Google Earth) then
calculating IMPERYV from the percent developed area is most
feasible. Digital datasets of land cover or land use data are
more commonly analyzed using GIS software to estimate TIA.
The USGS Streamstats application can be used to calculate
the PDA or the IMPERV of a delineated basin in states

where these values are used in regional regression equations.
The USGS StreamStats application also can produce a GIS
coverage of the delineated basin that may be used with other
GIS coverages to estimate /MPERYV in the basin of interest.

Basin Development Factor (BDF): The BDF is defined
as an index of urbanization and the prevalence of engineered
drainage features (Sauer and others, 1983; Masch, 1984;
Federal Emergency Management Agency, 2001c; McCuen
and others, 2002). The BDF is an important explanatory
variable for characterizing rainfall-runoff transformations
because it is an index that quantifies directly connected
impervious areas and the characteristics of the drainage-
conveyance network. The BDF is estimated by dividing the
basin into equal-area thirds that drain the upper, middle, and
lower parts of the drainage system (fig. 4) and applying four
binary criteria to each third of the basin. Each third of the
basin may cut across one or more different tributary basins
so that the travel distances among tributaries in each third of
the basin are approximately equal. Precise definition of the
basin thirds is not considered necessary, because it will not
have much effect on the final value of BDF. Therefore, the
boundaries between basin thirds can be drawn by eye without
precise measurements. Once the basin is divided, the analyst
must assign a score of 1 or 0 to characterize each of four
drainage-system components in each third of the basin. If
more than 50 percent of the area in each third of the basin can
be characterized as having one of the four drainage-system
components, a score of 1 is given for that component in that
third of the basin area. The four drainage-system components
defined by Sauer and others (1983) are:

1. Channel improvements—Channel improvements are
defined as straightening, enlarging, deepening, and
clearing the channel to reduce flow resistance. If at least
50 percent of the main drainage channels and principal
tributaries (those that drain directly into the main
channel) have been straightened, enlarged, deepened,
or cleared, then a code of 1 is assigned. If such channel
improvements have not been made, then a code of 0 is
assigned. The 50-percent criterion should be applied
using the total length of the main channel and principal
tributaries in each third of the basin.

2. Channel Linings—Channel linings are defined as
smooth impervious surfaces such as concrete. If more
than 50 percent of the length of the main channels and
principal tributaries has been lined with an impervious
surface, then a code of 1 is assigned for this criterion;
otherwise, a code of 0 is assigned. This criterion also
is applied on the basis of the total length of the main
channel and principal tributaries in each third of the basin.
If a section of the basin can be classified as meeting the
channel-lining criterion then, by default, this third of the
basin must meet the channel-improvement criterion. If
the main stem or principle tributaries are routed through
pipe or box culverts, then these segments should also be
considered as lined channels.



3. Storm Drains or Storm Sewers—Storm drains and storm
sewers are defined as those enclosed drainage structures
(usually pipes) that convey runoff directly from streets,
parking lots, or roofs to the main channels or tributaries.
This criterion is applied to the length of secondary
tributaries in each third of the basin. If more than
50 percent of the secondary tributaries are storm sewers,
then a code of 1 is assigned for this criterion; otherwise, a
code of 0 is assigned.

4.  Curb-and Gutter-Streets—Curb-and-gutter streets are
defined as paved areas that are constructed to collect sheet
flow and route runoff along their edges to a drainage
area. Drainage from curb-and-gutter streets commonly
empties into storm drains, but this criterion also may
apply to areas that route runoff directly to streams or to
disconnected pervious areas. If more than 50 percent of
the subarea (third) is urbanized (covered with residential,
commercial, and (or) industrial development), and if more
than 50 percent of the streets and highways in the subarea
are constructed with curbs and gutters, then a code of 1 is
assigned to this aspect; otherwise, a code of 0 is assigned.

Under these definitions, the BDF will be calculated as
an integer in the range from 0 to 12. The BDF is considered
to be a fairly easy index to estimate manually for a given
basin, because each criterion is assigned a 1 or a 0 (Sauer and
others, 1983; Masch, 1984; Federal Emergency Management
Agency, 2001c; McCuen and others, 2002; Granato, 2010).
Sauer and others (1983) indicate that this binary four-category
ranking system seems to produce consistent scores among
similar basins by different analysts. It is clear that a basin with
a BDF of 12 is highly developed. A BDF score of 0, however,
does not necessarily indicate that a basin is undeveloped.
A basin with a BDF of 0 may have a substantial amount of
development and a relatively high value of IMPERYV.

The BDF, however, is not currently (2012) in common
use. Use of the BDF has declined with increases in the use
of GIS for stream-basin analysis, because the BDF ranking
system has been more difficult to automate than methods to
estimate IMPERYV. Use of the BDF is not readily characterized
using a single GIS coverage. The binary BDF classification
system produces an integer scale for the BDF, and one
particular score does not define a unique set of conditions
for the basins. For example, a rural basin channelized for
agricultural drainage may have a BDF of 3, which would
exceed a BDF score of 2 for a basin with a lower third that is
fully urbanized with curb-and-gutter streets and storm sewers
that drain to a natural channel. The feasibility of automating
the BDF scoring system is expected to increase as information
about the degree of imperviousness (from land-use or land-
cover data); flood-control features; and private, municipal,
and transportation drainage systems becomes widely available
in GIS formats. First, the stream reaches would have to
be coded to identify areas with channel improvements,
channel linings, and storm sewers. This may be possible with
continuing improvements to the National Hydrography dataset
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(NHD; http://nhd.usgs.gov). In some areas, such data may be
available because National Pollutant Discharge Elimination
System (NPDES) Phase II rules require sewer-system
mapping for many municipal separate storm sewer-systems
(MS4s), which includes the collection of information about
the location of intakes, major pipes, and outfalls to waters of
the United States (U.S. Environmental Protection Agency,
2000). Second, algorithms would need to be developed to
delineate a basin into three equal sections that may cut across
subwatershed boundaries.

Values of the Basin Lagtime and Explanatory
Basin Characteristics

Four hydrologic variables developed from the basin
characteristics were used to develop regression equations to
estimate the basin lagtime. The explanatory variables used
were the drainage area, the basin lag factor, an adjusted
imperviousness factor, and the basin development factor.

Basin Lagtime (LAGTIME): Both the primary and
secondary datasets cover a wide range of LAGTIME values
(table 2). In both datasets the minimum LAGTIME is
0.0235 hours (about 1.41 min) and the maximum LAGTIME is
105 hours. The average, geometric mean, and median values
for the primary dataset (4.6, 2.1, and 2.0 hours, respectively)
are larger than for the secondary dataset (3.5, 1.7, and
1.6 hours, respectively). Although there are fewer values in the
primary dataset, the standard deviations of the arithmetic and
logarithmic values are higher than for the secondary dataset
(table 2).

Basin Drainage Area (DRNAREA): Both the
primary and secondary datasets cover a wide range of
DRNAREAs (table 2, fig. 5A). The minimum DRNAREA is
0.000116 mi? (about 0.074 acre) and the maximum DRNAREA
is 1,477 mi? (945,280 acres) in both datasets. The average,
geometric mean, and median values for the primary dataset
are larger than for the secondary dataset, but the geometric
mean and median values are about the same (table 2). There
are 11 sites in the primary dataset and 22 sites in the secondary
dataset that have DRNAREASs that are less than about
0.016 mi? (10 acres). There are 110 sites in the primary dataset
and 245 sites in the secondary dataset that have DRNAREAS
that are less than 1 mi? (640 acres). The probability plots of
these datasets (fig. SA) show that differences primarily occur
among values toward the center of the distribution.

BasinLag Factor (BLF): As with drainage areas, the
BLFss for the primary and secondary datasets share the same
range with a small positive bias in the primary dataset in
comparison to the secondary dataset (table 2, fig. 5B). The
BLF is the basin length in miles divided by the square root of
the channel slope in feet per mile. BLF's in both datasets range
from 0.0012 to 85.57. The basin length ranged from 0.0124 mi
(about 65.5 ft) to 114 mi in both datasets (fig. 5C). The main
channel slope ranged from 0.9 to 1,220 ft/mi in both datasets
(fig. 5D).
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Table 2. Ranges of values, population statistics, standardized beta coefficients, and standard deviations of the logarithm of the basin
lagtime (LAGTIME) and each explanatory variable in the regression models for predicting the LAGTIME from basin properties.

[BDF basin development factor, unitless (/3—BDF is used in the regression models); BLF, basin lag factor, the main channel length (LENGTH), in miles
divided by the square root of the main channel slope (CSL10_85), in feet per mile; BPE, basin perviousness estimator (100—0.99xIMPERV), where IMPERYV is
the total impervious area, in percent of the basin area; DRNAREA, basin drainage area, in square miles; LAGTIME, basin lagtime, the time between the centroid
of the excess rainfall and the centroid of the runoff hydrograph, in hours; --, no data]

Mean Standard deviation Standardized
Variable Minimum Maximum Arithmetic  Geometric Median Arithmetic  Logarithm be:ta_
coefficient
Primary dataset (Imperviousness and BDF) N = 493 sites
LAGTIME 0.0235 105 4.6 2.1 2.0 7.93 0.5502 1.00
DRNAREA 0.000116 1,477 30.4 3.8 4.1 135 0.9255 1.68
BLF 0.0012 85.57 2.0 0.6 0.6 5.85 0.6684 1.21
IMPERV 0 100 21.3 - 20.0 18.4 - -
BPE (100-0.99<IMPERYV) 100 78.9 71.7 80.2 18.2 0.2986 0.54
BDF 0 12 5.2 -- 5.0 3.63 -- --
13—-BDF 1 13 7.8 6.7 8.0 3.63 0.2787 0.51
Secondary dataset (No BDF) N = 896 sites
LAGTIME 0.0235 105 3.5 1.7 1.6 6.29 0.5377 1.00
DRNAREA 0.000116 1,477 21.0 2.8 3.8 103 0.9451 1.76
BLF 0.0012 85.57 1.5 0.5 0.5 4.50 0.6565 1.22
IMPERV 0 100 21.6 - 20.0 18.2 - -
BPE (100-0.99<xIMPERYV) 1 100 78.7 73.5 80.2 18.0 0.2374 0.44

Basin Perviousness Estimator (BPE): The IMPERV
values in the dataset were used to calculate the BPE. The
BPE is 100 minus 0.99 times the IMPERV (in percent). The
BPE was used for three reasons. Relations between basin
properties and basin lagtimes were best characterized by
regression equations developed using the logarithms of
data; sites with IMPERYV values of zero would have to be
excluded without an adjustment factor. In many cases a small
positive arbitrary number is added to every value to include
zero values in such regression equations, but the objective in
developing the BPE was to maintain values between 0 and
100. IMPERYV was converted to an estimate of perviousness
so that the factor would increase with decreasing development
and, presumably, with increasing lagtimes; this is consistent
with the approach taken by Sauer and others (1983) for using
the BDF in lagtime regression equations. In both datasets
IMPERYV ranges from 0 to 100 percent and the BPE ranges
from 0 to 100 percent (table 2). Both datasets also have similar
mean (about 21 percent) and median (about 20 percent)
IMPERYV values. The probability plots of the datasets are very
similar, but the secondary dataset has many more tied values
in the lower IMPERV range (fig. SE). This may be an artifact
of the methods used to estimate /MPERV in some studies or
may reflect the extra effort in basin characterization needed to
develop the BDF values in the primary dataset.

Basin Development Factor (BDF): By definition, the
BDF values are integers in the range 0 to 12, and the term
used in the regression equations, /3—BDF, ranges from 1 to
13. Sauer and others (1983) used the BDF on a reverse scale,
13—BDF, so that the factor would increase with decreasing
development and, presumably, with increasing lagtimes. The
average and median BDF values in the primary dataset were
5.2 and 5.0 respectively (table 2). About 19 percent of the sites
have a BDF value of zero and about 5 percent have a BDF
of 12 (fig. 5F). In comparison, about 19 percent of sites have
IMPERYV values less than 5 percent. The BDF and IMPERV
are correlated, but because the BDF is strongly influenced
by engineered modifications to receiving-water channels, the
IMPERYV does not determine the BDF. The wide variation in
IMPERYV values for a given BDF is apparent in figure 6.

Percent Storage (STORAGE): STORAGE was not used
for estimating basin lagtime and hydrograph-timing indexes in
this study because (1) the number of sites with storage values
were limited; (2) the range of values were skewed toward
zero; (3) the location of lakes, ponds, and wetlands in the
basin could determine the effect of storage; and (4) concerns
about the consistency of map delineation between different
studies. Only 61 percent of the 493 sites in the primary dataset
have an associated storage value, and only 43 percent of the
896 sites in the secondary dataset have an associated storage
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Figure 5. Scatterplots showing probability distribution of basin properties for sites in the primary (493 sites) and
secondary (896 sites) dataset including A, the drainage area; B, the basin lag factor, which is the basin length divided by
the square root of the channel slope; C, the basin length in miles; D, the main channel slope in feet per mile; E, the total
impervious area, in percent of the basin area; and F, the basin development factor, unitless.

value. About 38 percent of storage values in both datasets are
equal to zero, which limits the utility of percent storage as a
predictive variable. The positions of storage areas is a concern
because the positions of natural storage areas in the watershed
are almost as important as the total area of storage. The
positions determine the percentage of stormwater that would
be routed through a storage area and the travel time between
the outlet of a storage area and the site of interest (Langbien,
1947). Concerns about the consistency of map delineation

of percent storage among different studies are primarily
focused on wetland delineation. Langbien (1947) noted that
the areal extent of swamps as reported are affected by the
hydrologic conditions under which the topographic surveys
were made. Swamp areas would be greater if surveys were
made in wet years or wet seasons rather than if the surveys
were made in dry years or dry seasons. Benson (1962) noted

that areas of swamps as delineated on different topographic
maps of the same area varied considerably (by as much as
200-300 percent), so he used a storage parameter that did not
include wetlands. National standards for wetland mapping
have only been published recently, and these standards still
allow for a substantial amount of deviation from the approved
methods in the standards (Wetlands Subcommittee of the
Federal Geographic Data Committee, 2009).

Furthermore, STORAGE does not include engineered
or accidental in-channel and detention storage in the reports
used to compile the database. Sauer and others (1983) defined
this storage as temporary water storage in planned detention
areas (for example, behind such structures as detention dams)
or unplanned detention areas (for example, behind highway
or railroad embankments with under-sized culverts). They
indicated that unplanned detention was difficult to quantify
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Figure 5. Scatterplots showing probability distribution of basin properties for sites in the primary (493 sites) and
secondary (896 sites) dataset including A, the drainage area; B, the basin lag factor, which is the basin length divided by
the square root of the channel slope; C, the basin length in miles; D, the main channel slope in feet per mile; E, the total
impervious area, in percent of the basin area; and F, the basin development factor, unitless.—Continued

and required subjective determination based on examination
of available high-water profile data and maps, bridge and
highway plans, surveys, and on field inspections. Unplanned
detention also would vary considerably based on storm size
and duration. Sauer and others (1983) found that this variable
had a significant effect on flood peaks but did not examine
the effects on lagtime. Meierdiercks and others (2010) used
monitoring data and watershed modeling to show that the
effects of engineered detention on peak flows and basin
response times were substantial for small watersheds. Sauer
and others (1983) indicated the presence of engineered storage
in basins by using a “Y” for yes, indicated the absence of
engineered storage with a “N” for no, and used a “U” for
unknown. This classification was not sufficient to develop
regression equations. None of the other 36 studies (with

the exception of Meierdiercks and others, 2010) provided
detention storage data.

Analytical Procedures for Regression Analysis

Ordinary least squares (OLS) regression techniques
were used to relate the selected basin characteristics to the
basin lagtime. Multiple linear regression analysis were
used to develop regression models that incorporated one
or more physiographic variables to represent the effects of
basin properties and one or more anthropogenic properties
to represent the effects of development on basin lagtimes.
Multiple linear regression analysis using OLS techniques
provides a systematic method for estimating the coefficients
of a mathematical equation of the relation between a response
variable (basin lagtime) and two or more explanatory variables
(basin characteristics). In this regression analysis, basin
lagtime (the dependent variable) for a group of data-collection
stations is statistically related to one or more physical
characteristics of the drainage areas for the stations (the
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Figure 5. Scatterplots showing probability distribution of basin properties for sites in the primary (493 sites) and
secondary (896 sites) dataset including A, the drainage area; B, the basin lag factor, which is the basin length divided by
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independent variables). This results in an equation that can be
used to estimate the basin lagtime for sites where concurrent
precipitation and streamflow data are not available. Linear
regression analysis was used to develop regression models that
incorporated either the drainage area or the basin lag factor.
Multiple regression techniques were used to add the BPE and
13—BDF variables to the equations.

The basin lagtime and all the potential explanatory
variables were transformed to their common (base 10)
logarithms to develop the regression models. The regression
equations were developed with the logarithms of data because
basin lagtimes, drainage areas, basin lengths, channel slope,
and imperviousness all have a lower bound of zero and vary
over one or more orders of magnitude. Transforming the
variables to logarithms increased the linearity of relations and
reduced heteroscedasticity (nonconstant variance of residuals).
Logarithmic multiple linear regression equations commonly
are reported in the following form:

where

Y

P

B,

n

X to X

B, tof,

€

log(Yp):ﬁO—‘rB] log(X])+leog(X2)a (5)
+..+B, log(X,)+e

is the predicted value, in this case the
basin lagtime;
is the estimated value of the linear intercept;
is the number of explanatory variables used in
the equation;
are the values of each of the n
explanatory variables;
are the slopes associated with each of the n
explanatory variables; and
is the random error component (scatter
of measured points around the
regression estimates).
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Figure 6. Scatterplot showing the relation between the
basin development factor (BDF) and the total impervious area
(IMPERV, in percent of basin area) for the 493 sites in the
primary dataset.

Once the coefficients are calculated, equation 5 is
transformed to a power equation in arithmetic space because
the basin lagtime is of interest (rather than the logarithm of
the basin lagtime) and the arithmetic values of the explanatory
variables are more intuitive to use. Addition in log space
is equivalent to multiplication in arithmetic space, and
multiplication in log space is equivalent to exponentiation in
arithmetic space. If retransformed from the common (base 10)
logarithms, equation 5 becomes:

Y, =10% ><X1ﬁ' ><X2Bz ><...><XHB” x10° > (6)

where the terms of the equations have the same meaning

as in equation 5. In regression analysis, the mean of the
errors (¢) should be zero in log space; when transformed this
term would equal one. However, the mean of the errors in
logarithmic space is the geometric mean of errors in arithmetic
space. As a consequence, the best-fit line in logarithmic
space tends to provide a biased estimate of the dependent
variable in arithmetic space, and a bias correction factor is
needed to compensate. The nonparametric smearing estimator
(the average of the retransformed log-regression residuals)
proposed by Duan (1983) was selected as a bias correction
factor for the regression equations developed in this study
because it performs reasonably well and is not sensitive

to statistical assumptions regarding residual-population
characteristics (Gilroy and others, 1990; Crawford, 1991;
Hirsch and others, 1993; Helsel and Hirsch, 2002). The
Duan (1983) BCF is called the smearing estimator because
the method applies or “smears” the average retransformed
error over all measurements. A generalized expression

of the smearing estimator, applicable for any log-based
transformation, is:

Y. G(e)
BCF =+ > ™
XY
where
BCF is the bias correction factor;
G is the retransformation function;

e is the residual error, which is calculated by
subtracting the regression estimate from
the data value for each data point (¥,); and

N is the number of XY data pairs.

XY

For the common logarithms, G is:

G(e)=10%, ®)
Assuming that the average error of the logarithms is zero

it is the magnitude of the error, which determines the quality

of the fit of the regression equation. There are a number of

statistics that commonly are used to assess the strength of a

regression equation (Haan, 1977; Gilroy and Tasker, 1989;

Helsel and Hirsch, 2002). The coefficient of determination,

commonly known as the R-squared (R?) indicates the

fraction of the variance explained by explanatory variables

in the model; the adjusted R? also indicates the fraction of

the variance explained by the explanatory variables in the

model; however, in contrast to R?, the adjusted R? is adjusted

for the number of variables in the model and the size of the

sample. In general, larger R? values indicate a better fit to the

available data; a perfect linear fit would have an R? value of

one. The Prediction Error Sum of Squares (PRESS) statistic

is the sum of the squared errors calculated for each value (7)



using a version of the regression equation developed with

all the other N_—1 values. In theory, the equation with the
minimum PRESS value will produce the least error when
making predictions with new data. The average standard error
of the estimate (ASEE) is also known as the mean-square
error, and the variance of the residuals (c?); it is the sum of
squared residual errors divided by ny—2. In this case, it is a
measure of the variation between the basin lagtime estimates
and the observed basin lagtimes from the data-collection
stations used in deriving the models. The square root of the
ASEE is known as the root mean-square error (RMSE) or the
standard deviation of residuals (). In general, regression
models with smaller ASEE values will produce the least error
among the available data. ASEE values are calculated within
log space and are commonly converted to percent errors

to facilitate model evaluation and comparison. The ASEE
statistic is converted from a logarithm to a percent error using
the equation:

ASEE

Percent

) ) 0.5
- 100><(e<° X(n(10)") —1) : )

Theoretically, about two thirds of the estimates obtained from
the equations for the sites used in the regression analysis will
have errors less than the calculated standard errors of estimate.
The average standard error of the prediction (ASEP) is similar
to the ASEE but it is a measure of the predictive ability of

the regression model. The ASEP can be estimated using

the PRESS statistic (Gilroy and Tasker, 1989; Koltun and
Whitehead, 2002) using the equation:

ASEP - PRESS

est >

XY

(10)

The ASEP can be converted from logarithms to a percent error
using the method shown in equation 9. In theory, regression
models with smaller ASEP values will produce the least error
for predictions using new data. Theoretically about two-thirds
of the estimates obtained from the equations for unmonitored
sites will have errors less than the calculated standard errors
of prediction. Another measure of accuracy of the regression
models is the median absolute deviation (MAD) of residuals.
The MAD of residuals is analogous to the ASEE, but it is

a robust measure that is not affected by a few outliers. In
theory the value of the MAD should be about two-thirds of the
ASEE if the residuals are normally distributed without large
outliers (Helsel and Hirsch, 2002). About half of the estimates
obtained from the equations for the sites used in the regression
analysis will have absolute errors less than the calculated
MAD value. In general, regression models with smaller MAD
values will produce the least error among the available data.
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Development of Basin Lagtime
Regression Equations

The objective of this analysis was to provide a number
of regression equations so that a scientist or engineer
could produce a basin lagtime estimate with available data
describing the basin characteristics of a site of interest.
Regression statistics from models with different numbers of
explanatory variables were calculated to help assess potential
benefits of more thorough watershed characterization. For
example, if a regression equation based on drainage area
provides an acceptable amount of accuracy and precision for a
given application, then the more complex basin characteristics
do not need to be calculated for that application. A multiple
stepwise regression was done in which independent variables
were added one at a time to obtain the final equation. In
stepwise regression the automated selection program finds
the explanatory variable with the highest correlation (R?) with
the response variable (basin lagtime); it then tries each of the
remaining variables until it finds the two explanatory variables
with the highest R?; then it tries all of them again until it finds
the three variables with the highest R?, and so on. The goal
of the stepwise procedure is to ensure that only statistically
significant independent variables are added to an equation and
to exclude the variables that account for a very small part of
the variance in the dependent variable.

Two correlation matrixes, one with the Pearson product-
moment correlation coefficient (Pearson’s r) the other with
Spearman’s rank correlation coefficient (rho) were used
to asses relations between the logarithms of explanatory
variables and the logarithms of basin lagtime and relations
among the explanatory variables (table 3). This was done
to guide variable selection and minimize use of highly
correlated variables in the same regression model. The two
physiographic variables, drainage area (DRNAREA) and
basin lag factor (BLF), are strongly correlated (correlation
coefficients exceed 0.7) with basin lagtime (LAGTIME),
and the correlations between each of these variables and
LAGTIME are equivalent. The sign of the correlations
are logical, indicating that LAGTIME increases as the
DRNAREA and BLF increase. The DRNAREA and BLF are
highly correlated (correlation coefficients exceed 0.9) with
each other in the primary and secondary datasets, so these
variables were not used in the same regression model. Because
of this, separate regression models were developed using
each of these physiographic variables. Linear correlations
between the physiographic variables (DRNAREA and BLF)
and the anthropogenic variables (13—BDF and BPE) are
moderate to low. Correlations between the LAGTIME and the
anthropogenic variables /3—BDF and BPE are moderate and
are similar indicating that these variables explain about half
of the variation in LAGTIME. The sign of the correlations is
logical because LAGTIME is expected to increase as /3—BDF
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Table 3. Correlation matrixes showing the parametric (Pearson’s r) and nonparametric (Spearman’s rho) correlation coefficients
among the logarithms of variables used to formulate the regression equations.

[Correlations are among the common logarithms (base 10) of all the variables, which were used to develop the regression equations. BDF, basin development
factor, unitless (/3—BDF is used in the regression models); BLF, basin lag factor, the basin length (LENGTH), in miles divided by the square root of the main
channel slope (CSL10_85), in feet per mile; BPE, basin perviousness estimator (/00—0.99xIMPERV), in percent where /MPERV is the total impervious area,
in percent of the basin area; DRNAREA, basin drainage area, in square miles; LAGTIME, basin lagtime, the time between the centroid of the excess rainfall
and the centroid of the runoff hydrograph, in hours; --, no data. All p-values were less than 0.005, except for the rank correlation between /3—BDF and BLF

(p=0.067)]

Pearson's r Spearman’s rho
DRNAREA BLF  13-BDF BPE LAGTIME DRNAREA BLF 13-BDF BPE LAGTIME
Primary dataset (Imperviousness and BDF) N = 493 sites
DRNAREA 1 0.924 0.355 0.608 0.786 1 0.927 0.141 0.311 0.734
BLF 0.924 1 0.251 0.444 0.781 0.927 1 0.082 0.266 0.741
13—BDF 0.355 0.251 1 0.565 0.519 0.141 0.082 1 0.73 0.415
BPE 0.608  0.444 0.565 1 0.518 0311 0.266 0.73 1 0.518
LAGTIME 0.786  0.781 0.519 0.518 1 0.734 0.741 0.415 0.518 1
Secondary dataset (No BDF) N = 896 sites

DRNAREA 1 0.921 -- 0.519 0.809 1 0.934 -- 0.35 0.785
BLF 0.921 1 -- 0.385 0.809 0.934 1 -- 0.291 0.791
13—-BDF - - - - - - - - - -
BPE 0.519 0385 -- 1 0.478 0.35 0.291 -- 1 0.525
LAGTIME 0.809 0.809 - 0.478 1 0.785 0.791 - 0.525 1

and BPE increase (as the BDF and IMPERV decrease,
respectively). Correlations between the two anthropogenic
variables, BPE and /3—BDF, are moderate to strong (with an
r value of 0.565 and a rho value of 0.73). The positive, but
nonlinear, correlation between these variables is apparent in
figure 6.

Coecfficients of the regression equations and regression
statistics for predicting the basin lagtime from basin
characteristics are shown in table 4. The coefficients are
for the retransformed version of the regression equation
(equation 6). The regression equations and regression statistics
were calculated using the Minitab™ software (version 15).
Plots of the equation values and residuals were made and
examined to ensure that predicted values were reasonable and
that residuals were unbiased and had constant variance. Two
sites in the primary dataset (database site identification number
741 and 742) were identified as high-leverage far outliers and
were not used for regression analysis. Analyses of regression
residuals for both the primary and secondary datasets indicate
that there are no geographic biases in the residuals from
the regression equations. Comparison between regression
equations developed with the primary and secondary
datasets for the DRNAREA (equations REO1 and RE10), the
BLF (equations REO5 and RE12), the DRNAREA and BPE
(equations RE02 and RE11), the BLF and BPE (equations
REO06 and RE13) all show similar regression coefficients that
are statistically equivalent within a 95-percent confidence limit
(table 4).

The USGS basin lag equation RE09 by Sauer and others
(1983) also is included in table 4 for comparison to results of
the current study. Equations REO7 and RE09 are based on the
same explanatory variables and equation RE09 was developed
with a subset of the sites used to develop RE07. The R?,
ASEE, and MAD statistics were calculated for both equations
using all the data in the primary dataset. Equation RE09 had
comparable regression fit statistics to equation RE07, but
as expected, equation RE07 has a higher R? and lower error
statistics than RE09 because it was developed using all the
data in the primary dataset. Equation RE07 has a BLF slope
that is similar to the BLF slope in equation RE09, but the
slope of the /3—BDF term is substantially higher than in
equation RE09. The larger slope in equation REQ7 indicates a
greater difference in lagtimes with changes in BDF than in the
USGS basin lag equation (RE09). The slope of both the BLF
and /3—BDF terms for these equations also are significantly
different at a 95-percent confidence limit.

Multicollinearity is the condition where one or more
predictor variables are highly correlated. If highly correlated
variables are used, then the multiple linear regression analysis
may produce faulty regression coefficients and may result
in non-optimal predictions for some input values (Helsel
and Hirsch, 2002). The effects of multicollinearity among
predictor variables were demonstrated using the equations that
use both the IMPERV and BDF (equations RE04 and RE0S;
three-variable models). The correlation between the associated
regression variables /3—BDF and BPFE are fairly strong with
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Pearson R values of 0.565 and Spearman’s rho values of 0.73
(table 3). For example, three-variable regression equation
REO04 (table 4), which uses DRNAREA, IMPERYV, and BDF
to estimate basin lagtimes, has substantially better PRESS,
ASEE, ASEP, and MAD values than two-variable regression
equation RE02, which uses only DRNAREA and IMPERYV.

It has slightly better statistics than the equation using only
DRNAREA and BDF (RE03). However, the coefficient of
the BPE variable in RE04 is negative, which would indicate
decreasing lagtimes with increasing perviousness (or
increasing lagtimes with increasing /MPERV’). Similarly,
three-variable regression equation REO8 has much better
regression statistics than equation RE06 and similar statistics
as equation RE(Q7, but the coefficient of the BPE term is very
low (table 4). Thus, equations RE04 and RE0OS should not be
used to estimate LAGTIME values.

Application of Basin Lagtime
Regression Equations

Regression lines calculated using equations RE07, RE06,
and RE13 are shown with data points from the primary and
secondary datasets in figures 7A, B, and C, respectively. All
three graphs indicate a good fit to both datasets and substantial
decreases in basin lagtimes with increasing development.

The graphs, which are plotted on log scale, all show that

the effect of development becomes more pronounced as the
BDF exceeds 6 and the IMPERV exceeds about 50 percent.
Similarly, Granato (2010) calculated a break in slope in the
relations between IMPERV and average runoff coefficients

at an IMPERV value of 55 percent. Comparison among these
graphs indicates that an /MPERV value of 100 in equations
REO06 and RE13 will produce a lower value of basin lagtime
than a BDF of 12 in equation RE07. Conversely, an IMPERV
value of 0 in equations RE06 and RE13 will produce
substantially lower value of basin lagtime than a BDF of 0 in
equation REO7. Visually, equation RE13 seems to produce a
better estimate of lagtimes for small, highly impervious basins,
and equation REQ7 seems to produce a better estimate of
lagtimes for larger less developed basins (fig. 7). It should be
noted, however, that differences among regression estimates
for small, highly developed basins are on the order of a few
minutes, whereas the differences between lagtimes for large
undeveloped basins are on the order of a few hours to tens of
hours (fig. 7).

Each regression equation produces a unique value of
the basin lagtime for a unique combination of the values of
the explanatory variables, but there is uncertainty associated
with each estimate (Driver and Tasker, 1990). Prediction-
interval estimates commonly are used to define the degree of
uncertainty for estimating the basin lagtime for any given site.
Because the equations were developed with the logarithms of
data, the prediction intervals are multiplicative. The prediction
interval can be calculated by

1 BlLag,
T BCF

BLag. 11
agi 1 » (11)

BCF

<BLag, <

for an unmonitored site i where the value of 7'is the value of
the 100(1-a) prediction interval, BLag, is the basin lagtime
estimate for the site, and BCF is the bias correction factor
from table 4. Because the regression equations were developed
using the common (base 10) logarithms of the input variables,
the value of 7 is calculated as:
[twen)]

T =10 , (12)

where 7, o) is the critical value of the Student’s ¢ distribution
for the selected prediction interval for n—p degrees of freedom
with n data points in the regression analysis dataset and p
parameters in the regression equation. Vpi is the variance of
prediction for site i and is calculated as:

Vv, :02(1+inx;), (13)
where o is the standard error of the estimate for the selected
regression equation, U is the variance-covariance matrix for
the regression equation, and x, and x/are the row and column
vector of the basin characteristics of site 7, respectively. For
example, the row vector (x) for equation RE07 in table 4
would be:

X, = [l,log(BLF,. ),10g(13—BDE.)] , (14)
which includes the constant 1, and the logarithms of the BLF
and 13—BDF terms. The column vector is made up of the same
three values transposed. The variable U in equation 13 is the
variance-covariance matrix for the regression equation. For
example, the variance-covariance matrix for the regression
equation RE07 in table 4 would be:

0.02234  0.00347 -0.02369 (15)
U =] 0.00347 0.00485 -0.00292
-0.02369 -0.00292 0.02792

The critical Student’s ¢ value for the 90-percent prediction
interval, the model error variance, and the variance covariance
matrix for selected regression equations are shown in table 5.
The procedure to calculate the basin lagtime is explained
by an example computation following the method of Driver
and Tasker (1990). The basin properties of USGS streamgage
008730025 Big Branch Tributary at Wingate Drive, Raleigh,
North Carolina, were selected for this example because the
contributing area of this streamgage is a very small, highly
developed basin. This streamgage has a drainage area of
0.08 mi?, BLF of about 0.05 mi/(ft/mi)"*, an IMPERV value of
41.7 percent, and a BDF of 9 (Robbins and Pope, 1996). Using
equation REQ7, the basin lagtime (BLag) is:
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Figure 7. Scatterplots showing basin lagtime data and regression equations developed using the basin lag factor
(BLF)and A, the basin development factor (BDF) with the primary dataset (equation REQ7); B, the total impervious area
(IMPERV) with the primary dataset (equation RE06); C, IMPERV with the secondary dataset (equation RE13).
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Table 5. Values needed to determine 90-percent prediction intervals for selected basin lagtime regression equations in table 4.

[Regression model statistics developed using the common logarithms (base 10) of data values. BDF, basin development factor, unitless (/3—BDF is used

in the regression models); BLF, basin lag lactor, the basin length (LENGTH), in miles divided by the square root of the main channel slope (CSL10_85), in
feet per mile; BPE, basin perviousness estimator (100—0.99xIMPERV), in percent where IMPERV is the total impervious area, in percent of the basin area;
CI, confidence interval; DRNAREA, basin drainage area, in square miles]

Critical
Regression Number student’s ¢ Model . . .
equation of sites for vat:ir::]rc . Variance-covariance matrix
90-percent Cl
Primary dataset (Imperviousness and BDF) N = 493 sites

REO1 493 1.648 0.1158 Constant DRNAREA
Constant 0.00282367 -0.0013737
DRNAREA -0.0013737 0.00237293

REO02 493 1.648 0.1150 Constant DRNAREA BPE
Constant 0.11256004 0.01098566 -0.0629923
DRNAREA 0.01098566 0.00376495 -0.0070947
BPE -0.0629923 -0.0070947 0.03615962

REO3 493 1.648 0.0958 Constant DRNAREA 13—BDF
Constant 0.02028623 0.00107217 -0.0228655
DRNAREA 0.00107217 0.00271552 -0.0032027
13—-BDF -0.0228655 -0.0032027 0.02994001

REO5 493 1.648 0.1184 Constant BLF
Constant 0.00224496 0.00099258
BLF 0.00099258 0.00454919

REO06 493 1.648 0.1072 Constant BLF BPE
Constant 0.1045443 0.01166781 -0.0538735
BLF 0.01166781 0.00566319 -0.0056219
BPE -0.0538735 -0.0056219 0.02837115

REO07 493 1.648 0.0845 Constant BDA 13—BDF
Constant 0.02234 0.00347 -0.02369
DRNAREA 0.00347 0.00485 -0.00292
13—-BDF -0.02369 -0.00292 0.02792

Secondary dataset (No BDF) N = 896 sites

RE10 896 1.647 0.0999 Constant DRNAREA
Constant 0.00135869 -0.0005509
DRNAREA -0.0005509 0.00125087

REI11 896 1.647 0.0986 Constant DRNAREA BPE
Constant 0.09013766 0.00584647 -0.0490835
DRNAREA 0.00584647 0.00171186 -0.0035369
BPE -0.0490835 -0.0035369 0.02713693

RE12 896 1.647 0.1000 Constant BLF
Constant 0.00137348 0.00081689
BLF 0.00081689 0.00259239

RE13 896 1.647 0.0906 Constant BLF BPE
Constant 0.08626083 0.00699653 -0.0444448
BLF 0.00699653 0.00304226 -0.0032355
BPE -0.0444448 -0.0032355 0.02327019




BLag =1.272x0.76x(0.05)*" x (13-9)**' =0.45, (16)

Given:
n-p is 493-3 =490 (degrees of freedom);
o is 0.1 (90-percent prediction interval);
Lo is 1.648 (from table 5, or a statistical text);
X, is [1, log(0.05), log(13—-9)], vector of basin
characteristics (equation 10);
U  isequivalent to equation 11 (provided for the
other regression equations in table 5);
o? is 0.0845, the variance of the estimate (from
table 5); and
BCF  is 1.272 (from table 4).
Calculate:

V. 0.0845 (1+x,Ux]) = 0.0845%1.0385 = 0.08775;

pi

T 10 [1:648 008775/05] = 3 077: and

! x—0'45 <0.45<3.077x 0.45

3.077 1.272 1.272°

Thus, the estimated basin lagtime for this basin is 0.45 hours
with a 90-percent prediction interval from 0.11 to 1.09 hours
using equation REQ7 (table 4). In comparison, Robbins and
Pope (1996) estimated the basin lagtime to be 0.26 hours. The
spreadsheet “ExamplePredictionIntervals.xls” on the digital
media accompanying this report is designed to allow the user
to calculate basin lagtimes and associated prediction intervals
for any site within the limits used to develop the regression
equations. The spreadsheet can be used to calculate basin
lagtimes and prediction intervals using regression equations
REO1, RE02, RE03, REO5, RE06, REO7, RE10, RE11, RE12
and RE13.

Limitations of the Analysis

The physiographic and anthropogenic explanatory
variables in the regression models must be computed or
estimated from maps, observations, and other data, which are
subject to errors in measurement and interpretation (Driver
and Tasker, 1990). The amount of variance in residuals of
these regression models and the large prediction intervals
may be the result of at least four factors. These factors include
random variation in individual errors caused by physical
basin properties not characterized by the regression equations,
regional differences in precipitation characteristics that affect
the basin lagtime, random errors in the measurement of
hydrologic variables and basin characteristics within each of
the 37 studies used to compile the database, and systematic
error introduced by variations in the methods and source maps
used to determine the basin characteristics in the different
studies. These limitations are inherent in the effort to develop
national regression equations without a comprehensive and
systematic national initiative to characterize basin lagtimes in
different regions of the country.

Estimating Basin Lagtimes 25

The potential effect of random variation in individual
errors caused by physical basin properties not characterized
by the regression equations can be inferred by comparing the
PRESS statistics, standard error statistics and MAD statistics
between regression models based on one physiographic
variable (regression models REO1 and REOS in table 4)
and the regression models with one or more anthropogenic
variables. In each case, substantial reductions in error occur
by including the anthropogenic variables. There are many
other potential variables that affect basin lag; for example,
Hood and others (2007) and Meierdiercks and others (2010)
both documented the effects of engineered detention storage
on basin lagtimes of small drainage areas. In the current
study, however, selection of explanatory variables was
limited to those variables commonly documented within the
source documents.

Regional differences in precipitation characteristics also
may affect the amount of variation in residuals from the basin
lagtime regression equations. The geographic distributions
of sites in these datasets are comprehensive (fig. 3). For
example, the regional average within-storm precipitation
distribution probably has a systematic effect on basin lagtime,
but these datasets include sites in all four SCS design storm
rainfall distribution regions (McCuen and others, 2002).
However, a number of the flood hydrograph studies in these
datasets develop regression equations and unit hydrographs
for multiple regions within the same State (or within a cluster
of adjacent States) to better account for systematic variation
in storm event characteristics (for example, Gamble, 1989;
Bohman, 1990, 1992; Mason and Bales, 1996, Inman, 2000).
Use of these regions to improve regression relations may
account for spatial variations in precipitation caused by
elevation and location. Thus, use of a regional variable or the
selection of sites by region may reduce the variance of errors
in regression equations developed for local or regional use.

Random errors occur in all measurement processes and
may affect relations between variables. Although standard
methods for basin characteristics set acceptable error limits at
5 to 10 percent of measured values (U.S. Geological Survey,
1977), actual errors can be substantially higher. For example,
in a review of hydrologic uncertainties Granato (2010,
appendix 1) found that about 15 percent of all Virginia basins
and 23 percent of all Rhode Island basins meet the 5-percent
accuracy criterion, but with the exception of a few outliers,
the smaller basins have the larger errors. About 49 percent
of the smallest basins (less than 1 mi?) in Virginia and about
30 percent of the smallest basins in Rhode Island exceeded the
S-percent accuracy criterion. Measurement errors that were as
high as 200 percent of actual drainage area were noted among
the small basins. Random misspecification of IMPERV and
BDF may occur if changes in land use and drainage features
occur in some basins during the period used to develop the
average basin lagtime.

Systematic errors in the specification of basin
characteristics and basin lagtimes may have been introduced
by compiling a large number of different studies that
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were completed during a 41 year period (1969-2010).

The maps and methods used to compile the data can be
sources of systematic errors. For example, Granato (2010,
appendix 1) compiled results from several studies that
examined automatic and manual drainage-area assessments
and found that manual methods (probably used in most early
studies) were more accurate than GIS delineations. Several
studies also looked at the effect of GIS dataset resolution on
accuracy of drainage-area delineation and found that finer
resolution datasets produced considerably better estimates.
Conceivably, the accuracy of drainage-area delineations and
related physiographic variables may have been high when
manual methods and field surveys were used, declined with
early adoption of GIS methods, and then improved as more
powerful computers and lower storage costs facilitated
development and use of finer resolution GIS datasets. There
also may be considerable differences among different methods
used to determine /MPERV. Granato (2010, appendix 1)
indicates that differences in /MPERV estimates made using
different methods and different datasets commonly are on the
order of 25 to 40 percent. However, it would be suspected
that systematic differences in specified BDF's would be less
than for other explanatory variables, because everyone uses
the same criteria. Specifying the BDF'is done using 12 binary
choices based on gross measures of development, and the
method is resistant to automation and detailed knowledge of
the study basin is required to do the analysis. Another source
of systematic error may be differences in the levels of skill and
temperament among the hydrologists compiling the data for
each study.

Potential effects of misspecification of explanatory
variables were assessed using standardized beta coefficients
(Driver and Tasker, 1989). Sensitivity tests indicate the effects
of measurement and interpretive errors on estimation of the
response variables in regression models. Standardized beta
coefficients for all the variables in the regression models
are listed in table 2 to facilitate comparisons between
regression models and sensitivity testing. The standardized
beta coefficient is the standard deviation of the explanatory
variable divided by the standard deviation of the response
variable. This coefficient (table 2) reflects the change in the
mean response per unit change in the explanatory variable (in
units of standard deviations of the log of both variables) when
all other explanatory variables are held constant. Therefore,
misspecification of a variable with a high standardized beta
coefficient is likely to introduce more error than an equivalent
error in a variable with a smaller beta coefficient. Some
explanatory variables have more natural variance than other
explanatory variables. For example, the drainage areas in
the dataset vary by more than seven orders of magnitude.

In comparison, the basin lag factor, which is a ratio, varies
by about five orders of magnitude in the same dataset

(table 2). Spacing of the observations on the explanatory
variables, which may be somewhat arbitrary, also affects the
standardized beta coefficients (Driver and Tasker, 1989).

Potential effects of misspecification of explanatory
variables also can be assessed visually using the plots
of equations in figure 7. Percent errors caused by
misspecification of the BDF by 1 are less than 10 percent
if the BDF is less than 5, but it can be as high as 20 to
50 percent if the BDF is greater than 9. Similarly, the percent
errors caused by misspecification of IMPERYV increase with
increasing /MPERYV, but the absolute values caused by minor
misspecification errors are small.

Estimating Hydrograph-Timing Indexes
Using Recession-Ratio Statistics

Analysis of instantaneous streamflow data is necessary
to estimate triangular-hydrograph recession ratios, which are
used with the precipitation duration and the basin lagtime to
estimate various hydrograph timing indexes for each storm
(equations 3 and 4). Many hydrologic studies have focused
on the basin lagtime for analysis of flood peaks, and the
regression equations in this report are sufficient to develop
planning-level estimates for that variable, but recession-
ratio values are not commonly available and correlations to
potential explanatory variables are weak. Some literature
values are available and some values can be interpreted from
results of existing studies. The recession-time estimates
used with the rational method are based on the assumption
of an isosceles triangle with equal rising- and falling-limb
durations (a hydrograph-recession ratio of 1). The falling-
limb duration of the SCS triangular hydrograph has a standard
hydrograph-recession ratio of 1.67 times the duration of
the rising limb (Ogrosky and Mockus, 1964; Kent, 1973;
Pilgrim and Cordery, 1993). Wanielista (1990) indicated that
the hydrograph-recession ratio may be about 1.25 in steeply
sloped urban drainage basins, 2.25 for mixed-use moderately
sloped basins, 5.5 for rural basins with low slopes, and 12 for
rural basins in flat areas. These ratios include the effects of
slope and basin development but do not quantify the effect
of each factor. Furthermore, the underlying interpretation,
data, and basin characteristics used for derivation of these
ratios are not published (Wanielista, 1990; Wanielista and
Yousef, 1993). Liscum (2001) developed regression equations
to describe storm-discharge hydrographs with data collected
at 42 sites from 1,089 storm events near Houston, Texas,
during the period 1964 through 1989. These hydrograph-
recession equations indicate that, in the Houston area, the
storm falling-limb time is about 3.6 times the basin lagtime
for an undeveloped basin, about 5 times the basin lagtime for
a developed basin, and about 13 times the basin lagtime for a
fully developed basin. These ratios increase with increasing
development because the reduction in the basin lagtime is
much greater than the reduction in duration of the falling-limb
time. Shamir and others (2005) examined data from 19 USGS
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streamgages in different areas of the country with drainage
areas ranging from 86 to 1,850 mi?® to determine rising- and
falling-limb densities for use in rainfall-runoff models. In
this study, the basin-average rising-limb and falling-limb
densities indicate that the hydrograph-recession ratio ranged
from about 1.7 to about 3.5 (with a median of about 2.3).
Shuster and others (2008) analyzed streamflow data from eight
predominantly agricultural basins in southwestern Ohio with
small drainage areas (ranging from 6 to 23 mi?); their data
indicate that basin-average hydrograph-recession ratios were
between 1.8 and 5 (with a median of about 3.55).

Methods and data are needed to estimate triangular-
hydrograph recession ratios that may be used for local
hydrograph analyses. SELDM calculates the recession
ratios and therefore models hydrograph durations as random
variables using a triangular distribution. Thus estimates of
the minimum value, most probable value, and maximum
value of recession ratios are needed to represent the timing of
stormflows from the upstream basin. Recession ratios may be
estimated using published hydrographs or data from USGS
water-data Web servers (U.S. Geological Survey, 2012a,b).

Estimating Values of the Triangular-
Hydrograph Recession Ratio from
Published Curvilinear Hydrographs

Triangular-hydrograph recession ratios may be estimated
from published values of curvilinear flood hydrographs
developed from instantaneous stormflow data from multiple
storms and multiple streamgages. Curvilinear stormflow
hydrographs for different regions of the country available
from 11 USGS flood studies (table 6) were used to estimate
triangular-hydrograph recession ratios. The flow values from
the SCS curvilinear hydrograph documented in the FHWA
handbook of hydrology (McCuen and others, 2002) also were
used to estimate a triangular-hydrograph recession ratio. The
Microsoft Excel® solver tool available in the analysis tool pack
was used to find the optimal fit of the cumulative distribution
of flow of a triangular hydrograph to the cumulative
distribution of stormflow of these published curvilinear
hydrographs. The optimal fit was calculated by minimizing the
least-squares difference between the cumulative distributions
of unit flows values. Least-squares optimization was used
to fit the triangular hydrograph, because it has been shown
to be effective for fitting data to the triangular distribution
(Johnson, 1997; Back and others, 2000). These spreadsheets
(USGSO01 .xls, USGS02.xls, and USGS03.xls) are available
in the “RecessionRatio” directory on the digital media
accompanying this report. First, the curvilinear hydrographs
were normalized so that the first stormflow value at the
beginning of the hydrograph was equal to zero and the last
stormflow value was equal to 1 percent of the last tabularized
flow value. The area under the hydrograph was normalized
to one and the triangular hydrograph was fit to the entire

curvilinear hydrograph. The hydrograph-recession ratio for a
triangular hydrograph must be adjusted to preserve the total
unit flow volume and to approximate the cumulative-mass
curve of a curvilinear hydrograph with a straight-line recession
segment (fig. 8). Thus, the triangular hydrograph must truncate
the tail of the curvilinear hydrograph. The duration of the tail
of the curvilinear hydrograph may be a substantial part of the
total duration of stormflow, but the mass of flow in the tail
of the curvilinear runoff hydrograph commonly is a small
percentage of the total stormflow. Flow values in the tails of
60 percent of these curvilinear runoff hydrographs had to be
truncated so that the peaks of the curvilinear and triangular
runoff hydrographs would coincide. In these cases, the tails
were truncated, the total stormflow was unitized, and a new
triangular hydrograph was fit using the least-squares method.
This process was done iteratively until the peaks of the runoff
hydrographs matched. It was not necessary to trim the national
average stormflow hydrograph developed by Stricker and
Sauer (1982) because the triangular hydrograph provides an
excellent fit to this curvilinear hydrograph. Although the peaks
are aligned, the triangular hydrograph produces flow values
that slightly lag (under predicts) flows in the rising limb of the
curvilinear hydrograph and slightly lead (over predicts) flows
in the falling limb of the curvilinear hydrograph (fig. 8). In
this case, the recession ratio is 1.75, and the duration of the
triangular stormflow hydrograph is about 96 percent of the
duration of the curvilinear hydrograph (table 6, fig. 8).
Analysis of available flood-flow hydrographs resulted
in a population of triangular-hydrograph recession ratios that
may be used as planning-level estimates for use with SELDM
in many areas of the country. The recession ratios of the
trimmed hydrographs ranged from 1.3 to 2.35 with a median
of 1.67 and an average of 1.68 (table 6). The time-base ratios,
which are the ratios of the total durations of the triangular
hydrographs to the total durations of the trimmed curvilinear
hydrographs, ranged from 0.56 to 0.96 with a median of
0.9 and an average of 0.86. The recession ratios of the full
(untrimmed) hydrographs ranged from 1.3 to 8.75 with a
median of 1.75 and an average of 2.49. The time-base ratios of
the untrimmed triangular and curvilinear hydrographs ranged
from 0.43 to 0.96 with a median of 0.84 and an average of 0.9.
The values of the trimmed hydrographs may be best suited
for estimating the most probable value of the recession ratios
used in SELDM. The triangular hydrographs that are fit to the
trimmed hydrographs better represent the distribution of flows
in the early part of a storm when a highway site is discharging
to the stream than the triangular hydrographs that are fit to
the untrimmed hydrographs. This is because the straight-
line triangular approximation to the curvilinear tail of the
untrimmed hydrograph results in an overestimate of the very
small proportion of total stormflow that occurs in the long tail
of a runoff hydrograph.
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Table 6.

Best-fit triangular-hydrograph recession ratios estimated from published curvilinear unit hydrographs.

[Trimmed, the published hydrograph was trimmed to align curvilinear and triangular-hydrograph peaks; Full, the published curvilinear hydrograph with
asymptotic tail. The recession ratio is the recession time divided by the time to peak of the triangular hydrograph. The time base ratio is the end-time of the

triangular hydrograph divided by the end time of the curvilinear hydrograph]

Trimmed Time- Full Time-
Citation recession base recession base Dimensionless hydrograph developed for:
ratio ratio ratio ratio
Becker, 1990 1.67 0.83 1.67 0.83  Missouri
Bohman, 1990 1.99 0.92 3.35 0.79  Blue ridge region of South Carolina (rural-basin study)
Bohman, 1990 1.30 0.87 1.30 0.87  Piedmont region of South Carolina (rural-basin study)
Bohman, 1990 1.47 0.94 1.47 0.94  Coastal plain region of South Carolina (rural-basin study)
Bohman, 1992 1.71 0.85 2.26 0.85  Piedmont and upper coastal plain regions of South Carolina
(urban-basin study)
Bohman, 1992 2.01 0.91 2.80 0.84  Lower coastal plain region of South Carolina
Craig and Rankl, 1978 2.35 0.75 3.02 0.61  Pritchard Draw near Lance Creek, Wyoming
Gamble, 1989 1.43 0.89 1.43 0.89  West Tennessee
Holnbeck and Parrett, 1996 1.66 0.90 8.75 0.43  Montana
Inman,1986 1.43 0.90 1.73 0.84  Georgia
Mason and Bales, 1996 1.41 0.90 1.62 0.87  North Carolina
McCuen and others, 2002 1.98 0.56 1.98 0.56  Soil Conservation Service curvilinear hydrograph
Neely, 1989 1.36 0.90 1.73 0.84  Arkansas
Stricker and Sauer, 1982 1.75 0.96 1.75 0.96  Nationwide urban sites
Weaver, 2003 1.73 0.86 2.51 0.75  Mecklenburg County, North Carolina
Minimum 1.30 0.56 1.30 0.43
Median 1.67 0.90 1.75 0.84
Average 1.68 0.86 2.49 0.79
Maximum 2.35 0.96 8.75 0.96

Estimating Values of the Triangular-Hydrograph
Recession Ratio from Instantaneous
Streamflow Data

Limitations in the availability of published recession
ratios and stormflow hydrographs necessitated development
of methods for facilitating recession ratios from available
instantaneous unit streamflow data and for generating a dataset
of recession ratios that would be sufficient for identifying
potential explanatory variables for estimating recession
ratios using commonly used basin characteristics. Nationally,
data are available to estimate recession ratios at a site of
interest from nearby hydrologically similar basins. Currently
(2012), the USGS National Water Information System Web
(NWISWeb) has daily data from about 26,000 streamgages
(U.S. Geological Survey, 2012a), the USGS instantaneous
data archive (IDA) has unit streamflow data for about
11,000 streamgages (U.S. Geological Survey, 2012b), and
the USGS GAGES database (Falcone and others, 2010) has
basin properties data for about 8,500 streamgages. There

are about 6,100 streamgages that are in NWISWeb, the IDA
database, and the GAGES database. Methods were developed
to use available data to estimate recession ratios for a given
streamgage, and a dataset of basin properties and recession
ratios was developed to assess the potential for developing
predictive recession-ratio regression equations for use at
ungaged sites.

Methods

A multistep process (fig. 9) was developed for estimating
the recession ratios for USGS streamgages with data that are
available from USGS water-data Web servers (U.S. Geological
Survey, 2012a,b). Historical instantancous streamflow
(HIS) data, which are the flow values estimated from
instantaneous measurements of stream stage recorded every
few minutes, are used to analyze the hydrographs because
the commonly reported daily mean discharge record is too
coarse for hydrograph analysis for small basins. HIS data
may be recorded every minute for small or highly impervious
basins, but the most common recording rate is once every
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Figure 8. Graphs showing A, the unit stormflow hydrographs and B, the cumulative-mass curve of the curvilinear
hydrograph published by Stricker and Sauer (1982), which is the average of unitless hydrograph values from
62 streamgages across the conterminous United States, and the best-fit triangular hydrograph.
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Identify a streamgage with HIS data in the USGS Identify a streamgage with HIS data in the USGS
Instantaneous Data Archive (IDA) National Water Information Web (NWIS Web)
Get HIS data from the USGS Get HIS data from the NWIS Web
http://ida.water.usgs.gov http://waterdata.usgs.gov/nwis/uv/

v

Convert data format using
ConvertIDAtoBEST.exe

Y v
Import data to temporary Excel
spreadsheet and graph data

v

Graphically identify complete single-peak hydrographs
from the data

v

> Import each storm to the unit-hydrograph spreadsheet

v

Do hydrograph separation to calculate stormflows <

v

Trim the data as needed to

Do another Use the Excel solver to optimize the least-squares fit of align the measured storm
hydrograph a triangular hydrograph to the unit hydrograph peak and the best-fit
calculated from data triangular storm peak

A
Y 5

Do the measured and triangular storm peaks align
temporally? No

¢Yes

Have triangular-hydrograph recession ratios been
No recorded for 20 or more storms?

¢Yes

Fit hydrograph recession ratios to a triangular distribu-
tion to calculate the minimum, most probable value, and
maximum for use in the Stochastic Empirical Loading
and Dilution Model

Figure 9. Process-flow diagram for estimating the hydrograph recession-ratio statistics from historical
instantaneous streamflow (HIS) data.
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15 minutes. The process for estimating recession ratios is
designed to identify data, process the data to identify suitable
storm hydrographs, develop triangular storm hydrographs,
and estimate the minimum, most probable value (MPV), and
maximum recession ratios for use with SELDM. A computer
program and several spreadsheets have been developed

to facilitate the process; these files are available on the
digital media accompanying this report. At least 20 storms
are necessary to estimate robust recession-ratio statistics.
The process for identifying and analyzing data from 20 to

21 storms for each streamgage may take from 2 to 4 hours.

The process for obtaining data for the hydrograph
analysis depends on the source of HIS data. Before March
2012, all data were stored in the Instantaneous Data Archive
(IDA). In March 2012, HIS data from October 2007 forward
was transferred to the USGS National Water Information
System Web (NWIS Web), and the older HIS data will be
moved to NWIS Web in 2014 (Joseph Nielsen, USGS, written
commun., March 2012). Thus, IDA data were used to develop
the recession-ratio statistics in this report.

The first step (fig. 9) is to identify a gage that is
hydrologically similar to the site of interest with HIS data
in the IDA or in NWIS Web. In both cases, the NWIS Web
site-inventory search page (http://waterdata.usgs.gov/nwis/
inventory/) is used to identify all streamgages within a
user-defined range of latitude and longitude. To select sites,
choose the “Lat-Long box” and “Site type” options and click
the “Submit” button. On the site selection page, select the
“Site type” options, enter coordinates for a “Lat-Long box”
around the ungaged site of interest, and select the “Detailed
descriptions with links” option under “Retrieve Site inventory
data for Selected Sites” and click the “Submit” button. The
resulting page will list all the nearby sites. If data are available
in the IDA or in the NWIS Web HIS database, a link to the
dataset will appear with the site-inventory information. The
geographic boundaries may be increased or decreased to help
locate a site of interest.

The second step (fig. 9) is to get the HIS data for the
streamgage of interest from the IDA or NWIS Web. The
fundamental process is the same but the IDA and NWIS Web
interfaces have different interface designs. In IDA enter the
date range in the “Retrieve data from:” and “to:” input boxes,
select the “Save to file” option in the “Tab Delimited data”
combobox, click the “Retrieve Data” button and select the
file name. In NWIS Web select the “00060 Discharge” option
from the available parameters, select the “Tab-separated”
option from the “Output format” menu, enter the “Begin date
and “End date” values, and click the “Go” button. When the
file loads use the browser’s File Save As menu to save the
results as a text file.

The HIS data files can be very large because they contain
instantaneous streamflow data that have been collected at 1 to
15 minute intervals. If there are no missing data, a 1-minute-
interval file will include 525,600 data values, a 5-minute-
interval file will include 105,120 data values, and a 15-minute-
interval file will include 35,040 data values. The relational

database (RDB) files with the instantancous values include a
substantial amount of metadata. Microsoft Excel® 2003 has
a limit of about 64,000 rows and the graphing interface has a
limit of 32,000 values. Thus, it is best to retrieve and process
data for 1 year at a time.

The date format in the IDA RDB files are complex and
must be converted to a simpler tab-delimited text file with a
date format that is recognized by Excel®. A small file-format
translation program (ConvertIDAtoBEST.exe) was written to
do this conversion (fig. 10). The program files, an installation
package, example files, and the executable program are
available in the “ConvertIDAtoBEST” directory on the
digital media accompanying this report. The program has four
buttons, “1. Specify Input File,” “2. Specify Output File,”

“3. Convert File” (only visible once a file has been selected
and processed), and “Exit” (fig. 10). To use the program, first
click the “1. Specify Input File” button and select the RDB
file using the standard Windows® common dialog box that
appears. Then specify the output-file name in the input box
that appears when the “2. Specify Output File,” button is
clicked. The default option is the input file name with “.Out.
txt” appended to the end. The input and output filenames
appear in the textbox under each button after the names are
selected. Clicking the “3. Convert File” button using the
default “Export date File” option will process the file and
produce the desired output. This operation may take a few
seconds to a few minutes, depending on the computer and
the amount of data to be processed; an hourglass cursor will
appear while the file is being processed. The user can repeat
the process by clicking buttons one through three again and
can exit at any time the program is not processing an input
file. Once a file is processed, selected file statistics will appear
in the text boxes at the bottom of the form. Once this process
is complete, the data can be imported into a Microsoft Excel®
spreadsheet or another program to graph the data and identify
suitable stormflow hydrographs.

Once the data are in a suitable format, the next step
(fig. 9) is to copy the reformatted data into a spreadsheet and
graph it. It may be advantageous to convert the format of the
date-value column to numbers to more easily identify the
beginning and end of the storm. If the data are measured on a
15-minute interval, two decimal places will suffice; if the data
are measured on a 5-minute interval, three decimal places are
needed. If flow varies widely, a logarithmic scale for the flow
axis can be useful for examining the hydrographs. Excel® has
difficulty handling zero values with logarithmic scales; adding
a very small positive number to all the values is a simple way
to address this issue. The USGS commonly uses a value of
0.01 ft*/sec as the minimum nonzero flow that can be reported.
Therefore, adding a value of 0.0001 ft¥/sec to all numbers and
setting the minimum value of the flow axis to 0.001 ft*/sec
will solve the problem and identify zero-value flows. It is the
timing of stormflows rather than the magnitude of stormflows
that are of interest for calculating recession ratios; adding the
flow offset will not affect the analysis. Furthermore, base-flow
separation is done in later steps and base flows are subtracted
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A. Initial view of the program interface

B. View of the interface once a file has been selected and processed

Figure 10. Screen captures of the interface of the “ConvertIDAtoBEST" program developed
for converting U.S. Geological Survey Instantaneous Data Archive relational database files
to a simple tab-delimited format. The screen captures show A, the initial view of the program
interface and B, the view once a file has been selected and processed.

before normalizing the total stormflow so any offset will be
removed in this step. The maximum number of points that
can be plotted in Microsoft Excel® 2003 and Excel® 2007 is
32,000; the maximum number of points that can be plotted

in later versions of Excel® is only limited by the capabilities
of the analyst’s computer. In any case, however, it may be
prudent to set up a template spreadsheet with two graph pages
if the analyst is doing a multistation analysis. Otherwise, the
analyst can graph one range of data and then graph the rest of
the data.

The next step (fig. 9) is to graphically identify complete,
independent, single-peak hydrographs from the graph in the
spreadsheet. This step was done manually because “good”
hydrographs can be readily identified visually but are difficult

to unambiguously define using a simple computer algorithm.
(Developing an automated program for identifying and
processing storm events is beyond the scope of the current
study.) An example of this process is shown in figure 11
using data measured during the spring of 2000 at USGS
streamgage 01096000 Squannacook River near West Groton,
Mass., which has a drainage area of 65.9 mi?, a contributing
drainage area of 63.7 mi?, and about 2 percent IMPERV. This
period of the record contains three “good” runoff events and
two “bad” events for the purposes of recession-ratio analysis.
These hydrographs are easy to identify because flow varies
by a factor of 1.5 to 3, and random noise caused by the
measurement process is small in comparison to the measured
values. It can be more difficult to identify the beginning and
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Figure 11. Graph showing example data from U.S. Geological Survey streamgage 01096000 Squannacook River near

West Groton, Massachusetts, showing the hydrographs for three “good” runoff events, defined herein as a complete,
independent, single-peak event, and two “bad” events for the purposes of recession-ratio analysis.

end of smaller runoff events and runoff events from small
basins in which the flows are small enough to be affected by
measurement variations.

The next step (fig. 9) is to import the data for each
selected runoff event into the unit-hydrograph spreadsheet
and to do hydrograph separation. Hydrograph separation is
necessary for normalizing the total amount of runoff that
occurs during the storm. The hydrograph separation for each
runoff event was done visually using principles described by
Chow and others (1988). The end of the storm was loosely
defined at the point where the falling limb of the hydrograph
approached an asymptotic value. The spreadsheet calculates
the beginning base-flow value as equal to the first line in
the streamflow sample, and the ending base-flow value as
defined in the heading rows of the spreadsheet (fig. 12). The
runoff value at each time step is equal to the total streamflow
minus the base flow. Two Microsoft Excel® spreadsheet
templates—“Hydrograph01.xls,” which can be used to process
storms with as many as 480 data points (5 days of 15 minute
data) and “Hydrograph02.xls,” which can be used to process
storms with as many as 880 data points (9 days of 15 minute
data)—are available in the “RecessionRatio” directory on the
digital media accompanying this report. These spreadsheets
were sufficient to process runoff events for basins as large as
258 mi?, which should be well beyond the range of basins that
would be substantially affected by a stormwater outfall from a

single small site. However, if it is necessary to analyze longer
storms, these spreadsheets can be modified by copying the
equations downward to include more rows.

The next step (fig. 9) is to use the Microsoft Excel® solver
tool to optimize the least-squares fit of a triangular hydrograph
to the unit hydrograph calculated from data. The Microsoft
Excel® solver tool should be installed with Excel®, but this
tool must be activated using the Microsoft Excel® “Add-

Ins” menu. The process for fitting a triangular hydrograph

to the measured runoff data is the same as that used to fit

the published curvilinear hydrograph (fig. 8). To calculate a
representative recession ratio for a given storm the peak of

the measured hydrograph and the best-fit hydrograph must be
(approximately) aligned. It may be necessary to trim data from
the initial estimated runoff period so that the peaks are aligned.

If the peaks are not aligned it is necessary to trim the data
as needed to align the measured and triangular storm peaks
and to use the Microsoft Excel® solver tool to generate a new
best-fit hydrograph (fig. 9). If the triangular peak lagged the
curvilinear peak then one or more flow values were trimmed
from the beginning of the runoff period and the hydrograph
separation, normalization, and fitting process was repeated.

If the triangular peak preceded the curvilinear peak then
one or more flow values were trimmed from the end of the
runoff period and the hydrograph separation, normalization,
and fitting process was repeated (fig. 9). The total volume
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Figure 12. Graph showing example data from USGS streamgage 01096000 Squannacook River near West Groton,
Massachusetts, showing the streamflow, base-flow, and runoff values to demonstrate hydrograph separation for a

runoff event that occurred during March 2000.

and duration of the trimmed period commonly was a small
proportion of the initial runoff period estimate. If this analysis
process resulted in a recession ratio of less than one, indicating
that the falling limb of the hydrograph was shorter than the
rising limb the storm was rejected or reevaluated because

the theoretical lower limit of the recession ratio is one. The
hydrograph separation process and the process for fitting the
triangular hydrograph commonly was iterative. If data points
were trimmed from the end of the hydrograph then the final
value was used to redo base-flow separation and recomputed
the total and unit storm volumes (fig. 9).

The next step is to repeat the separation and fitting
process for at least 20 storms to provide values that could be
used to determine the statistical characteristics of recession
ratios for a given streamgage (fig. 9). A minimum of 20 storms
was selected to produce a robust dataset for estimating
recession-ratio statistics with the storms available during a
period that would be representative of potential explanatory
basin characteristics. Confidence intervals for parametric and
nonparametric statistics commonly are expressed as a function
of one divided by the square root of the number of values in a
sample (Haan, 1977; McGill and others, 1978). The value of
this sample-number multiplier is about 0.45, 0.32, 0.26, 0.22,
0.20, 0.18, and 0.16 for 5, 10, 15, 20, 25, 30, and 40 storms,
respectively. Thus, doing the analysis for each additional

storm beyond 20 storms does not necessarily contribute a
proportional amount of information to the statistical analysis.
Furthermore, adding additional “good” storms required
selection of storms from water years that were further and
further from the year in which the potential explanatory
land-cover variables were measured (in this study, that year
was 2001).

The final step for each selected streamgage is to fit the
calculated recession ratios from the storms to a triangular
distribution (fig. 9). This process is done to estimate values for
the minimum, most probable value, and maximum recession
ratios used by SELDM to generate a stochastic population of
runoff-event durations. To do this analysis, the recession-ratio
results on the“Falling/Rising” column on the “Summary” tab
of HydrographO1.xls or Hydrograph02.xls file are copied to
“FitTriangular.xls” (which is available in the “FitTriangular”
directory on the digital media accompanying this report).

The Microsoft Excel® solver tool also is used to fit the

sample of recession ratios to the distribution. The solver-tool
variables are set so that the minimum value must be greater
than one. Recession ratios must be entered (or copied) into

the worksheet labeled “Input-Output” in ascending order.

The Microsoft Excel® solver tool is used on the worksheet
labeled “Calculations” to find the best-fit minimum, MPYV, and
maximum values for a triangular distribution. These values
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are shown on the worksheet labeled “Input-Output” with
summary statistics and percentiles for the input data and the
best-fit triangular distribution. The spreadsheet developed for
this purpose also has a graph labeled “Chart1” to show the
relation between the input values and the theoretical triangular
distribution defined by the calculated statistics.

Values of the Triangular-Hydrograph
Recession Ratios

The minimum, MPV, and maximum recession ratios
were calculated for 41 USGS streamgages to provide a
population of triangular-hydrograph recession ratio statistics
that can be used as planning-level estimates for use with the
SELDM (table 7). In this study, basin properties from the
2001 NLCD were used to examine potential relations between
recession ratios and basin properties, so data from water
year 2001 and surrounding years were used in the analysis
to ensure that the land-cover variables would be consistent
with the properties of the basin generating runoff. A total of
32 streamgages for basins draining parts of Massachusetts
(the Massachusetts dataset) were selected for analysis. The
selected gages had data in the USGS GAGES database and
had data in the IDA database for several years before and
after water year 2001. Streamgages for basins draining parts
of Massachusetts were selected to do an initial analysis while
keeping climatic variables fairly constant. Nine streamgages
in other areas of the United States (the non-Massachusetts
dataset) were selected from the basin lag dataset to form an
initial equation-verification dataset to assess the potential for
using the recession-ratio regression equations in other areas of
the country.

The minimum recession ratios are well approximated
by a value of one (table 7, fig. 13). The minimum recession
ratios for the Massachusetts dataset ranged from 1 to 1.77
with a median of 1.05 and an average of 1.18. The minimum
recession ratios for the non-Massachusetts dataset ranged
from 1 to 1.27 with a median of 1.0 and an average of 1.05.
The minimum recession ratios for the combined dataset of
41 gages ranged from 1 to 1.77 with a median of 1.02 and an
average of 1.15. A rank sum test (Helsel and Hirsch, 2002)
done using the minimum recession-ratio data indicates that
the medians of the Massachusetts and non-Massachusetts
datasets are not significantly different with a 95th percentile
confidence limit.

The MPV of recession ratios varied substantially, and
a rank sum test (Helsel and Hirsch, 2002) indicates that the
medians of the Massachusetts and non-Massachusetts datasets
are significantly different with a 95th percentile confidence
limit (table 7, fig. 13). The MPV of recession ratios for the
Massachusetts dataset ranged from 1 to 2.87 with a median
of 2.01 and an average of 1.94. The MPV of recession ratios
for the non-Massachusetts dataset ranged from 1 to 3.52
with a median of 1.16 and an average of 1.56. The MPV of
recession ratios for the combined dataset of 41 gages ranged

from 1 to 3.52 with a median of 1.85 and an average of 1.85.
These estimates of the MPV of recession ratios compare well
with the values derived using the trimmed average stormflow
hydrographs from the literature, which had a range of 1.3 to
2.35 a median of 1.67 and an average of 1.68 (table 6).

The maximum recession ratios varied the most among
these three input statistics (table 7, fig. 13). The maximum
recession ratios for the streamgages for the Massachusetts
dataset ranged from 2.66 to 9.67 with a median of 4.51 and
an average of 4.89. The maximum recession ratios for the
non-Massachusetts dataset ranged from 2.97 to 11.31 with
a median of 4.05 and an average of 5.03. The maximum
recession ratios for the combined dataset of 41 streamgages
ranged from 2.66 to 11.31 with a median of 4.36 and an
average of 4.92. A rank sum test (Helsel and Hirsch, 2002)
done using the maximum recession ratio data indicates that
the medians of the Massachusetts and non-Massachusetts
datasets are not significantly different with a 95th percentile
confidence limit.

Correlations to Potential Explanatory
Basin Characteristics

Correlations between the triangular-hydrograph
recession-ratio statistics for the streamgages and selected
basin characteristics were calculated to explore the potential
for developing predictive multiple linear regression equations
that could be used to estimate these statistics from basin
properties. Standard methods for doing correlation and
regression analyses were used (Haan, 1977; Helsel and
Hirsch, 2002). These efforts were unsuccessful for developing
meaningful predictive equations with commonly used basin
characteristics, but the results do provide information for
developing planning-level estimates of ratio statistics for use
with SELDM. Correlations do not necessarily imply causation,
but the signs (positive or negative) of the statistically
significant correlations with potential explanatory basin
characteristics are logically consistent with potential effects
of those variables on the timing of runoff flows. The rank
correlation coefficient (Spearman’s rho) was selected because
this nonparametric method indicates the correlation between
variables regardless of the linearity of the relation, the units
used for each variable, or data transformations needed to
linearize the relation between variables (Helsel and Hirsch,
2002). Correlations were calculated using data from the entire
41 streamgage multistate dataset.

The values of basin properties in the 41-streamgage
multistate triangular-hydrograph dataset compare well with
values of basin properties in the primary, 493-streamgage
basin lagtime dataset. The drainage areas of streamgages in
the triangular-hydrograph dataset ranged from 0.6 to 258 mi?
with a median of 27.8 mi? (table 7). This range includes
the drainage areas for about 84 percent of drainage basins
in the primary basin lagtime dataset (fig. 5). The BLFs of
streamgages in the triangular-hydrograph dataset ranged from
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Boxplot showing the distribution of the minimum, most probable value (MPV), and maximum of the best-fit triangular-

hydrograph recession-ratio statistics estimated from 20 or more storm-event hydrographs from 32 streamgages for basins that drain
areas in Massachusetts (MA), from 9 non-Massachusetts (non-MA) streamgages, and from the combined dataset of 41 streamgages.

0.17 to 17.6 with a median of 2.5 (table 7). This range includes
the BLF's for about 81 percent of drainage basins in the
primary basin lagtime dataset (fig. 5). The IMPERV values of
streamgages in the triangular-hydrograph dataset ranged from
0.17 to 45.7 percent with a median of 5.98 percent (table 7).
This range includes the IMPERV values for about 89 percent
of drainage basins in the primary basin lagtime dataset (fig. 5).
The triangular-hydrograph dataset may not fully characterize
climatic conditions in many areas of the United States,

but it includes representative ranges of basin properties as
compared to the extensive (493 streamgage) nationwide basin
lagtime dataset.

The recession ratio analysis indicates that correlations
between basin characteristics and triangular-hydrograph
recession-ratio statistics are weak or nonexistent (fig. 14,
table 8). The selected basin properties, which were defined and
delineated by Falcone and others (2010), are briefly described
in table 8. Rank correlation coefficients between these
explanatory variables and the associated 95-percent confidence
limits are shown for the Massachusetts dataset and the entire
multistate dataset in figure 14. If the correlation coefficients

are statistically significant at the 95-percent confidence limit,
then the lines will not touch the zero line. The graph indicates
that correlations are weak and most are not significantly
different from zero. With one exception (percent water and
wetlands), the correlation coefficients for the Massachusetts
dataset and the entire multistate dataset each are within the
confidence limit of the correlation coefficients for the other
dataset. This indicates that the differences in coefficients
between datasets are not statistically significant at this
confidence limit. The streamgages in the Massachusetts
dataset represent about 78 percent of the streamgages in the
entire multistate dataset. The fact that many correlations
switch sign with the addition of other streamgages reinforces
the evidence for the lack of correlation. None of the basin
characteristics have statistically significant correlations with
the minimum recession ratios. This is because most of the
minimum recession ratios are equal to 1 (fig. 13).

Seven variables have statistically significant correlations
with the MPV of recession ratios (fig. 14). However, two
variables (the percent impervious area and the subsurface
flow contact time index) are significant for the multistate
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Figure 14. Graphs showing rank correlation coefficients calculated for the A, minimum, B, most probable value (MPV), and
C, maximum ratio of the duration of the falling to the rising limb of the hydrograph using 19 selected basin characteristics
commonly used to model streamflow. Rank correlation coefficients are calculated for a dataset that includes 32 streamgages
for basins draining parts of Massachusetts and for a multistate dataset that includes these streamgages and an additional

9 streamgages from different areas of the United States.
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Table 8. Rank correlation coefficients (Spearman’s rho) between commonly selected basin properties compiled by Falcone and
others (2010) and the maximum, minimum, and most probable value (MPV) of the triangular-hydrograph recession ratios for each
streamgage in the multistate runoff-hydrograph dataset.

[Max, the maximum hydrograph-recession ratio fit to the values for each gage; Min, the minimum hydrograph-recession ratios fit to the values for each gage;
MPYV, the most probable value of the hydrograph-recession ratios fit to the values for each gage; NLCD 2001, National Land Cover Dataset compiled from
sattlite data collected in 2001; NHD, National Hydrologic Dataset; NID, National Inventory of Dams; USACE, U.S. Army Corps of Engineers. The rank
correlation coefficient is Spearman’s tho. Bold values are (statistically) significantly different from zero at the 95-percent confidence limit]

Potential explanatory variable

Rank correlation coefficients

Variable definition

Min MPV Max

Drainage area (DRNAREA) 0.033 0.137 -0.090  Basin drainage area within the topographic divide that drains to
the stream gage.

Basin lag factor (BLF) 0.013 0.002 -0.114  Main channel length (LENGTH) in miles divided by the square-
root of the channel slope (CSL10 _85) in feet per mile.

Percent impervious area (IMPERV) -0.245 -0.374 -0.075  Percentage of total basin impervious area (IMPERV’) derived
from the NLCD 2001.

Percent urban -0.246 -0.390 -0.041  Sum of the percentage of developed land covers derived from the
NLCD 2001.

Percent forest 0.225 0.465 0.025  Sum of the percentage of different forest types derived from the
NLCD 2001.

Percent open water 0.237 0.168 0.246  Percentage of open water derived from the NLCD 2001.

Percent water and wetlands 0.309 0.117 0.126  Sum of the percentage of open water and wetlands derived from
the NLCD 2001.

Compactness ratio 0.193 0.194 -0.119  Basin drainage area divided by the squared length of the basin
perimeter.

Stream density 0.097 0.151 0.029  Total length of streams divided by the basin drainage area derived
from the NHD.

Main channel sinuousity -0.064 0.134 -0.076  Curvilinear length of the main channel divided by the straight-line
distance between the end points of the channel derived from
the NHD.

Percent artifical path 0.179 0.322 0.328  Percent of stream lengths that are represented by polygons
(impounded areas).

Main channel artifical path 0.155 0.040 0.353  Percent of the main channel length that is represented by
polygons (impounded areas).

Base flow index 0.033 0.054 0.145  Estimated percentage of total streamflow that is base flow.

Percent saturation runoff area -0.005 -0.343 0.148  Percentage of the basin contributing saturation overland flow
(also know as Dunne overland flow).

Infiltration-excess runoff area -0.014 -0.178 -0.151  Percentage of the basin contributing infiltration-excess overland
flow (also know as Hortonian overland flow).

Topographic wetness index -0.072 -0.270 0.004  Natural log of the upslope area per unit contour length divided by
the slope at that point.

Subsurface flow contact time index -0.152 -0.350 -0.014  Estimated average age of groundwater discharging into the
stream.

Dam storage in watershed 0.086 0.204 0.279  Estimated volume of water stored behind dams per unit watershed
area from the USACE 2006 NID.

Dam density 0.134 0.290 0.351  Number of dams per 100 square kilometers from the from the

USACE 2006 NID.




Estimating Hydrograph-Timing Indexes Using Recession-Ratio Statistics qm

dataset but not for the Massachusetts dataset. One variable
(the topographic wetness index) is significant for the
Massachusetts dataset but not the multistate dataset. The
percent urban land covers are negatively correlated with the
MPV of recession ratios, and the percent forest land covers
are positively correlated with the MPV of recession ratios in
both datasets. The signs of these correlation coefficients are
logical if development decreases the duration of runoff. The
correlations between the MPV and the land cover variables
IMPERYV, percent urban, and percent forest (—0.374, —0.390,
and 0.465, respectively), probably are weak because increases
in development tend to decrease the time to peak as well as
the total duration of the hydrograph. The disproportionate
decrease in the basin lagtime in comparison to the runoff
duration was noted by Liscum (2001). The percent of stream
length classified as artificial path in the NHD also has a weak
positive correlation (0.322; table 8). A positive correlation
between the artificial path and the MPV of recession ratios
also is logical because natural release of temporary runoff
storage from impounded areas would tend to increase the total
duration of runoff. The percent saturation runoff area has a
weak positive correlation with the MPV of recession ratios
(—0.343; table 8). This variable represents the percentage of
basin area in which the groundwater table rises to the surface
during storm events to discharge groundwater and route
within-event rainfall to the stream. The potential effects of this
variable on recession ratios are two-fold. First, this type of
runoff commonly occurs from pervious areas along the stream
network. Second, discharge of lateral flow and bank storage as
quickflow from such areas would tend to extend the duration
of runoff and blur the boundary between runoff and post-
storm base-flow recession. The subsurface flow contact time
index also has a weak negative correlation coefficient with the
MPV of recession ratios (—0.350; table 8). In this multistate
dataset the subsurface flow contact time index may serve as
an indicator for the extent of sand and gravel valley aquifers.
Such areas have more permeable soils, which may extend the
time to peak, and may have a greater percentage of saturation
overland flow, which may extend the duration of flow.

Four variables have statistically significant correlations
with the maximum of recession ratios (fig. 14). However,
one variable (the percent open water) is significant for the
Massachusetts dataset but not for the multistate dataset, and
one variable (dam density) is significant for the multistate
dataset but not for the Massachusetts dataset. The two
variables, percent of stream length and percent of main
channel length classified as artificial path in the NHD have
weak positive correlation (0.328 and 0.353, respectively;
table 8). As with the MPV of recession ratios, a positive
correlation with the maximum of recession ratios is logical
because the natural release of temporary runoff storage from
impounded areas would tend to increase the total duration
of runoff.

The weak results of these correlation analyses are
consistent with the limited number of studies that quantify the
timing of storm-runoff falling-limb properties. Shamir and

others (2005) reported that average rising and falling-limb
durations decreased with factors such as the ratio of flow
length to basin area, the percentage of forest cover, daily mean
precipitation, and minimum January temperature, but that
these individual correlations were relatively weak. Shuster
and others (2008) also used nonparametric rank correlation
coefficients (Spearman’s rho) and their results indicated weak
positive associations between the recession ratios and drainage
areas (0.44), the percentage of forested area (0.42), and
channel slope (0.28). In their study, the percentage of urban
area had a moderately strong negative correlation (—0.67),

and the percentage of agricultural area had a weak negative
correlation (—0.26) with recession ratios.

Limitations of the Analysis

The analysis of the triangular-hydrograph recession ratios
in this report and potential application of calculated ratios to
other gaged and ungaged sites have several limitations. For
gaged sites, the process for selecting “good” hydrographs,
doing hydrograph separation, and fitting curvilinear
hydrographs to a triangular hydrograph is highly interpretive.
Thus, different analysts may obtain different results, and the
same analysts may obtain different results if different water
years are selected for analysis. Many USGS streamgages have
instantaneous flow data, but few have concurrent precipitation
data. Precipitation data were not included in the IDA database
used in this study. Although, “good” hydrographs from
single-peak hydrographs (fig. 11) were selected for analysis,
recession ratios may be affected by the temporal and spatial
distribution of precipitation within storms. For example, the
hydrograph from a localized thunderstorm in the headwaters
of a large basin may be smeared out as the runoff travels from
the headwater to the streamgage. Also, a long, low-intensity
storm may produce a runoff hydrograph with a different
runoff ratio than a short, high-intensity storm. Furthermore,
differences in seasonal conditions and antecedent precipitation
may affect each basin’s temporal response to precipitation.
For example, the interpretive process may be affected if some
storms occur during a period of increasing base flow from
storm to storm and other storms occur during a period of
decreasing base flow from storm to storm. It is important to
represent a variety of hydrologic conditions and the selected
events. Although recession ratios from 20 to 21 storms should
characterize results of a random process, this sample size may
not be sufficient for characterizing systematic effects of these
types of hydrologic variation from storm to storm.

The size of the sample and the range of explanatory
variables may not be sufficient to establish relations between
the potential explanatory variables and the recession-
ratio statistics. The scope of the current study limited the
sample size to 41 streamgages because it takes two to four
hours to complete the data processing and analysis effort
for each streamgage. A larger more diverse dataset may
improve correlations.
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The recession-ratio statistics may largely be random
variables, which may preclude development of predictive
equations that can be used to estimate recession-ratio statistics
at ungaged sites using measured basin characteristics.

The analysis by Liscum (2001) indicates that increasing
development may decrease the basin lagtime (and therefore
the time to peak) at a greater rate than it decreases the falling-
limb duration. Thus, these competing effects may serve to
randomize recession ratios with respect to development and
other related variables that affect the timing of runoff.

Summary

This nationwide study to better define triangular-
hydrograph statistics for use with runoft-quality and flood-
flow studies was done by the U.S. Geological Survey (USGS)
in cooperation with the Federal Highway Administration.

For runoff-quality modeling, information about the timing

of runoff from a site of interest and from the upstream basin
of the receiving stream at the location of the storm-flow
outfall is necessary to estimate the quantity of the upstream
flow that occurs concurrently with runoff from the site

of interest. Triangular runoff hydrographs commonly are
used to model stormflows and are adequate for producing
planning-level estimates for discharge dilution analyses.
Although the triangular hydrograph is a simple linear
approximation, the cumulative distribution of stormflow with
a triangular hydrograph is a curvilinear S-curve that will
closely approximate the cumulative distribution of stormflows
from measured data. The triangular hydrograph can be fully
parameterized with the total runoff volume, the time to peak
flow, and the duration of runoff. The time to peak is commonly
calculated as one-half the precipitation duration plus a basin
lagtime that depends on basin characteristics. In this report
and in the Stochastic Empirical Loading and Dilution Model
(SELDM), the basin lagtime is defined as the time from the
center-of-mass (centroid) of rainfall excess to the centroid

of the corresponding runoff hydrograph, which is consistent
with most USGS runoff studies. The total runoff duration
can be estimated from the basin lagtime using a triangular-
hydrograph recession ratio, which is the ratio of the duration
of the falling limb to rising limb of the hydrograph. Thus,

the basin lagtime and recession ratio statistics can be used to
model the distribution of runoff flows during a runoff event.

Ten viable multiple linear regression equations were
developed to estimate basin lagtimes from readily determined
drainage basin properties using data published in 37 stormflow
studies. These equations were developed to update the
equations developed by Sauer and others (1983) to address
concerns about the range of drainage areas and impervious
fractions in the original dataset and the need for equations
that do not use the basin development factor (BDF), which
is simple to estimate manually, but difficult to calculate
using automated methods. The database used to develop

basin lag equations in this report includes sites with drainage
areas ranging from 0.000116 to 1,477 square miles and total
impervious areas (IMPERV) ranging from 0 to 100 percent.
Methods for determining the explanatory variables, using

the equations, and estimating prediction limits for the basin
lagtimes are documented. Several equations were developed
to estimate basin lagtime, but two primary equations provided
best-fit estimates. One equation uses the basin lag factor (BLF,
which is the main channel length (LENGTH) divided by the
square root of the main-channel slope (CSL_10 85)) and the
USGS BDF, which is a function of the amount of channel
modifications, storm sewering, and curb-and-gutter streets;
this equation explains about 72 percent of the variability in
the basin lagtime. A primary dataset, which included data
from 493 sites that have values for BLF, BDF, and IMPERYV
was used to develop the best-fit regression equation using

the BLF and BDF. If automated methods are developed for
estimating the BDF using GIS methods this equation may be
readily implemented using automated methods such as the
USGS Streamstats application. Currently (2012), however,
such methods have not been developed. A secondary dataset,
which included data from 896 sites that have values for BLF
and IMPERYV, was used to develop the best-fit regression
equation using these two variables. This equation explains
about 68 percent of the variability in the lagtime. Presumably,
the BDF equation produces more accurate estimates of basin
lagtime than equations based on /MPERV, but IMPERV can
be estimated using readily available geographic-information
files and existing automated data-processing techniques. Thus
the equation developed using /MPERV may be better suited
for implementation as an automated method. An example
spreadsheet (ExamplePredictionIntervals.xls) is provided

on the digital media accompanying this report to facilitate
calculation of regression estimates and associated prediction
limits using the all the equations derived in this study. More
accurate and precise equations may be developed if lagtimes
and basin characteristics are systematically determined

as part of a systematic national initiative to characterize

basin lagtimes in different regions of the country. The basin
characteristics, basin lagtime values, and source citations for
all the sites in the primary and secondary datasets are recorded
in the database “Compilation.mdb” on the digital media
accompanying this report.

Triangular-hydrograph recession ratio statistics were
developed using instantaneous streamflow data from 32 USGS
streamgages for basins draining parts of Massachusetts (the
Massachusetts dataset) and 9 USGS streamgages in other
areas of the United States (the non-Massachusetts dataset).
Correlations between recession ratios and basin characteristics
were weak, which precluded development of meaningful
predictive equations. The minimum recession ratios are well
characterized using a value of 1. The median of calculated
values of the most probable value (MPV) of recession ratios
is about 1.85, which compares well with the median ratio of
1.67 developed using average curvilinear flood hydrographs
from USGS studies in different areas of the United States.



The median of calculated values of the maximum recession
ratios is about 4.36. The weak correlations do not support
quantitative predictions, but comparison of the selected basin
characteristics with streamgages in the recession ratio dataset
may inform the choice for selecting recession-ratio statistics
that are greater than or less than these median values. The
methods for fitting triangular hydrographs and for calculating
recession-ratio statistics are described in detail and example
spreadsheets are provided on the digital media accompanying
this report so that the reader may calculate recession-

ratio statistics using data from nearby, hydrologically

similar streamgages.
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