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Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific information that 
helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, 
energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to 
ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, 
and fish and wildlife. Population growth and increasing demands for water make the availability of that water, 
measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities 
and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, 
regional, State, and local information needs and decisions related to water-quality manage¬ment and policy (http://
water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the quality of our Nation’s streams 
and groundwater? How are conditions changing over time? How do natural features and human activities affect 
the quality of streams and groundwater, and where are those effects most pronounced? By combining information 
on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide 
science-based insights for current and emerging water issues and priorities. From 1991 to 2001, the NAWQA 
Program completed interdisciplinary assess¬ments and established a baseline understanding of water-quality 
conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/
studies/study_units.html).

National and regional assessments are ongoing in the second decade (2001–2012) of the NAWQA Program as 
42 of the 51 Study Units are selectively reassessed. These assessments extend the findings in the Study Units by 
determining water-quality status and trends at sites that have been consistently monitored for more than a decade, 
and filling critical gaps in characterizing the quality of surface water and groundwater. For example, increased 
emphasis has been placed on assessing the quality of source water and finished water associated with many of the 
Nation’s largest community water systems. During the second decade, NAWQA is addressing five national priority 
topics that build an understanding of how natural features and human activities affect water quality, and establish 
links between sources of contaminants, the transport of those contaminants through the hydrologic system, and the 
potential effects of contaminants on humans and aquatic ecosystems. Included are studies on the fate of agricultural 
chemicals, effects of urbanization on stream ecosystems, bioaccumulation of mercury in stream ecosystems, effects 
of nutrient enrichment on aquatic ecosystems, and transport of contaminants to public-supply wells. In addition, 
national syntheses of information on pesticides, volatile organic compounds (VOCs), nutrients, trace elements, and 
aquatic ecology are continuing. 

The USGS aims to disseminate credible, timely, and relevant science information to address practical and effective 
water-resource management and strategies that protect and restore water quality. We hope this NAWQA publication 
will provide you with insights and information to meet your needs, and will foster increased citizen awareness and 
involvement in the protection and restoration of our Nation’s waters. 

The USGS recognizes that a national assessment by a single program cannot address all water-resource issues of 
interest. External coordination at all levels is critical for cost-effective management, regulation, and conservation 
of our Nation’s water resources. The NAWQA Program, therefore, depends on advice and information from other 
agencies—Federal, State, regional, interstate, Tribal, and local—as well as nongovernmental organizations, 
industry, academia, and other stakeholder groups. Your assistance and suggestions are greatly appreciated.

William H. Werkheiser 
USGS Associate Director for Water
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Groundwater Quality in the Columbia Plateau, Snake River 
Plain, and Oahu Basaltic-Rock and Basin-Fill Aquifers in 
the Northwestern United States and Hawaii, 1992–2010

By Lonna M. Frans, Michael G. Rupert, Charles D. Hunt, Jr., and Kenneth D. Skinner

Abstract
This assessment of groundwater-quality conditions of 

the Columbia Plateau, Snake River Plain, and Oahu for the 
period 1992–2010 is part of the U.S. Geological Survey’s 
National Water Quality Assessment (NAWQA) program. It 
shows where, when, why, and how specific water-quality 
conditions occur in groundwater of the three study areas 
and yields science-based implications for assessing and 
managing the quality of these water resources. The primary 
aquifers in the Columbia Plateau, Snake River Plain, and 
Oahu are mostly composed of fractured basalt, which makes 
their hydrology and geochemistry similar. In spite of the 
hydrogeologic similarities, there are climatic differences 
that affect the agricultural practices overlying the aquifers, 
which in turn affect the groundwater quality. Understanding 
groundwater-quality conditions and the natural and human 
factors that control groundwater quality is important because 
of the implications to human health, the sustainability 
of rural agricultural economies, and the substantial costs 
associated with land and water management, conservation, 
and regulation.

The principal regional aquifers of the Columbia 
Plateau, Snake River Plain, and Oahu are highly vulnerable 
to contamination by chemicals applied at the land surface; 
essentially, they are as vulnerable as many shallow surficial 
aquifers elsewhere. The permeable and largely unconfined 
character of principal aquifers in the Columbia Plateau, Snake 
River Plain, and Oahu allow water and chemicals to infiltrate 
to the water table despite depths to water commonly in the 
hundreds of feet. The aquifers are essentially unconfined 
over large areas, having few extensive clay layers to impede 
infiltration through permeable volcanic rock and alluvial 
sediments. Agriculture is intensive in all three study areas, and 
heavy irrigation has imposed large artificial flows of irrigation 
recharge that rival or exceed natural recharge rates. Fertilizers 
and pesticides applied at land surface are leached from soil 
and transported to deep water tables with the infiltrating 
irrigation recharge, resulting in a layer of degraded water 
quality overlying better quality regional groundwater beneath. 
This “irrigation-recharge layer” is best known on Oahu, where 

it has been studied since the 1960s; however, the extent of 
nitrate and pesticide contamination in the Columbia Plateau 
and Snake River Plain indicate that the same situation exists 
in those areas. Contamination from agricultural and urban 
activities is present not only at shallow depths in surficial 
materials of the three areas, but extends regionally in the deep, 
principal bedrock aquifers that are tapped for drinking water 
by domestic and public-supply wells.

Naturally occurring constituents and nitrate 
concentrations above human-health benchmarks— Maximum 
Contaminant Levels (MCLs), and Health-Based Screening 
Levels (HBSLs)—were more common in the Columbia 
Plateau and the Snake River Plain than in Oahu. 
Concentrations of anthropogenic constituents (constituents 
related to human activities) above human-health benchmarks 
were more common in Oahu. Naturally occurring 
contaminants, such as arsenic and radon, may be present 
in groundwater at concentrations of potential concern for 
human health in relatively undeveloped settings that otherwise 
may not be perceived as susceptible to contamination. Even 
though the median depth to groundwater in Oahu is more 
than 300 feet, the common occurrence of anthropogenic 
compounds in groundwater indicates that Oahu has a high 
susceptibility to contamination. 

Nitrate concentrations in groundwater were above the 
national background concentrations of 1 milligram per liter 
(mg/L) in all three study areas. In the Columbia Plateau, 
nitrate exceeded the human-health benchmark of 10 mg/L in 
20 percent of the wells sampled. In the Snake River Plain, 
nitrate exceeded the human-health benchmark of 10 mg/L 
in 3 percent of the wells sampled. Nitrate can persist in 
groundwater for years and even decades in the oxygen-rich 
groundwater of the Columbia Plateau and the Snake River 
Plain, so prudent groundwater protection measures are 
critical to protect drinking water resources by reducing nitrate 
leaching from the land surface.

Nitrate logistic regression models indicated that areas 
with a high percentage of land in crops (such as potatoes 
or sugarcane) and soils with low amounts of organic matter 
are most likely to have elevated nitrate concentrations in 
the groundwater. Areas where agricultural activities were 
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absent had much lower probabilities of detecting elevated 
nitrate concentrations. The Columbia Plateau had a much 
higher probability of having elevated nitrate concentrations, 
with most of the land area having greater than a 50 percent 
probability of elevated nitrate concentrations. Oahu and the 
Snake River Plain had a much lower probability of having 
elevated nitrate concentrations because of their lower 
percentage of agricultural land.

Pesticides were detected at many sites in groundwater 
of the Columbia Plateau, Snake River Plain, and Oahu 
but generally at low concentrations below human-health 
benchmarks. Atrazine and its degradate (a compound produced 
from the breakdown of a parent pesticide), deethylatrazine, 
were the most commonly detected pesticides in groundwater 
sampled in the Columbia Plateau and Snake River Plain. 
Bromacil was the most commonly detected pesticide on 
Oahu. The other pesticides most commonly detected in 
the study areas include simazine, hexazinone, metribuzin, 
diuron, prometon, metolachlor, p,p’-DDE, dieldrin, 2-4-D, 
and alachlor. DDE (a degradate of DDT) and dieldrin are still 
being detected in groundwater despite having been banned 
for more than 30 years. Codetection of multiple pesticides 
in water from a single well was common. The widespread 
occurrence of pesticides in groundwater in the study areas 
indicates that the groundwater is highly susceptible to 
pesticide contamination. 

Some pesticides were detected in groundwater samples 
from all three study areas, but other pesticides were detected 
only in samples from Oahu, or only in samples from the 
Columbia Plateau and Snake River Plain. This is because 
some pesticides (such as atrazine) are broad-spectrum 
pesticides that are used on many crops in many different 
areas of the United States. Other pesticides (such as simazine, 
metribuzin, and metolachlor) are used on row crops (such as 
potatoes, barley, and alfalfa) grown in the Columbia Plateau 
and Snake River Plain, but not on pineapple or sugarcane 
grown in Oahu. 

Atrazine logistic-regression models indicate that areas 
with a high percentage of land in crops (such as potatoes 
or sugarcane), a low percentage of fallow land, and highly 
permeable soils with low amounts of organic matter are most 
likely to have atrazine detected in the groundwater. Areas 
where agricultural activities were absent had much lower 
probabilities of atrazine being detected. The Snake River Plain 
had a much higher probability of atrazine detections, with 
more than 50 percent of the land area having greater than a 
50 percent probability of atrazine contamination. Oahu had a 
much lower probability of atrazine contamination, with only 
24 percent of the land area having greater than a 50 percent 
probability of atrazine contamination.

Oahu and the Columbia Plateau had some of the highest 
percentages of soil fumigant detections in groundwater in the 
United States. Soil fumigants are volatile organic compounds 

(VOCs) used as pesticides, which are applied to soils to 
reduce populations of plant parasitic nematodes (harmful 
rootworms), weeds, fungal pathogens, and other soil-borne 
microorganisms. They are used in Oahu and the Columbia 
Plateau on crops such as pineapple and potatoes. All three 
areas (Columbia Plateau, Snake River Plain, and Oahu) had 
fumigant concentrations exceeding human-health benchmarks 
for drinking water.

Introduction
Since 1991, the National Water-Quality Assessment 

(NAWQA) program of the U.S. Geological Survey (USGS) 
has measured water-quality status and trends in major aquifer 
systems throughout the United States (Gilliom and others, 
1995). Pilot efforts were undertaken as early as 1986 in 
some areas in the United States (Hirsch and others, 1988). 
Part of the NAWQA sampling effort included sampling of 
basaltic aquifers in Washington, Idaho, and Hawaii, where 
these important aquifers serve a population of more than two 
million people and billions of dollars of agricultural industry. 
Water-quality data used in this study were collected to assess 
the effects of primary land use and hydrologic conditions 
on the concentration and distribution of anthropogenic and 
naturally occurring compounds in shallow groundwater within 
individual NAWQA study units (Gilliom and others, 1995).

In most groundwater basins, the quality of shallow 
groundwater is influenced over relatively short time scales 
by near-surface activities and, therefore, can be used as an 
indicator of land-use effects on shallow aquifers (Barbash 
and Resek, 1996). Although shallow aquifers are not typically 
used as municipal drinking-water supplies, domestic wells, 
which are typically untreated, frequently withdraw water from 
these aquifers for drinking and other household use. National 
studies have indicated that nonpoint chemical contamination 
of groundwater in urban and agricultural land-use settings is 
occurring (U.S. Geological Survey, 2001).

Purpose and Scope

The objective of this report was to evaluate the effect 
of agricultural and urban land uses on groundwater quality 
in three areas with similar aquifer properties: Columbia 
Plateau basaltic-rock aquifers, Snake River Plain basaltic-rock 
aquifers, and Hawaiian volcanic-rock aquifers (only the island 
of Oahu was studied in Hawaii so that project resources and 
funding could be concentrated on the most populous island, 
where water-quality issues have the greatest effect on society). 
The groundwater quality of sedimentary aquifers (basin-fill 
aquifers) that overlie basalts of the Columbia Plateau and 
Snake River Plain was also investigated. On Oahu, sediments 
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overlie volcanic-rock aquifers along the coastal perimeter 
of the island, but the sedimentary aquifers are not used as 
drinking-water sources, so they were not investigated for 
this report. Groundwater-quality data collected from 1992 
to 2010 from domestic, monitoring, and public-supply wells 
in Washington, Idaho, and Oahu were used. This report 
summarizes water-quality data for nutrients, pesticides (and 
their degradation products), and VOCs and compares these 
data to human-health benchmarks where applicable. Potential 
explanatory factors influencing shallow groundwater quality, 
such as aquifer oxidation-reduction (redox) conditions, land 
use, general soil characteristics, and irrigation practices, 
are identified.

Environmental and Hydrogeologic 
Setting in the Columbia Plateau, 
Snake River Plain, and Hawaiian 
Principal Aquifers

Understanding the natural environmental and 
hydrogeologic system, including geochemical processes 
and effects of human activities on groundwater, is essential 
for assessing the vulnerability of groundwater resources to 
contamination. Groundwater quality in the Columbia Plateau, 
Snake River Plain, and Hawaiian principal aquifers (fig. 1) 
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Figure 1. Location of principal aquifers in the Columbia Plateau, Snake River Plain, and Hawaii.
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Figure 2. Principal aquifers of (A) the Columbia Plateau and Snake 
River Plain and (B) the eight main Hawaiian islands at the southeast end 
of a mid-Pacific mountain chain. Inset shows Oahu in greater detail.

is affected by a variety of natural and human 
influences. Natural features, such as rock type 
and geochemical conditions, affect the movement 
of chemical constituents in groundwater and the 
potential for degradation of constituents, and can 
render groundwater vulnerable to contaminants 
introduced at the land surface in agricultural and 
urban settings. Natural hydrologic cycles have 
been modified heavily by river diversion, pumping, 
and irrigation—in volumes that are comparable to 
natural hydrologic flows. 

This section summarizes background 
information for the Columbia Plateau, Snake 
River Plain, and Hawaiian principal aquifers 
and provides the context for understanding 
findings about water quality in these hydrologic 
systems. Topics include the environmental setting, 
population, land use, water use, and hydrogeologic 
setting.

Environmental Setting

The Columbia Plateau, Snake River Plain, 
and Hawaiian Islands are large volcanic provinces 
in the western United States and mid-Pacific 
Ocean (fig. 2). The three areas have been grouped 
here for study as the “Western Volcanics principal 
aquifers” because each contains extensive regional 
aquifers of a hard, gray, volcanic rock called 
basalt. Columbia Plateau aquifers encompass 
58,000 square miles in parts of Washington, 
Oregon, and Idaho (Miller, 1999). Snake River 
Plain aquifers encompass 14,400 square miles 
across southern Idaho and a small sliver of eastern 
Oregon. The main Hawaiian Islands encompass 
6,440 square miles of land area at the southeast 
end of the Hawaii-Emperor mountain chain, a 
linear chain of islands and underwater seamounts 
in the mid-North Pacific Ocean.

The largest and most productive aquifers 
in these areas are bedrock aquifers of basalt; the 
chemical makeup of some Hawaiian rocks differs 
slightly from that of basalt (Oki and Brasher, 
2003), so the more general term “volcanic 
rock” is used there. However, each area also has 
subordinate sedimentary aquifers and confining 
units. Sedimentary “basin-fill” aquifers have been 
mapped in the Columbia Plateau and Snake River 
Plain, where basalts and sediments accumulated 
in subsiding basins to form complex, multilayered 
aquifer systems. Hawaii also has sedimentary 
deposits but they are of lesser importance 
for water supply, and nearly all groundwater 
there is developed from the more productive 
volcanic-rock aquifers.
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Climate in the Columbia Plateau and Snake River Plain is 
temperate and arid to semiarid, with mean annual precipitation 
less than 15 inches over large areas and less than 10 inches 
in places. Precipitation is greater in adjacent mountains 
and tributary valleys, as much as 45–60 inches or more 
(Nelson, 1991; Clark and others, 1998). Climate in Hawaii is 
subtropical, and precipitation varies strongly with altitude and 
exposure to prevailing easterly trade winds, from semiarid 
in leeward lowlands to humid at higher windward elevations 
where annual rainfall exceeds 200 inches on several islands 
(Giambelluca and others, 1986).

Population

Oahu is the most populous and urbanized of the three 
areas (fig. 3), with a population of 902,000 in 2005, most 
of it concentrated in urban Honolulu and nearby suburban 
communities in southern Oahu (U.S. Census Bureau, 2008). 
Population in the Columbia Plateau was nearly as great, at 
821,000 in 2005, spread among farming communities across 
the Plateau but also concentrated in urban centers such as the 
tri-city area that includes Pasco and its adjacent sister cities 
of Richland and Kennewick. Population in the Snake River 
Plain was 491,000 in 2005 and, as in the Columbia Plateau, 
was spread among rural farming communities and urban 
centers such as Boise, Twin Falls, Pocatello, and Idaho Falls. 
Population has increased steadily in all three areas, more than 
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Figure 3. Population of the Columbia Plateau, 
Snake River Plain, and Oahu study areas (modified 
from U.S. Census Bureau, 2008).

doubling in the Snake River plain since 1970 (factor of 2.2) 
and increasing by factors of 1.6 in the Columbia Plateau and 
1.4 on Oahu during the same time interval.

Land Use

Land use and land cover are diverse in the Western 
Volcanics region, and groundwater is vulnerable to effects 
of overlying urban and suburban development, as well as 
agricultural management practices such as fertilizer and 
pesticide application at the land surface. Main types of land 
use and land cover include forest and rangeland, extensive 
agricultural areas, and urban centers of various extent and 
density (Homer and others, 2004) (fig. 4). Principal crops in 
the Columbia Plateau and Snake River Plain include alfalfa, 
cereal grains (wheat, barley, oats), potatoes, field crops, and 
corn; the Columbia Plateau also has orchards (primarily 
apples and cherries) and vineyards. Hawaii was dominated 
historically by two crops, sugarcane and pineapple. Sugarcane 
was phased out in 1996 on Oahu, leaving pineapple and 
various field crops. Agricultural land use has remained 
prevalent in the Columbia Plateau and Snake River Plain, 
but has diminished in Hawaii in recent decades. Former 
agricultural lands in central and southwest Oahu have been 
converted to suburban and light commercial use since 
the 1960s. 
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Figure 4. Land use for 2001 in (A) the Columbia Plateau, (B) the Snake River Plain, and (C) Hawaii.
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Figure 4.—Continued.
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Water Use

Water in the Western Volcanics is supplied principally 
by groundwater and by surface-water diversion projects on 
the Columbia and Snake Rivers and on smaller streams in 
Hawaii. Crop irrigation is the predominant use of groundwater 
in the Snake River Plain and Columbia Plateau (Maupin and 
Barber, 2005) (fig. 5), whereas public supply is the largest 
use of groundwater from Hawaiian volcanic-rock aquifers. 
Snake River Plain basaltic-rock aquifers supply the largest 
amount of groundwater by far: 2,500 million gallons per 
day for irrigation alone. Although domestic wells provide 
drinking water for a significant portion of the population in the 
Columbia Plateau and Snake River Plain, the actual amount of 
water pumped by a domestic well is small, so the overall water 
use is small.

The ways in which water is used can affect water quality. 
Diversion of river water to irrigated fields can concentrate 
dissolved minerals and salts through evaporation. The same 
mechanism acts on groundwater pumped to the surface for 
irrigation. Reinfiltration of that water to be withdrawn again 
by wells can set up a cycle of recirculation in which dissolved 
constituents such as salts and nitrate become progressively 
more and more concentrated through multiple evaporation 
cycles (Rupert, 1997). Urban use of water also concentrates 
dissolved constituents in comparison to initial source waters. 
Although municipal wastewaters are treated extensively 
to remove biological wastes and nutrients such as nitrate, 
discharged final effluent is higher in dissolved constituents 
than source waters and contains urban chemicals, such as 
detergents, pharmaceuticals, and other household products and 
their degradates. Municipal effluents are generally discharged 
to streams and rivers and also to ocean outfalls in Hawaii.

Hydrogeologic Setting

The largest and most productive aquifers in the Columbia 
Plateau, Snake River Plain, and Oahu are composed of 
basalt, but each area also has smaller sedimentary aquifers. 
Sedimentary “basin-fill” aquifers occur in the Columbia 
Plateau and Snake River Plain, where basalts and sediments 
accumulated in low-lying basins to form complex, 
multilayered aquifer systems. Hawaii also has sedimentary 
deposits, but they are a less important water supply, and 
nearly all groundwater is pumped from the more productive 
basalt aquifers. 

The basalt and sedimentary aquifers are highly vulnerable 
to contamination by chemicals applied, spilled, or disposed at 
the land surface because of the physical characteristics of the 
basalt flows. Individual basalt flows have three zones: (1) a top 
layer of rock fragments (known as rubble or “aa clinker” in 
Hawaii, and as “flow-top breccia” in Washington and Idaho), 
(2) a hard, dense, massive central layer, and (3) a basal layer 

of rock fragments. The top and bottom layers are composed of 
rubble because those parts of the lava flows cool very quickly 
and become fragmented; the middle layer is very hard and 
dense because it cools much more slowly. Basalt aquifers are 
highly vulnerable to contamination because the rubble zones 
allow large amounts of groundwater and contaminants to flow 
unimpeded, and the chemical composition of basalt is inert to 
most contaminants. 

Although the Western Volcanics aquifers share a common 
rock type (basalt), the thickness and geometry of the basalt 
layers differ in important ways as a result of their depositional 
environments and eruptive habits. Columbia River and 
Snake River basalts erupted within subsiding basins that 
contained major rivers and lakes. As a result, these basins 
contain sequences of basaltic-rock aquifers interlayered with 
sedimentary basin-fill aquifers and confining units. Because 
lava flows spread out over relatively flat terrain within the 
basins, lava ponded to form fairly flat-lying and thick flows, 
particularly in the Columbia Plateau, where extremely high-
volume fissure eruptions produced individual lava sheets 
30 to 300 feet thick extending over several thousand square 
miles (Tolan and others, 2009). Basaltic lavas in the Snake 
River Plain emanated from fissures and gently domed shield 
volcanoes at lower volumetric rates, typically extending over 
50 to 100 square miles and ranging in thickness from a few 
feet to more than 100 feet (Whitehead, 1992), averaging on the 
order of 20 to 25 feet (Mundorff and others, 1964). 
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Figure 5. Water use in 2000 for the Columbia Plateau 
and Snake River Plain basaltic-rock aquifers and 
Hawaiian volcanic-rock aquifers.
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Hawaiian lava flows are the thinnest among the three 
areas, most commonly several feet to 30 feet thick. Most lavas 
flowed down the flanks of domed shield volcanoes, typically 
at slopes of 3 to 20 degrees. As a result, most Hawaiian flank 
flows are long, narrow tongues that may be miles long but tend 
to be less than a mile wide over much of their length. Lavas 
did spread out areally and pond to greater thickness in some 
places (where terrain was flat or where lava filled erosional 
basins or calderas), but the most productive Hawaiian 
aquifers consist of thin-bedded flank flows. Sedimentary 
aquifers and confining units are present, but volcanic rocks 
form the main drinking-water aquifers; where sediments 
play an important role it is mostly as confining units to the 
volcanic-rock aquifers.

Thin-bedded basalts, such as the Hawaiian lava flows, 
contain open voids, tubes, and rubble (flow-top breccia) that 
impart high permeability and ease of lateral groundwater flow. 
Layers of dense rock contain fractures that allow cross-layer 
flow, but at lesser rates than flow through the more permeable 
breccia and voids. Thicker basalts, such as the Columbia 
Plateau basalts, tend to have thicker dense layers and less 
breccia. A single Columbia River basalt flow 50–100 feet 
thick might be 90 percent dense rock and only 10 percent 
breccia. Vertical fractures in the dense layer allow some 
water movement, but not nearly as readily as the breccia 
layers between flows. These “interflow” zones of breccia (and 
permeable sediment deposited between some flows) allow 
the greatest water movement and yield the largest amounts 
of water to wells that penetrate them, whereas the dense 
rock layers tend to act as confining units in the Columbia 

Plateau. Interflow sediments can also be confining units 
if the sediments are fine grained. Snake River basalts are 
intermediate between thick-bedded Columbia River basalts 
and thin-bedded Hawaiian basalts, with permeability and 
ease of groundwater flow closer to Hawaiian basalts than to 
Columbia River basalts. 

Aquifer Systems and Groundwater Flow Systems
The Columbia Plateau is considered a “multiaquifer 

system”—a layered sequence of aquifers that allow flow 
from aquifer to aquifer, but with some resistance from weak 
confining units of fine-grained sediments and weathered 
rock between the aquifers (fig. 6). In the Columbia Plateau 
aquifer system, groundwater flow is predominantly lateral 
over great distances, as much as a hundred miles (Lindholm 
and Vaccaro, 1988). However, water also infiltrates to deeper 
aquifers in recharge areas (right side of fig. 6) and upward to 
shallower aquifers where the regional flow discharges, such 
as to the Columbia River (left side of fig. 6). Columbia River 
basalts are estimated to reach a maximum thickness of as 
much as 15,000 feet (Miller, 1999). Several major basalts have 
been mapped as stratigraphic formations and are considered 
to constitute individual aquifers (fig. 7), distinguishable by 
water-level differences in wells that tap the aquifers (Kahle 
and others, 2011). For example, groundwater flow in the 
Grande Ronde Basalt of the Columbia Plateau aquifer system 
is generally east to west, and varying in direction where flow 
converges to discharge to the Columbia and Snake Rivers.

fig06
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Figure 6. Generic geologic cross-section of the Columbia Plateau. Modified from Lindholm and Vaccaro (1988).
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In the Eastern Snake River Plain and Hawaiian aquifers, 
regionally extensive confining units are not recognized 
within the volcanic-rock aquifers as much as in the 
Columbia Plateau. In many places only a single basaltic-rock 
aquifer is recognized within depths penetrated by wells for 
practical purposes such as groundwater withdrawal. The 
most productive aquifers consist of thick accumulations of 
thin-bedded lavas that are hydraulically well connected over 
large distances, with little to impede downward infiltration 
to the deep water table in most places, even though the water 
table may lie several hundred feet below land surface. Basalts 
are estimated to reach a maximum thickness of 5,500 feet 
in the Eastern Snake River Plain (Miller, 1999), where 
groundwater flows to the southwest and discharges west of 
Twin Falls where the basaltic-rock aquifer pinches out (fig. 8). 
Groundwater flow in the Snake River Plain aquifer system 
is perpendicular to potentiometric (water level) contours, 
mostly northeast to southwest in the Eastern Plain and in 
various directions in the Western Plain. Much of the discharge 
from the aquifer system is to the Snake River. Potentiometric 
contours are widely spaced where the Eastern Snake River 
Plain aquifer is thickest and most permeable. Areas of perched 
water are underlain by low-permeability material, typically 
lakebed sediments.

In the Eastern Snake River Plain, multi-aquifer 
relationships between basalts and sediments are recognized 
locally near the margins of the plain, where streams washed 
sediments onto the lava plain throughout its eruptive history 
(fig. 9). In the Western Plain, basalts are more discontinuous 
and are interbedded with sediments throughout the plain 
to form a complex multi-aquifer system. Perched water 
accumulates where sediments are fine grained and low in 

permeability, the best example being lakebed sediments 
deposited when lava flows dammed the Snake River to form 
lakes at various times.

Hawaiian volcanic-rock aquifers extend as deep as the 
shield volcanoes (to the adjacent ocean floor about 16,000 feet 
below sea level), but freshwater is withdrawn only down to 
a maximum depth of about a thousand feet below sea level. 
The central Oahu groundwater flow system is the largest water 
resource on Oahu and is the area studied by NAWQA (fig. 10). 
Groundwater converges into a central plateau between the east 
and west mountain ranges and then diverges north and south. 

Fresh groundwater on Oahu extended as much as 
1,600 feet below sea level, as lenses above denser salt water, 
before groundwater withdrawal lowered water tables and 
depleted the freshwater lenses within the aquifer. Groundwater 
is impounded to heights of several hundred feet above sea 
level by intrusive volcanic dikes along the mountain axes, but 
the larger and more productive water resources are the thick 
freshwater lenses within dike-free flank lavas (fig. 11). Coastal 
sediments confine the volcanic rock aquifer and build up the 
freshwater lens to greater thickness and water-table height 
than where sediments are absent. Small bodies of perched 
water occur on ash beds and above dense valley-filling basalts.

Multi-aquifer relationships have been recognized between 
Hawaiian shield volcanoes, for example between the Waianae 
and Koolau Volcanoes on Oahu (Hunt, 1996) and between 
Mauna Kea and Mauna Loa Volcanoes on the island of Hawaii 
(Thomas and others, 1996). Multi-aquifer relationships and 
distinct water-level differences with depth also are commonly 
recognized locally where younger lavas have filled previously 
eroded terrain and within stratified sequences of coastal 
sedimentary aquifers and confining units (Hunt, 1996). 
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Methods

General Study Design for Assessing Water 
Quality in the Columbia Plateau, Snake River 
Plain, and Oahu Principal Aquifers

This NAWQA study provides a systematic assessment 
and analysis of water quality in the principal aquifers of the 
Columbia Plateau, Snake River Plain, and Oahu. An approach 
was developed that assessed overall water quality in the 
aquifer systems and also enabled an understanding of the 
linkages between the quality of water recharging the aquifer 
system, effects on water quality during transport through the 
hydrologic system, and the quality of the water resource used 
for human consumption or discharged to surface-water bodies 
and used for recreation or supporting ecological communities 
and economies.

NAWQA groundwater studies were conducted in 
selected areas of the principal aquifers (fig. 12). The Central 
Columbia Plateau studied the northern portion of the larger 
Columbia Plateau system. In the Snake River Plain, only the 
Eastern Plain was studied (along with its tributary drainage 
areas) because of its regionally continuous basaltic-rock 
aquifer (basalts in the Western Plain are discontinuous and 
interbedded with sediments in a less productive aquifer 
system). In Hawaii, only the island of Oahu was studied 
by NAWQA.

Study Components of the Columbia Plateau, 
Snake River Plain, and Oahu Principal Aquifers

The design of groundwater studies in the Central 
Columbia Plateau, Snake River Plain, and Oahu considered 
the distribution of forested, agricultural, urban, and suburban 
land use on the landscape. Undeveloped areas, such as 
forested lands, have few sources of contaminants and thus 
were not sampled in proportion to the area that they cover. 
The major study types included agricultural land-use studies, 
major-aquifer studies, and special studies focused specifically 
on parts of the aquifers where particular contaminants were 
expected to be higher than in other areas. Well networks and 
their abbreviations are listed in table 1 and are portrayed on 
maps in figure 12, which was compiled from Clark and others 
(1998), Williamson and others (1998), and Anthony and 
others (2004). 

Land-Use Studies
Land-use studies are designed to assess the 

concentrations and distribution of water-quality constituents 
in groundwater near the water table associated with the 
most important land-use and hydrogeologic settings in each 
study area. For the Western Volcanics principal aquifers, 
the only land-use type targeted was agricultural, although 
NAWQA groundwater studies in other parts of the Nation 
also investigated urban land use. For the land-use studies, a 
network of 20 to 30 monitoring wells that penetrated shallow 
groundwater in the uppermost part of the aquifer system was 
installed. In some places (such as the Snake River Plain), 
where large depths to water or geologic conditions made 
installation of monitoring wells too costly, existing wells were 
used. In many instances, the networks targeted a single crop 
type, irrigation regime, or other key characteristic.

 Agricultural land-use studies were conducted in the 
Columbia Plateau (3 studies; ccptlusag1, ccptlusag2, and 
ccptlusor1) and Snake River Plain (4 studies; usnkluscr1, 
usnkluscr2, usnkluscr3, usnkluscr4) (table 1). No land-use 
studies could be designed for Oahu, where the expense of 
drilling forced a reliance on existing wells and a close link 
could not be assured between water samples and overlying 
land use (depth to water was large and many candidate 
wells had long open intervals that would not sample just the 
shallowest, recently recharged water).

Columbia Plateau land-use studies each employed two 
subnetworks of wells: (A) existing domestic wells tapping 
sediments and basalt and (B) newly drilled shallow monitoring 
wells emplaced only in the uppermost unconsolidated 
sediments. The three Columbia Plateau land-use studies 
targeted different crops and irrigation regimes: dryland grains, 
irrigated row crops, and irrigated orchards. Network median 
depths to water ranged from 16 to 60 feet for the wells used in 
the land-use studies.

The four Snake River Plain land-use studies all targeted 
irrigated row crops, but in four different areas along the 
groundwater flow direction that varied in irrigation type 
(groundwater or surface water) and depth to water. Snake 
River Plain land-use studies relied on existing wells because 
it was too expensive to drill new wells in hard basalt (typical 
depths to water were 100 feet or more). Sampled wells were 
mostly domestic, with a few irrigation and stock wells. 
Network median depths to water were 10 feet for a shallow 
network in sediments and 150 to 290 feet among the other 
three networks of wells tapping basalt.
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Figure 12. Location of aquifer studies and wells sampled in the (A) Columbia Plateau, (B) Snake River Plain area, and (C) Oahu, 
1993–2005.



Methods  19

fig12B_usnk_networks
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Figure 12.—Continued.
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Figure 12.—Continued.
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Major-Aquifer Studies
Major-aquifer studies are designed to provide a broad 

assessment of water-quality conditions of the most important 
groundwater resources of a geographic area. The large areal 
and depth dimensions of this groundwater resource require 
that the study rely primarily on sampling water from existing 
wells (because the expense required to install monitoring wells 
was prohibitive). A large proportion of wells in major-aquifer 
studies are domestic and public-supply wells, so major-aquifer 
studies can provide valuable insight to the quality of 
drinking-water resources. Because the major-aquifer studies 
were so large in extent, they extended over multiple, mixed 
land uses (unlike land-use studies that targeted a single use 
such as agricultural). 

Major-aquifer studies were conducted in the basaltic-rock 
aquifers (table 1). Two additional Snake River studies were 
conducted in basin-fill aquifers of unconsolidated alluvium 
(Snake River tributary valleys and Jackson Valley, Wyoming). 
Columbia Plateau and Oahu studies sampled public-supply 
wells predominantly, whereas the Snake River studies sampled 
a mix of domestic, irrigation, stock, and public-supply wells to 
obtain areal coverage of the target aquifers.

Special Studies
Two special groundwater studies were conducted that 

did not meet the criteria of land-use or major-aquifer studies 
(table 1). On the Columbia Plateau, a network of domestic 
wells was sampled for the soil fumigants 1,2-Dibromoethane 
(ethylene dibromide, EDB), and 1,2-Dibromo-3-chloropropane 
(DBCP) using low laboratory reporting levels. On Oahu, a 
network of existing monitoring wells was sampled to study 
groundwater in the shallow irrigation-recharge layer near the 
water table. 

NAWQA Approach to Groundwater Studies in 
Each Hydrogeologic Setting

Important aspects of hydrogeology and land use in 
each area are portrayed on the following block diagrams 
(figs. 13–15), along with typical well types and configurations. 
The blocks are not strictly to scale but are meant to span 
a depth of about 600–1,000 feet on the vertical face of the 
diagrams.
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Figure 13. Block diagram of geologic and hydrogeologic conditions in the Central 
Columbia Plateau, Washington.
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Figure 14. Block diagram of geologic and hydrogeologic conditions in the Eastern 
Snake River Plain, Idaho.
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Figure 15. Block diagram of geologic and hydrogeologic conditions in Oahu, Hawaii.
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Basin-fill alluvial sediments and loess (windblown 
silt) blanket the basaltic-rock aquifers throughout much 
of the Columbia Plateau (fig. 13). Agricultural land-use 
studies sampled monitoring and domestic wells tapping 
unconsolidated sediments and basalt. Major-aquifer studies 
sampled public-supply wells in basalt. Greenish tint in 
figure 13 identifies the irrigation recharge layer that contains 
elevated concentrations of nitrate and other contaminants. 

The basaltic-rock aquifer occupies much of the Eastern 
Snake River Plain (fig. 14). Basin-fill sediments encroach 
from tributary valleys at the side margins of the Plain, and 
a thin layer of glacial-flood outwash sediments and loess 
(windblown silt) blanket the upper surface of the basalt. 
Agricultural land-use studies sampled domestic wells tapping 
the basalt (3 studies) and shallow perched water in sediments 
(1 study). Major-aquifer studies sampled domestic, irrigation, 
stock, and public-supply wells in basalt and unconsolidated 
basin-fill sediments. Greenish tint in figure 14 identifies the 
irrigation recharge layer that contains elevated concentrations 
of nitrate and other contaminants. Depth to the water table in 
basalt ranges about 50 to 300 feet and depth to the water table 
in sediments is 10–50 feet in most places.

The basaltic-rock aquifer underlies the entire island 
of Oahu (fig. 15). Weathering extends to a depth of about 
150 feet, and the weathered saprolite contains perched water 
or near-saturated moisture profiles. Unsaturated, unweathered 
basalt extends several hundred feet to the deep water table. 
A major-aquifer study sampled public-supply wells in the 
basalt aquifer, many of which are solid-cased 50–100 feet into 
the water to seal off the well against the irrigation recharge 
layer (greenish tint in figure 15) that contains elevated 
concentrations of nitrate and other contaminants. A special 
study sampled existing monitoring wells that were open at 
shallow depths near the water table to better characterize 
young water near the deep water table. Depth to the water 
table in basalt ranges from 100 to 800 feet in most places.

Data Collection

Chemical data used in this report are from samples 
collected between 1992 and 2010 for the NAWQA land-use 
studies, major-aquifer studies, and special studies. All three 
study areas were sampled comprehensively in the first decade 
of NAWQA (Cycle 1, 1991–2001). A few selected networks 
were resampled in NAWQA’s second decade (Cycle 2, 
2001–2012) in the Columbia Plateau and Snake River Plain 
but not on Oahu, which was discontinued after the first decade. 
Within the resampled networks, smaller subsets of wells 
(typically five to seven wells) were also sampled biennially 
(every 2 years) after the first decadal sampling to characterize 
temporal variability and trends in water quality that could 
reasonably be inferred to affect the complete networks.

Samples from the 221 agricultural land-use wells and 
271 major-aquifer wells were collected following NAWQA 
protocols (Koterba and others, 1995). Most data are stored in a 
central database (NAWQA Data Warehouse;  

http://infotrek.er.usgs.gov/apex/f?p=NAWQA:HOME:0) and 
for this investigation were compiled into Excel spreadsheets. 
Water samples collected in this study were analyzed for 
nutrients, major ions, trace metals, radon, pesticides, and 
volatile organic compounds (VOCs). 

The 87 pesticides targeted for investigation were 
selected on the basis of their agricultural and nonagricultural 
use, potential environmental significance, and the ability of 
the USGS National Water Quality Laboratory (NWQL) to 
quantify them (Larson and others, 1999; U.S. Geological 
Survey, 1999). The 60 VOCs targeted for analysis were 
selected on the basis of available information on their 
occurrence, human and ecological health concerns, ozone 
depletion potential, use as a fuel additive, and analytical 
capabilities of the USGS NWQL (Bender and others, 1999).

All samples were analyzed by the USGS NWQL in 
Denver, Colorado. In circumstances where concentrations 
of an analyte are sufficiently low to be considered below a 
detectable quantity, the NWQL reports these concentrations 
as less than the Laboratory Reporting Limit (LRL). When 
using the LRL, the risk of reporting a nondetectable analyte 
concentration when the analyte is actually present (false 
negative) is less than 1 percent (Childress and others, 1999). 
The LRL typically is twice the long-term method detection 
level (LT-MDL). The NWQL LT-MDL is derived by using 
the standard deviation of at least 24 measurements of spiked 
matrices containing the analyte(s) of interest. The actual 
LT-MDL is the minimum analyte concentration(s) measured 
with 99-percent confidence that the concentration is, in fact, 
greater than zero. The NWQL reports estimated analyte 
concentrations when concentrations fall between the LT-MDL 
and LRL (Childress and others, 1999). Improvements in 
analytical methods over the years have resulted in changes 
in LT-MDLs; however, the data used in this report were not 
recensored to a common detection limit, with the exception of 
VOCs (see “Volatile Organic Compounds” section later in this 
report). Estimated concentrations reported by the NWQL were 
considered detectable concentrations. 

Statistical Analyses

Statistical summaries of chemical quality for the 
NAWQA study units can be biased if water from some wells 
is sampled more frequently than that from other wells. Where 
water from wells was sampled multiple times, bias from 
multiple measurements at the same site was removed by 
using the oldest analysis (Cycle 1 data). Selecting the oldest 
analysis is a simple process that is unbiased toward high or 
low values when there are seasonal or annual trends in the 
data. More recent samples from Cycle 2 were used in trends 
analysis. Trends in the datasets were determined using the 
Wilcoxon-Pratt test (Pratt, 1959). The Wilcoxon-Pratt test 
is a modification of the Wilcoxon signed rank test so that 
zero values and tied values can be addressed. Trends were 
considered significant if the p-value was less than 0.05. 

http://infotrek.er.usgs.gov/apex/f?p=NAWQA:HOME:0
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Logistic Regression
Maps showing the probability of atrazine detections 

(the most commonly detected pesticide) and of elevated 
concentrations of nitrate in groundwater in the Central 
Columbia Plateau, Snake River Plain, and Oahu were 
developed in several steps.
1. All suitable anthropogenic, hydrogeologic, and 

groundwater quality data were compiled. 

2. Groundwater quality data were overlaid with 
anthropogenic and hydrogeologic data using a geographic 
information system (GIS) to produce a dataset in 
which each well had corresponding census, land cover, 
precipitation, recharge, soils, and well construction data. 
These data then were downloaded to a statistical software 
package for analysis. 

3. Several preliminary multivariate models with various 
combinations of independent variables were constructed. 

4. The multivariate models that best predict the probability 
of detecting atrazine and elevated concentrations of nitrate 
in groundwater were selected. 

5. The multivariate models were entered into the GIS, and 
the probability maps were constructed. 
The specific details of data compilation, statistical 

methods, model development, model validation, and 
construction of the probability maps are discussed in the 
following sections.

Compilation of Anthropogenic, Hydrogeologic, and 
Groundwater Quality Data

Anthropogenic and hydrogeologic data used by this study 
include census, land cover, precipitation, recharge, soils, and 
well construction data. Census data for population density 
were retrieved from the U.S. Bureau of the Census for the 
1990 (U.S. Census Bureau, 1991) and 2000 (GeoLytics, 2001) 
census years. Change of population density was calculated by 
subtracting year 1990 population density data from year 2000 
population density. Mean annual precipitation values in the 
Central Columbia Plateau and Snake River Plain for the period 
1961–90 are from Daly and others (1994, 1997). Mean annual 
precipitation values in Oahu are from Giambelluca and others 
(1986). Recharge data in the Central Columbia Plateau were 
calculated by Hansen and others (1994). Recharge data in 
Oahu were calculated by Shade and Nichols (1996). Recharge 
data in the Snake River Plain were calculated by Garabedian 
(1992). Well construction data include altitude of wellhead, 
well depth, depth to top of well screen, and depth to bottom of 
well screen. 

Land-cover data in the Central Columbia Plateau and 
Snake River Plain were compiled from the 1992 national 
land cover dataset (Vogelmann and others, 2001), which was 
enhanced with GIRAS land use/land cover data modified 

as described in Price and others (2003) to more accurately 
represent alpine tundra, orchards, vineyards, and residential 
areas. The land cover data were further processed by 
calculating the percent of land cover classifications within 
500-meter buffers around wellheads in the Central Columbia 
Plateau and Snake River Plain, which was calculated by Kerie 
Hitt (U.S. Geological Survey, written commun., 2006). Land 
cover data in Oahu were mapped by Klasner and Mikami 
(2003) using digital orthophotoquads photographed during 
1998 and 1999. The Klasner and Mikami (2003) data represent 
late 1990s land use, but do not reflect major changes in land 
use (urbanization) that have occurred in Oahu during the past 
10 years or so. To accurately map historical agricultural lands 
that only recently have been urbanized, areas used historically 
for sugarcane and pineapple cultivation mapped by Oki 
and Brasher (2003, fig. 19) were overlaid with agricultural 
land-use data mapped by Klasner and Mikami (2003), and 
agricultural lands were thus delineated. The land cover 
classifications by Klasner and Mikami (2003) and Oki and 
Brasher (2003) were modified to correspond to the same land 
cover classifications used by Vogelmann and others (2001), 
so that land cover was rated consistently between the Central 
Columbia Plateau, Snake River Plain, and Oahu. Percents 
of these land cover classifications within 500-meter buffers 
around wellheads in Oahu were calculated by this study using 
methods identical to those used by Kerie Hitt in the Central 
Columbia Plateau and Snake River Plain. 

Soils data were obtained from the State Soil Geographic 
(STATSGO) database (U.S. Department of Agriculture, 
1991). The finer scale Soil Survey Geographic (SSURGO) 
database (U.S. Department of Agriculture, 1995) was not 
available for all regions in the Central Columbia Plateau, 
Oahu, and Snake River Plain. The STATSGO data were not 
suitable for use by this study in raw form, so STATSGO data 
compiled by Schwarz and Alexander (1995) were used. These 
later data included weighted averaging of many of the soil 
characteristics contained in the database. Soils data in Oahu 
were not compiled by Schwarz and Alexander (1995), so the 
STATSGO data in Oahu were compiled by this study using 
methods identical to those of Schwarz and Alexander (1995). 
Soils data at the wellhead and within 500-meter buffers 
around each wellhead were correlated by this study. Soils 
properties within 500-meter buffers around each well location 
in the Central Columbia Plateau and Snake River Plain were 
compiled by Wolock (1997). Wolock (1997) did not compile 
soils properties within 500-meter buffers around each well 
location in Oahu, so this study compiled those data using 
methods identical to Wolock (1997). The U.S. Department 
of Agriculture (1993) provides more information on these 
soil characteristics. 

Groundwater quality data collected by the U.S. 
Geological Survey (USGS) National Water-Quality 
Assessment Program (NAWQA) during 1993–2001 from 
205 wells located in the Central Columbia Plateau, 45 wells 
in Oahu, and 147 wells in the Snake River Plain were used 
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to calibrate the logistic regression models. For wells that had 
multiple water-quality samples, the first sample collected 
was used. All data on atrazine and nitrate concentrations 
in groundwater were converted to binary coding of “zero” 
for wells with no atrazine detection or nitrate concentration 
less than 2 mg/L and “one” for wells with atrazine 
detections or nitrate concentrations greater than or equal 
to 2 mg/L to satisfy the input data requirements of logistic 
regression. The breakdown products of deethylatrazine, 
deethyldeisopropylatrazine, deisopropylatrazine, and 
2-hydroxyatrazine data were also evaluated by this study. 
The presence of atrazine breakdown products indicates the 
former presence of atrazine, so the groundwater monitoring 
data were also coded “one” when atrazine breakdown products 
were detected, even if the parent compound was not present. 
The Minimum Laboratory Reporting Level for atrazine is 
0.001 mg/L. 

Statistical Methods and Regression Models 
This study used logistic regression (Kleinbaum, 1994; 

Hosmer and Lemeshow, 2000) to model the probability of 
detecting atrazine and elevated concentrations of nitrate in 
groundwater in the Central Columbia Plateau, Snake River 
Plain, and Oahu. Logistic regression is conceptually similar 
to multiple linear regression, because relations between one 
dependent variable and several independent variables are 
evaluated. In logistic regression, the dependent variable (for 
this study, atrazine detection or elevated nitrate concentration) 
was transformed to a binary variable (detection or 
nondetection). A major advantage of logistic regression over 
multiple regression is that the former is well suited for analysis 
of datasets with a large number of nondetections. 

Logistic regression calculates several statistical 
parameters that determine the predictive success of the model. 
The log-likelihood ratio measures the success of the model 
as a whole by comparing observed with predicted values 
(Hosmer and Lemeshow, 2000); specifically, it tests whether 
model coefficients of the entire model are significantly 
different from zero. The most significant model is the one 
with the highest log-likelihood ratio, taking into account the 
number of independent variables (degrees of freedom) used 
in the model. The log-likelihood ratio follows a chi-squared 
distribution, and the computed p-value indicates whether 
model coefficients are significantly different from zero. In 
other words, the computed p-value is the significance level 
attained by the data; the smallest p-value indicates the best 
model. A p-value of 0.05 indicates a significance level of 
95 percent; a p-value of 0.01 indicates a significance level 
of 99 percent. McFadden’s rho-squared (SPSS, Inc., 2000, 
p. I-571) is a transformation of the log- likelihood statistic 
and is intended to mimic the r-squared of linear regression. 
Rho-squared is always between zero and one; a rho-squared 

approaching one corresponds to more significant results. 
Rho-squared tends to be smaller than r-squared, so a small 
number does not necessarily imply a poor fit. Values between 
0.20 and 0.40 indicate good results (SPSS, Inc., 2000, 
p. I-571). 

The partial-likelihood ratio was used to compare nested 
models to determine the significance of adding one or more 
new variables (Helsel and Hirsch, 1992; Nolan and Clark, 
1997). A nested model contains all of the independent 
variables in the original model, plus one or more additional 
independent variables. To determine whether the model is 
improved by adding the independent variable, the logistic 
regression model is calculated without that new variable. 
Logistic regression calculates a partial-likelihood ratio. 
The logistic regression model then is rerun, this time with 
the additional new independent variable; the second model 
also calculates a partial-likelihood ratio. The difference in 
partial-likelihood ratios between the two models is calculated, 
and a chi-squared approximation is calculated with degrees of 
freedom equal to the number of additional variables in the new 
model. If the p-value from the chi-squared distribution is less 
than 0.10, the model has been significantly improved at the 
90-percent significance level. 

In logistic regression, a model is generated that 
predicts the probability (P) of detecting atrazine or elevated 
concentrations of nitrate in groundwater similar to equation 1 
for each of the two developed models:
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The coefficients were then standardized following the 
method of Menard (2002) so that they could be directly 
compared with one another.
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P-values are calculated for each independent variable, 
which indicate the statistical significance that each variable 
has on the overall logistic regression model. Independent 
variables were excluded from the models if their individual 
p-values were greater than 0.1. The sensitivity is calculated 
as the number of correctly predicted events (detections) 
divided by the total number of observed events (SYSTAT 
Software, 2004). The specificity is calculated as the number 
of correctly predicted reference events (no detections) divided 
by the total number of observed reference events. The total 
correct predictions is calculated as the number of correctly 
predicted events plus the number of correctly predicted 
reference events divided by the total number of all events. 
Sensitivity and specificity data can be used to develop a 
Receiver Operating Characteristic (ROC) curve, which plots 
the probability of detecting true signal (sensitivity) and false 
signal (1−specificity) for the entire range of possible cutpoints 
(Hosmer and Lemeshow, 2000, p. 160). The area under 
the ROC curve, which ranges from zero to one, provides a 
measure of the model’s ability to discriminate between those 
subjects who experienced the outcome of interest versus those 
who did not. As a general rule, an ROC of about 0.5 suggests 
no discrimination (equivalent to flipping a coin). An ROC 
between 0.7 and 0.8 is considered acceptable discrimination. 
An ROC between 0.8 and 0.9 is considered excellent 
discrimination. An ROC greater than 0.9 is considered 
outstanding discrimination, but it would be very rare to 
observe an ROC this large. 

To evaluate model performance, the percentage of 
actual detections was plotted with the predicted probability 
of detections by using a deciles of risk calculation, which 
typically involves partitioning the observations into 10 groups 
(SYSTAT Software, 2004, p. II–238). 

During construction of the logistic regression models, 
all possible combinations of independent variables were 
evaluated to develop the most accurate logistic regression 
models. The models were built by including each individual 
variable in the model, evaluating the resulting test statistics, 
and deciding whether to include or reject the variable. Model 
validity and accuracy were determined by evaluating the 
log-likelihood ratio, McFadden’s rho-squared, the p-values 
calculated for each independent variable, the model sensitivity 
and specificity, and the ROC. 

Percent land cover, precipitation, population density, 
soils, and well construction were modeled as continuous 
variables. Because of their categorical nature, study units were 
modeled as discrete (design) variables. Discrete variables 
were coded as “one” if a well was located in a particular study 
unit and as “zero” if the well was not located in a unit. For 
example, if a well was located in the Columbia Plateau study 
unit, then the data base would be coded “Columbia Plateau = 
1,” “Upper Snake = 0,” “Oahu=0.” Hosmer and Lemeshow 
(2000) contain more information on the use of continuous and 
discrete variables in logistic regression.

Comparison of Concentrations to 
Human-Health Benchmarks

There are two different human-health benchmarks that 
are used in this report: Maximum Contaminant Levels (MCLs) 
and Health-Based Screening Levels (HBSLs). They are used 
in this report to give perspective on the potential significance 
of their occurrence in drinking water to human health. For that 
reason, hereinafter MCLs and HBSLs are referred to together 
as “human-health benchmarks”.

“Maximum Contaminant Levels” are concentrations of 
constituents established by the U.S. Environmental Protection 
Agency (USEPA) to help ensure safe drinking water (U.S. 
Environmental Protection Agency, 2009a). MCLs are legally 
enforceable concentrations that the USEPA requires public 
drinking water systems to meet. Public drinking water systems 
are publicly or privately owned water supply systems that 
serve at least 25 people or have at least 15 service connections 
and provide drinking water to the public for at least 60 days 
per year. Private, individual household wells are not regulated 
by USEPA, but MCLs provide an initial perspective on the 
potential significance of contaminant occurrence to human 
health and can help prioritize further studies. There is currently 
no MCL for radon in drinking water, although there are two 
proposed MCLs (U.S. Environmental Protection Agency, 
2011d). USEPA has proposed to require community water 
suppliers to provide water with radon levels no higher than 
4,000 picocuries per liter (pCi/L), which contributes about 
0.4 pCi/L of radon to the air in your home from showering 
and other household uses. This requirement assumes that the 
state is also taking action to reduce radon levels in indoor air 
by developing USEPA-approved, enhanced state programs for 
radon in indoor air (called Multimedia Mitigation Programs). 
Under the proposed regulation, for states that choose not to 
develop enhanced indoor air programs, individual public 
drinking water systems will be required to develop their own 
radon mitigation plan for indoor air or reduce radon levels in 
drinking water to 300 pCi/L. This amount of radon in drinking 
water would contribute about 0.03 pCi/L of radon to the air in 
your home.

 Because of health concerns, Hawaii has established 
lower MCLs for soil fumigants (EDB, DBCP, TCP) than 
those established by the USEPA. When comparing fumigant 
concentrations in drinking water to MCLs, this report used 
the higher USEPA MCLs whenever data from the Columbia 
Plateau or Snake River Plain were evaluated and used the 
lower Hawaii MCLs when only Oahu data were evaluated. 

MCLs are not established for about two-thirds of the 
contaminants measured in water by the NAWQA Program 
and other USGS studies. To supplement existing MCLs, 
USGS (in collaboration with USEPA and others) established 
“Health-Based Screening Levels” (HBSLs), which are 
nonenforceable benchmark concentrations developed using 
standard USEPA methods and current toxicity information 
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(Toccalino and others, 2012). HBSLs are equivalent to 
existing USEPA “Lifetime Health Advisory and Cancer Risk” 
concentration values (when they exist), except for unregulated 
compounds for which more recent toxicity information has 
become available. It is important to note that the presence 
of contaminants at concentrations greater than benchmarks 
does not necessarily indicate that adverse effects are certain 
to occur. Conversely, concentrations that are less than 
benchmarks do not guarantee that adverse effects will not 
occur, but they indicate that adverse effects are unlikely.

This report evaluated two concentration levels for 
human-health benchmarks: the human-health benchmark and 
1/10th of the human-health benchmark. Concentrations above 
1/10th of the human-health benchmark provide an indication 
of contaminants that may approach concentrations of potential 
human-health concern, either individually or as mixtures, and 
identify those that may warrant additional monitoring and 
study (DeSimone and others, 2009).

“Secondary Maximum Contaminant Levels” (SMCLs) 
are nonenforceable guidelines regulating contaminants 
that may cause cosmetic effects (such as skin or tooth 
discoloration) or aesthetic effects (such as taste, odor, or color) 
in drinking water (U.S. Environmental Protection Agency, 
2009a). USEPA recommends public drinking water systems 
meet these secondary standards but does not require public 
systems to comply. SMCLs are useful guidelines for water 
from individual household wells.

Water-Quality Conditions

Nutrients

Nitrate concentrations were highest in agricultural areas 
(fig. 16) and in the shallowest groundwater; however, nitrate 
contamination exists not only at shallow depths immediately 
beneath cultivated fields but also in deeper groundwater in 
the principal regional aquifers used for drinking-water supply. 
This spatial association results from a combination of applied 
fertilizers, manure, and irrigation that promotes leaching of 
the nitrogen through the soil to underlying groundwater. In 
the Columbia Plateau, nitrate concentrations are generally 
higher in the southwest, where row crops and orchards are 
irrigated; nitrate concentrations are generally lower in the 
eastern area of nonirrigated dryland agriculture. In the Snake 
River Plain, nitrate concentrations are highest in the western 
part of the Plain, where cultivation and irrigation are intensive. 
Nonagricultural lands in the Columbia and Snake areas are 
mostly rangeland and forest, with relatively small urban 
areas. On Oahu, much of the central plateau is agricultural, 

and elevated nitrate concentrations have resulted from a 
combination of fertilizer application and irrigation. Most wells 
with low nitrate concentrations are in forested areas or in the 
Honolulu urban center to the southeast, where wells draw 
groundwater that was recharged in upland forests.

The correlation of elevated nitrate with agricultural land 
use is also evident when results are portrayed by individual 
well networks (fig. 17). Nitrate concentrations were generally 
lower in major-aquifer networks and higher in agricultural 
land-use networks, which were designed to characterize 
groundwater in agricultural areas where fertilizer use and 
manure input is known to be intensive. However, nitrate 
concentrations in major-aquifer networks were not negligible; 
many concentrations were above background (1 mg/L), and 
concentrations in several Columbia Plateau public-supply 
wells (fig. 17) exceeded the drinking-water standard of 
10 mg/L (USEPA MCL). These results demonstrate that nitrate 
has contaminated deep groundwater in the principal regional 
aquifers used for drinking-water supply. Median nitrate 
concentrations were similar among major-aquifer networks 
in basaltic-rock aquifers (fig. 17, left panel, gray bars): 
about 1 to 1.5 mg/L. However, upper outlier concentrations 
differed, with concentrations near or exceeding 10 mg/L in the 
Columbia Plateau and Snake River Plain, whereas maximum 
nitrate concentration on Oahu was only 5 mg/L. Redox 
conditions were predominantly oxic in all networks, favoring 
stability and preservation of nitrate rather than its destruction 
by denitrification.

Some degree of influence is exerted by well type 
and depth, irrigation practices, and regional flow patterns 
in the aquifer systems. Within the agricultural land-use 
networks, nitrate concentrations were generally higher in 
unconsolidated basin-fill sediments than in basaltic-rock 
aquifers. The sediments overlie the basalt aquifers, and wells 
open to sediments were generally shallower than wells open 
to basalt (fig. 12, table 1). Higher nitrate in the sediments is 
an expected result, because agricultural chemicals migrating 
down from the land surface should be at higher concentrations 
at shallower depths, unless results are governed more strongly 
by other factors. 

Among agricultural land-use networks in the Columbia 
Plateau (fig. 17, right panel), nitrate concentrations differed 
only slightly between domestic-well and monitor-well 
subnetworks for irrigated row crops and orchards. But the 
domestic-well subnetwork in the Palouse area of dryland 
agriculture stands out as an exception, with lower nitrate 
concentrations likely resulting from a lack of irrigation water 
that would tend to carry higher nitrate groundwater observed 
in the shallower monitoring wells to deeper domestic wells in 
the underlying basalt. 
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Figure 16. Concentrations of nitrate in groundwater and distribution of agricultural lands in the Columbia 
Plateau, Snake River Plain, and Oahu study areas. 

Agricultural land-use networks in the Snake River Plain 
consist mostly of domestic wells, so well type can largely 
be ruled out when explaining differences among networks 
(fig. 17, center panel, arranged left to right in downgradient 
direction from east to west). However, well depth, irrigation 
practices, and regional flow patterns all play a role in 
influencing nitrate concentrations. The Minidoka network 
had the highest concentrations. Although the Minidoka area 
is predominantly irrigated with surface water, groundwater is 
also used in irrigation. The nitrate concentrations are thought 
to be high because fertilizer-enriched groundwater is recycled 

through multiple pumping and irrigation cycles in this shallow 
perched alluvial aquifer (Rupert, 1997). The other three 
networks in the Snake River Plain have deeper wells in basalt 
(fig. 12, table 1), and nitrate concentrations clearly decrease 
(fig. 17) from network to network in the downgradient 
direction to the west. This pattern likely reflects upward 
convergence of better quality regional groundwater as the 
aquifer thins and the base of the aquifer “shoals” to the west, 
where the entire flow of the Eastern Snake River Plain aquifer 
discharges to springs and to the Snake River.
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Nutrient Sources

Mirroring national trends, fertilizer use in the Columbia 
Plateau and Snake River Plain rose sharply after 1950, 
leveling off after 1980 in the former but not in the latter 
(Alexander and Smith, 1990; Battaglin and Goolsby, 1995; 
Ruddy and others, 2006) (fig. 18). Before World War I, the 
primary sources of supplemental nitrogen (N) for crops were 
animal manure, mineral sources such as potassium nitrate, 
and crop rotation with legume crops such as alfalfa. Synthetic 
fertilizers were first produced after World War I, when 
facilities that had produced ammonia and synthetic nitrates 
for explosives were converted to the production of N-based 
fertilizers (Rupert, 2008). Inorganic N fertilizer production 
was small until after World War II, when the production 
rates increased dramatically (fig. 18). Manure is also used as 
fertilizer, and its use in the Snake River Plain has increased 
since 1990 as dairy and beef cattle operations have expanded 
fivefold. Equivalent fertilizer data are not readily available 
for Oahu, but the history of fertilizer use likely resembles that 
for the Columbia Plateau, ramping up after 1950 but leveling 

off and declining after 1980 as cropland was increasingly 
converted to suburban residential use. Sugarcane cultivation in 
Oahu ceased in 1996. Pineapple and diversified crops are still 
grown, but the southern Oahu pineapple plantation closed in 
2008, leaving only the northern plantation.

Although much of the agriculturally applied fertilizer 
is taken up by crops, a fraction of it leaches through the soil 
with rain and excess irrigation water and ultimately reaches 
deep groundwater. Nitrate contamination of groundwater is 
present in all three study areas as a result of nitrogen leaching. 
Phosphorus sorbs to soil particles and has much less tendency 
to leach than nitrogen, but it can be transported to streams with 
soil runoff. Groundwater beneath cultivated areas did contain 
elevated phosphorus, but at concentrations typically an order 
of magnitude lower than nitrate.

Human and animal wastes are also sources of nitrogen 
and phosphorus. In rural areas, human waste is disposed of in 
on-site domestic septic systems or cesspools. In urban areas, 
waste is collected via sewer systems to centralized treatment 
plants, where solid waste is treated and extracted and later 
disposed of in landfills or applied as fertilizer biosolids. 
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Plain from 1925 to 2007. 

The water fraction is treated to environmental standards and 
reused, applied to the land surface, or disposed of in rivers. 
Animal waste at larger livestock operations sometimes 
undergoes treatment, much of it being later used as manure 
fertilizer. Animal manure is by far the larger source of organic 
waste in six heavily agricultural counties of the Snake River 
Plain, where the number of dairy cattle have increased sharply 
in recent decades (Idaho Agricultural Statistics Service, 
1999; U.S. Department of Agriculture, 2010) (fig. 19). The 
increased manure generated from these cattle has a nitrogen 
content roughly equivalent to the organic waste that would 
be produced by an additional 4.6 million to 6.2 million 
human adults. This is roughly ten times the estimated human 
population of 491,000 over the entire Snake River Plain 
aquifer system in 2005.

Trends of Nitrate Concentrations 

Nitrate is a good constituent for trend assessment. It is 
at readily measured concentrations in water from nearly all 
wells, and variations in anthropogenic sources like fertilizer, 
manure, and domestic septic systems can be expected to affect 
nitrate concentrations in groundwater over various time scales. 
Changes (trends) in concentrations of nitrate can be expected 
over decades as land-use patterns and agricultural practices 
shift and evolve.

Assessment of trends is best done with ample data over 
time, so that many data points establish a pattern, such as a 
simple rising or falling trend. However, the simplest “trend” 
that can be determined is a two-point change, with only two 
data points at time 1 and time 2. This is termed a “change” in 
this report, whereas “trend” is used only where there are more 
than two data points.

NAWQA study design includes cycles of sampling entire 
well networks once every decade for detection of long-term 
changes and trends. In NAWQA Cycle 2, selected well 
networks that had been sampled a decade earlier in Cycle 1 
were resampled, allowing two-point change detection over the 
intervening decade (by comparing paired data at time 1 and 
time 2 at each resampled well). Additionally, a small subset 
of wells (typically 5 in each network) was sampled biennially 
(every other year, hence five data points per decade) for 
interpreting within-decade trends or fluctuations that might be 
affecting the rest of the network.

Although these NAWQA-collected decadal and biennial 
data can be used to assess changes and trends in water 
quality, they span an admittedly short period—roughly a 
decade and a half from Cycle 1 sampling in 1993–95 to 
the present year 2011 (sampling on Oahu was a one-time 

Cycle 1 effort in 2000–2001). Fortunately, longer data sets 
have been collected by State and local agencies and other 
USGS programs, providing a means of assessing water-
quality trends over longer time scales. These resources are 
referred to here as “State, local, or cooperative datasets and 
networks” to distinguish them from NAWQA data. Many of 
these datasets entailed cooperative funding and effort from 
multiple agencies.

Decadal Changes in Nitrate Concentration
NAWQA well networks resampled a decade apart showed 

statistically significant increases in nitrate concentration in 
the Snake River Plain, but no significant decadal change was 
detected in Columbia Plateau networks. NAWQA Cycle 1 
sampling was conducted in both areas in 1993–95. Cycle 2 
resampling was conducted in 2002 in the Columbia Plateau 
and in 2005 in the Snake River Plain.
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Figure 20. Decadal changes of nitrate concentrations for wells resampled a decade 
apart (from mid-1990s to 2002) in (A) Columbia Plateau and (B) Snake River Plain. 

The networks were subjected to two-point change 
detection using graphical and statistical tests that make 
pairwise comparisons between concentrations at time 1 
and time 2 in each well. Individual changes were computed 
well by well and ranked in the graphs of figure 20, where 
one can visually judge whether more wells increased or 

decreased in concentration within a given network. A 
statistical test (Wilcoxon-Pratt signed-rank statistical test; 
Pratt, 1959) determined whether any changes in the well 
network as a whole were statistically significant beyond mere 
chance occurrence.



36  Groundwater Quality in Columbia Plateau, Snake River Plain, and Oahu Basaltic-Rock and Basin-Fill Aquifers, 1992–2010

In the Snake River Plain networks, more wells increased 
in concentration (red dots) than decreased (green dots) 
(fig. 20B). This is apparent visually, and the Wilcoxon-Pratt 
test confirmed that the increase was statistically significant 
for each of the Snake networks (Lindsey and Rupert, 2012). 
In the Columbia Plateau networks, the numbers of red and 
green dots are roughly equal in each graph, and the Wilcoxon-
Pratt test computed no significant change in any of the 

Columbia Plateau networks (fig. 20A). The test is conducted 
on the entire network, and results characterize the network, 
not individual wells. Although individual wells may show 
strong increases or decreases in concentration, it is the overall 
tendency of all wells in the network that determines whether 
statistically significant change can be detected (or not) for the 
network overall.
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Figure 20.—Continued.
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Long-Term Nitrate Trends 
Datasets with numerous samples over time were analyzed 

for trends in nitrate. The datasets were collected by a variety 
of Federal, State, and local agencies, including the USGS. 
For many wells, no statistically significant trends could be 
detected. However, a number of wells in each of the study 
areas showed significant trends in nitrate, and representative 
examples are discussed below.

In the Snake River Plain, wells and springs sampled 
by USGS projects and the State of Idaho showed mostly 
increasing trends in nitrate concentration (fig. 21). Box 
Canyon Springs showed a steady increase since the 1970s 
(fig. 21), and Niagara and Clear Springs have shown 
significant increases in nitrate through the 1990s (Idaho 
Department of Environmental Quality, 2000). In addition, 
groundwater sampled by the U.S. Bureau of Reclamation 
showed mostly increasing nitrate concentrations since 1980 
(Rupert, 1997). 

In the Columbia Plateau, NAWQA biennial data 
showed mostly decreasing nitrate trends (fig. 22), although 
one example of an increasing trend is shown at upper left 
(site 471449119522801). Additionally, a previous USGS 
study with a 474-well dataset in the same Columbia Plateau 
study area found statistically significant decreases in nitrate 
concentrations at some wells from 1998 to 2002 (Frans and 
Helsel, 2005). No trend was found in the 474-well dataset 
as a whole, but nitrate concentrations decreased in “high-
nitrate wells” (wells with nitrate concentrations greater than 
10 mg/L). A previous study of those 474 wells, but using only 
samples collected during 1998 (Frans, 2000), indicated an 
increased probability of nitrate exceeding 10 mg/L in wells 
(1) that had shallow well casings, (2) were in areas of high 
fertilizer application, or (3) were located on soils with high 
infiltration rates. These factors helped to identify wells that 
were most likely to have decreasing nitrate concentrations 
in response to improvements in irrigation and fertilizer 
practices. The observed nitrate declines in “high-nitrate 
wells” likely reflect concerted efforts toward better practices 
by stakeholders who have long been aware of the problem of 
high nitrate in groundwater, including farmers, agricultural 
extension services, and State and County agencies.

On Oahu, annual nitrate data from the Hawaii 
Department of Health allowed trends assessment from 2000 
to 2010, the decade following NAWQA Cycle 1 sampling in 

2000–2001. Of the several public-supply wells shown in south 
Oahu (fig. 23) most have slight but statistically significant 
downward trend in nitrate concentrations (graphs A-D have a 
significant trend, and the Hoaeae wells, graphs E and F, have 
no significant trend). 

The graphs illustrate an important basinwide spatial 
pattern of nitrate increasing in the downgradient direction 
(the direction of groundwater flow), from rainy mountains 
in the northeast corner of the map and then following the 
general direction of stream valleys to discharge points at wells 
and springs near Pearl Harbor. Groundwater at a well in the 
upland forest (fig. 23, graph C) has a “background” nitrate 
concentration of about 0.45 mg/L. That groundwater flows 
southwest beneath agricultural croplands, where large volumes 
of irrigation recharge have “lain in” on top of the regional 
flow, creating a distinct upper layer of warmer groundwater 
containing elevated nitrate, pesticides, and other constituents. 
This “irrigation-recharge layer” is roughly 100 to 150 feet 
thick in south Oahu and has been studied in detail since the 
1960s (Visher and Mink, 1964; Tenorio and others, 1969). 
Wells drawing from the layer of degraded water currently 
have nitrate concentrations as high as 5 mg/L (graphs A, 
B, E). Figure 23 (graph G) illustrates depth stratification of 
the irrigation recharge with better quality water underneath; 
nitrate concentrations in the shallower well have averaged 
nearly twice the nitrate concentration in the deeper well over 
the decade 2000–2010 (4.6 vs 2.4 mg/L).

It is somewhat surprising that downward trends in nitrate 
are not steeper in south Oahu, given recent changes in land 
use and irrigation practices. This may be due, in part, to 
residential fertilizer use as large tracts of former agricultural 
land have been converted to suburban use beginning in the 
mid-1960s and are continuing today (the road network shows 
current suburban tracts over former cultivated areas). Furrow 
(or “field flood”) irrigation of sugarcane was notoriously 
inefficient, with as much as 50 percent of applied water lost 
to deep groundwater as nitrate-laden irrigation recharge. 
This was replaced with more efficient (10-percent loss) drip 
irrigation by about 1980, dramatically lessening irrigation 
recharge. However, the thick accumulated layer of irrigation 
recharge in the aquifer has persisted through the intervening 
three decades, 1980 to 2010, which illustrates the long 
“flushing time” or “response time” of the hydrologic flow 
system within the regional aquifer.
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Figure 21. Trends in groundwater nitrate concentrations in the Snake River Plain agricultural areas from 1970 through 2010. 
Data were collected by a variety of groundwater-monitoring projects, and only sites with statistically significant trends are 
shown. 
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Figure 22. Trends in groundwater nitrate concentrations in selected wells in the Columbia Plateau since the early 1990s. Data are 
NAWQA decadal and biennial data, and only sites with statistically significant trends are shown. 
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Predicting the Distribution of 
Elevated Nitrate Concentrations

A logistic regression model was 
developed to predict the probability of 
detecting elevated concentrations of nitrate. 
The binary response variable was defined 
by dividing the nitrate concentrations into 
those greater than or equal to 2 mg/L and 
those that were less than 2 mg/L. The 
threshold of 2 mg/L was chosen because 
background nitrate concentrations are 
generally less than 2 mg/L (Nolan and 
others, 1998) and because of the much 
lower concentrations of nitrate in the Oahu 
study area. A higher threshold would have 
resulted in virtually all of the Oahu wells 
being coded as nonexceedances. 

Table 2. Logistic regression coefficients and individual p-values of independent 
variables significantly related with the detection of nitrate concentrations greater than 
or equal to 2 milligrams per liter in groundwater in the Central Columbia Plateau, Upper 
Snake River Plain, and Oahu study units.

[Abbreviation: m, meter; < less than]

Independent variable

Unstandardized 
nitrate model 

regression 
coefficients 

p-value
Standardized 
coefficients

Logistic regression constant 0.8288 0.2029 –
Study unit—Central Columbia Plateau –0.3716 0.4628 –0.21407
Study unit—Upper Snake River Plain –1.7793 0.0008 –0.20909
Depth of well –0.00277 <0.0001 –0.26753
Percent agricultural within 500-m radius 0.0237 <0.0001 0.27394
Organic matter content of soil –1.1142 0.0001 –0.20351

Study unit, well depth, percentage of agricultural land 
within 500 meters of the well, and organic-matter content 
of the soil were significant variables in the nitrate model 
(table 2). The p-values of each variable incorporated in the 
nitrate model were all less than 0.0008, with the exception of 
the Central Columbia Plateau study unit variable, and several 
were less than 0.0001. 

The positive and negative signs of the model coefficients 
were consistent with expectations. Well depth showed a 
negative correlation with elevated nitrate concentrations, 
as nitrate concentrations tend to decrease with depth below 
land surface. The relation between percentage of agricultural 
land use near a well and elevated nitrate concentrations was 
positive because the primary source of nitrate in the study 
areas is agricultural fertilizer. The relation between elevated 
nitrate concentrations and organic-matter content of the soils 
was negative. Soils with high organic-matter content may have 
an increased likelihood of fostering denitrifying conditions, 
thereby decreasing the amount of nitrate available to leach 
into the groundwater. The standardized coefficients indicate 
that the percentage of agriculture near the well has the greatest 
impact on nitrate concentrations, followed by the well depth. 

Overall performance of the nitrate model was good, with 
the chi-squared p-value calculated from the log likelihood 
ratio of the entire model less than 0.0001 and a McFadden’s 
rho-squared of 0.188. The ROC was greater than 0.78. To 
help confirm that the nitrate models are calibrated to the 
groundwater quality data, regressions were made between 
the percentage of actual detections of nitrate and the 
predicted probability of detecting elevated nitrate (fig. 24). 
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The percentage of predicted detections of elevated nitrate 
was determined by dividing the predicted probabilities for 
the study areas into deciles, or groupings of 10 percent (0 to 
10 percent, greater than 10 to 20 percent, greater than 20 to 
30 percent, and so on). The percentage of elevated nitrate 
detections within each group then was calculated and included 
in the regressions shown in figure 24. The nitrate model 
exhibits good calibration, with an r-squared value of 0.93. 

Maps showing the probability of detecting nitrate 
concentrations greater than or equal to 2 mg/L (fig. 25) in 
the Columbia Plateau, Snake River Plain, and Oahu were 
constructed using the logistic regression models. Before 
constructing the maps, all GIS data were converted to grids. 
Data in Oahu were converted from polygon coverages to 
30-meter grids. All GIS data in Central Columbia Plateau 
and Snake River Plain were converted to 1-kilometer grids 
because the percent land cover grids (Naomi Nakagaki, U.S. 
Geological Survey, written commun., 2006) were already 
mapped at 1-kilometer. Then, the logistic regression models 
similar to equation 1 were entered into a GIS and a probability 
rating was calculated for each of the grid nodes in each of the 
three study units.

Areas with a high percentage of land in crops (such as 
potatoes or sugarcane) (fig. 25), and soils with low amounts 
of organic matter, are most likely to have elevated nitrate 
concentrations in the groundwater. Areas where agricultural 
activities were absent had much lower probabilities of 
detecting elevated nitrate concentration. The Columbia 
Plateau had a very high probability of having elevated nitrate 
concentrations, with most of the land area having greater than 
a 50-percent probability of elevated nitrate concentrations. 
Oahu and the Snake River Plain had a much lower probability 
of having elevated nitrate concentrations because of their 
lower percentage of agricultural land. 

Surface-Water Receptors of 
Groundwater Discharge 

Groundwater that is not captured by wells and used 
consumptively eventually discharges from the regional 
aquifer systems. In the Columbia Plateau and Snake River 
Plain, discharge is by visible springs in cliffs and bluffs or 
by invisible seepage to stream channels and marshy riparian 
zones along the streams. On Oahu, aquifer discharge is to 
the coastal zone, in bays and estuaries, along beaches, and to 
streams where stream channels intersect the water table. In 
Oahu, there are no major rivers approaching the size of the 
Columbia or Snake Rivers.

Excess nutrients in discharging groundwater and in 
surface-water runoff can foster eutrophication in these 
receiving water bodies. Eutrophication is the excessive growth 
of aquatic plants or periodic blooms of microalgae that can 
emit toxins or that die, settle to the bottom, and decay—
depleting dissolved oxygen and causing fish kills. Excess 
phosphorus and excess nitrate can both lead to eutrophication. 
Phosphorus is mainly transported to receiving waters with 
suspended sediment (sorbed to soil particles in runoff). 
Nitrate is mainly delivered in dissolved form, in discharging 
groundwater within the three areas. Where groundwater 
discharges to river bottoms and riparian zones, high organic-
matter content in sediments generally causes reducing, 
anoxic conditions in which some nitrate is broken down by 
denitrification, sending nitrogen gas back to the atmosphere. 
However, groundwater discharging from valley-wall springs 
and bluffs tends to remain oxic, with little loss of nitrate to 
denitrification. This occurs along some sedimentary bluffs 
along the Columbia River but is perhaps best exemplified 
by the numerous large valley-wall springs in the Thousand 
Springs area of Idaho, which is the terminal discharge zone for 
the entire unused groundwater flow from the Eastern Snake 
River Plain aquifer.

Pesticides in Groundwater of the 
Columbia Plateau, Snake River Plain, 
and Oahu

Atrazine and its degradate (a compound produced from 
the breakdown of a parent pesticide), deethylatrazine, were 
the most commonly detected pesticides in groundwater 
sampled in the Columbia Plateau and Snake River Plain 
(fig. 26). Bromacil was the most commonly detected pesticide 
on Oahu. The other pesticides most commonly detected in 
the study areas include simazine, hexazinone, metribuzin, 
diuron, prometon, metolachlor, p,p’-DDE, dieldrin, 2-4-D, and 
alachlor. Gilliom and others (2006) reported that many of the 
same pesticides have been detected in groundwater in many 
regions of the United States. Atrazine has also been widely 
detected in Europe’s groundwater, where it was banned for use 
in all of the European Union’s member states in 2005 because 
of concerns of groundwater contamination (Ackerman, 2007, 
p. 446). Of the 11 most commonly detected pesticides in 
groundwater of the Columbia Plateau, Snake River Plain, and 
Oahu, 8 of them are herbicides. Soil fumigants, a specialized 
type of pesticide widely used in these areas to control 
soil-borne pests such as fungi, nematodes, and weeds, are 
discussed in a separate section of this report. 
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Although detections of pesticides in groundwater were 
widespread in the Columbia Plateau, Snake River Plain, and 
Oahu, concentrations were generally below human-health 
benchmarks. For example, the human-health benchmark for 
atrazine in drinking water is 3 µg/L (U.S. Environmental 
Protection Agency, 2009a), but the largest concentration 
observed was less than 1 µg/L. The human-health benchmark 
for simazine is 4 µg/L, and the largest concentration observed 
in this report was 0.14 µg/L. The human-health benchmark 
for hexazinone is 400 µg/L (Toccalino and others, 2012); the 
largest concentration of hexazinone was about 0.09 µg/L. The 
human-health benchmark for bromacil is 70 µg/L (Toccalino 
and others, 2012); the largest concentration measured in 
groundwater for this study was 14 µg/L. 

The differences in pesticide detections in groundwater 
of the Columbia Plateau, Snake River Plain, and Oahu reflect 
different crops and pesticides favored in those areas. Some 
pesticides were detected in groundwater samples from all three 

study areas, but other pesticides were detected only in samples 
from Oahu, or only in samples from the Columbia Plateau and 
Snake River Plain (fig. 26). This is because some pesticides 
are broad-spectrum pesticides that are used on many crops in 
different areas of the United States. Other pesticides are used 
on specific crops, so they are detected only in groundwater 
underlying those particular crops. For example, atrazine is one 
of the most widely used herbicides in the United States, and 
it is used for weed control on many of the major row crops 
grown in the Columbia Plateau and Snake River Plain (U.S. 
Environmental Protection Agency, 2011c). Atrazine is also 
used for weed control in sugarcane and pineapple, and is used 
to a lesser extent on residential lawns (U.S. Environmental 
Protection Agency, 2011c). Because atrazine is used on many 
different crops in the Columbia Plateau, Snake River Plain, 
and Oahu, atrazine and its degradate, deethylatrazine, are some 
of the most frequently detected pesticides in groundwater of 
all three study areas (fig. 26). 
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Simazine, metribuzin, metolachlor, and prometon were 
detected in groundwater of the Columbia Plateau and the 
Snake River Plain, but were not detected in groundwater from 
Oahu (fig. 26). This is because simazine, metribuzin, and 
metolachlor are used on the row crops grown in the Columbia 
Plateau and Snake River Plain (such as potatoes, barley, and 
alfalfa), but not on any major crops grown on Oahu (U.S. 
Environmental Protection Agency, 1995, 2003b). Sometimes, 
pesticides are combined together for more effective weed 
control. For example, simazine and metribuzin can be 
combined with atrazine for more effective weed control in row 
crops (U.S. Environmental Protection Agency, 2011b). 

Hexazinone, bromacil, and diuron were frequently 
detected in groundwater from Oahu, but were detected much 
less frequently in groundwater from the Columbia Plateau or 
the Snake River Plain (fig. 26). This is because hexazinone, 
bromacil, and diuron are used for weed control in sugarcane 
and pineapple crops, historically the major cash crops on 
Oahu (Pesticide Management Education Program, 1993; 
U.S. Environmental Protection Agency, 1996). Bromacil and 
hexazinone have been used to control weeds in pineapple 
fields in central Oahu since the 1970s and 1980s, respectively 
(Zhu and Li, 2002). Bromacil and diuron were detected at 
much lower percentages in groundwater from the Columbia 
Plateau and the Snake River Plain, probably because their 
primary use in those areas is to control weeds and brush 
in nonagricultural areas, rather than on major crops. These 
nonagricultural areas include utility right-of-ways, ditch 
banks, railroads, electrical switching stations, and industrial 
yards (U.S. Environmental Protection Agency, 1996; U.S. 
Environmental Protection Agency, 2003a). 

The insecticides DDT and dieldrin are long banned 
but persistent pesticides that are still being detected in 
groundwater of the Columbia Plateau, Snake River Plain, 
and Oahu. DDE was detected in groundwater samples from 
the Columbia Plateau, Snake River Plain, and Oahu at low 
concentrations (about 0.001 µg/L). DDE can originate by 
breakdown of DDT or as a contaminant in commercial 
DDT formulations (U.S. Department of Health and Human 
Services, 2002). Similar to DDT, DDE can persist for a long 
time in the environment. Most DDT in soil is broken down 
to DDE and DDD (degradates of DDT) by microorganisms, 
and the half-life of DDT can be as much as 15 years (U.S. 
Department of Health and Human Services, 2002). For many 
years, DDT was one of the most widely used pesticides in the 
United States (U.S. Environmental Protection Agency, 1975). 
DDT was first synthesized in 1874, but its effectiveness as a 
pesticide was not discovered until 1939. During World War 
II and afterward, the United States produced large quantities 
of DDT for control of vector-borne diseases such as typhus 

and malaria abroad. DDT was banned for agricultural use 
in the United States in 1972, but before its cancellation, 
approximately 1.35 billion pounds of DDT was used in 
the United States (U.S. Environmental Protection Agency, 
1975). Although DDE is believed to be relatively immobile 
in groundwater (U.S. Department of Health and Human 
Services, 2002), it was still detected at trace concentrations 
in groundwater sampled from all three areas studied for 
this report. 

Dieldrin is an insecticide that was originally developed 
in the 1940s as an alternative to DDT (U.S. Environmental 
Protection Agency, 2003c). Dieldrin was manufactured as a 
parent compound but also results from degradation of aldrin, 
another insecticide (Brasher and Anthony, 2000). Under 
most environmental conditions, aldrin is largely converted 
to dieldrin, which is significantly more persistent (U.S. 
Environmental Protection Agency, 2003c). Dieldrin proved 
to be a highly effective insecticide and was very widely 
used during the 1950s to early 1970s as a broad-spectrum 
soil insecticide for the protection of various food crops, as 
seed dressings, to control infestations of pests like ants and 
termites, and to control several insect vectors of disease. 
In 1972, the EPA cancelled all but three specific uses of 
these compounds (subsurface termite control, dipping of 
nonfood plant roots and tops, and completely contained 
moth-proofing in manufacturing processes), and these were 
by 1987 voluntarily cancelled by the manufacturer (U.S. 
Environmental Protection Agency, 2003c). Dieldrin does not 
easily break down over time and tends to biomagnify (which 
means concentrations tend to increase in tissue as it is passed 
up the food chain) (U.S. Environmental Protection Agency, 
2003c). Dieldrin was used extensively for termite control on 
Oahu (Brasher and Anthony, 2000), which may help explain 
the higher occurrence in groundwater of Oahu than of the 
Columbia Plateau or the Snake River Plain. 

Although concentrations were low, pesticides were 
commonly detected in water from domestic and public-supply 
wells. Pesticides were detected in water from 30 percent or 
more of domestic wells sampled in the Columbia Plateau and 
Snake River Plain (fig. 27) (this study did not sample domestic 
wells in Oahu). Atrazine was the most commonly detected 
pesticide in domestic wells, followed by deethylatrazine and 
simazine. Most homeowners do not routinely test water from 
their domestic wells, probably because of the costs of pesticide 
analyses and because they are unaware of the common 
occurrence of pesticides in water from domestic wells. Most 
domestic wells in the Columbia Plateau and Snake River Plain 
are located in rural agricultural areas where pesticide use 
is greatest. 
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Agricultural areas had the greatest occurrence of 
pesticides in groundwater in the Columbia Plateau, Snake 
River Plain, and Oahu (fig. 28). This is not surprising, because 
that is where pesticide use is greatest and because agricultural 
land-use studies incorporated carefully selected well networks 
to characterize groundwater directly beneath cultivated land. 
However, pesticides were also detected in a large percentage 
of samples from major aquifer studies, where well networks 
encompassed mixed land uses over larger expanses of the 
regional aquifers. This indicates that pesticide contamination 
can be quite widespread and of regional extent within the 
deep, principal aquifers used for public water supplies (most 
wells in the major-aquifer studies were public-supply wells). 
To some extent it may also reflect pesticide contamination 
from a variety of land uses and not just from agriculture. 

Pesticides were also commonly detected in water from 
public-supply wells in the Columbia Plateau and Oahu, but 
hardly at all in the Snake River Plain (fig. 29). Although 
concentrations were low compared to human-health 
benchmarks, several pesticides were detected in as many as 
20 to 40 percent of the public-supply wells sampled in the 
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Figure 27. Pesticides detected in domestic wells in the Columbia Plateau and the Snake River Plain 
(domestic wells in Oahu were not sampled). 

Columbia Plateau and Oahu. Public-supply wells are routinely 
monitored for pesticides by the water supply providers. If 
pesticide concentrations exceed human-health benchmarks, the 
wells are often decommissioned or expensive water treatment 
systems are installed. 

Water samples from 50 percent of the wells sampled in 
all three study areas contained one or more pesticides, with 
some samples containing as many as 10 pesticides (fig. 30). 
Water samples containing two or more pesticides were much 
more common than samples containing just one pesticide, 
meaning that pesticides most commonly occur in groundwater 
as mixtures. This is consistent with what was observed 
nationally; Gilliom and others (2006) reported that 47 percent 
of wells sampled in agricultural areas and 37 percent of wells 
in urban areas had detections of two or more pesticides or 
degradates. Deethylatrazine, a degradate of atrazine, was 
included in this compilation, but other pesticide degradates 
such as 3,4-dichloroanaline (a degradate of diuron) were not 
included because laboratory methods for these degradates 
were not yet developed when groundwater samples were 
collected in the Columbia Plateau and Snake River Plain. 
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Figure 28. Pesticides detected in land-use and major 
aquifer studies in the Columbia Plateau, Snake River 
Plain, and Oahu. 

Fumigants and VOCs were not included in this compilation of 
multiple detections because they are discussed in later sections 
of this report. Combining fumigant and VOC detections with 
pesticide detections in the same water sample would have 
increased the total number of constituents detected in water 
from many wells. 

Mixtures of pesticide compounds in groundwater are of 
particular interest for human-health reasons. Toxicologists 
have evaluated health risks and established drinking-water 
regulations for many single compounds but risks associated 
with compound mixtures are far less known and may be 
greater than those of single compounds in some cases (Bartsch 
and others, 1998; Carpenter and others, 1998). 

Atrazine and its degradate, deethylatrazine, constituted 
the most common mixture observed (fig. 31). It is common 
to see the parent compound and its degradate in the same 
groundwater sample. However, atrazine and deethylatrazine 
were also co-detected with other pesticides, and these mixtures 
can be indicative of the region where they were applied. For 
example, simazine and metolachlor are commonly applied in 
combination with atrazine (U.S. Environmental Protection 
Agency, 2011c). Atrazine and simazine or metolachlor form 
some of the more common mixtures of pesticides observed 
in groundwater (fig. 31), but they were only detected in 
groundwater from the Columbia Plateau and the Snake 
River Plain. This is because simazine and metolachlor are 
not used on Oahu (U.S. Environmental Protection Agency, 
2011c). As another example, atrazine used to be applied to 
pineapple (U.S. Environmental Protection Agency, 2003d), 
and bromacil and diuron are also applied to pineapple 
(Pesticide Management Education Program, 1993). Atrazine, 
deethylatrazine, bromacil, and diuron formed the fourth 
most common mixture of pesticides observed, but only in 
Oahu (fig. 31). One possible explanation for the widespread 
occurrence of pesticide mixtures is that some pesticides are 
applied to crops as mixtures to begin with, or in successive 
years. Mixed land use and the mixing of contaminant 
plumes in groundwater may also create mixtures of pesticide 
compounds that were not applied together at the land surface. 

The pesticide mixtures observed in the Columbia Plateau 
and the Snake River Plain were consistent with those observed 
nationally, for which Gilliom and others (2006) reported that 
more than 30 percent of all unique mixtures found in streams 
and groundwater in agricultural and urban areas contained 
the herbicides atrazine (and deethylatrazine), metolachlor, 
simazine, and prometon. Mixtures of atrazine, deethylatrazine, 
bromacil, and diuron were unique to Oahu, where crops not 
normally grown in the continental United States are grown 
(sugarcane and pineapple). 
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Figure 29. Pesticides detected in public-supply wells in the Columbia Plateau, Snake River Plain, and 
Oahu. 
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Figure 30. Percentage of wells with multiple detections of pesticides in the Columbia Plateau, Snake River Plain, and 
Oahu. 
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Figure 31. Percentage of wells in the Columbia Plateau, Snake 
River Plain, and Oahu with detections of the most common 
pesticide mixtures. 

Table 3. Logistic regression coefficients and individual p-values of independent 
variables significantly related with the detection of atrazine in groundwater in the Central 
Columbia Plateau, Upper Snake River Plain, and Oahu study units.

[Abbreviation: m, meter; <, less than]

Independent variable

Unstandardized 
atrazine model 

regression 
coefficients 

p-value
Standardized 
coefficients

Logistic regression constant 0.1648 0.7222 –
Study unit—Upper Snake River Plain 0.0642 0.0405 0.11777
Study unit—Oahu 1.135 0.0534 0.14022
Depth of well –0.00318 <0.0001 –0.30081
Percent row crops within 500 m radius 0.0152 0.0064 0.15933
Percent fallow within 500 m radius –0.0243 0.0555 –0.12043
Organic matter content of soil –1.1688 0.0072 –0.20867
Permeability of soil 0.0853 0.0394 0.11534

Predicting the Distribution of 
Atrazine Detections

A logistic regression model was developed to predict 
the probability of detecting atrazine (the most commonly 
detected pesticide) at a concentration of 0.001 µg/L, which 
is the minimum laboratory reporting limit for atrazine, 
in groundwater in the Central 
Columbia Plateau, Snake River 
Plain, and Oahu. Deethylatrazine, 
deethyldeisopropylatrazine, 
deisopropylatrazine, and 
2-hydroxyatrazine data were combined 
with the atrazine data because they are 
breakdown products of atrazine, and 
their detection indicates the former 
presence of atrazine. The groundwater 
quality data were transformed to a 
binary response variable of detect or 
no detect before logistic regression 
modeling. 

Study unit, well depth, percent 
of row-crop land within a 500-meter 
buffer around the well head, percent 
of fallow land within a 500-meter 
buffer around the well head, soil 

organic-matter content, and soil permeability were significant 
variables in the model (table 3). The individual p-values of the 
significant variables in the atrazine model were all less than 
0.06, and most were less than 0.04. 

The positive and negative signs of the model coefficients 
were consistent with expectations. Well depth showed a 
negative correlation with atrazine occurrence, indicating 
that as well depth increases, atrazine occurrence decreases. 
There was a positive correlation with percent of row crops, 
which is the agricultural land where most atrazine is expected 
to be applied. There was a negative correlation with fallow 
agricultural lands. Fallow agricultural lands make up a very 
small percentage of land cover in the Central Columbia 
Plateau, Snake River Plain, and Oahu, but they are not 
expected to receive atrazine applications. Soil organic matter 
and soil permeability had negative correlations and positive 
correlations, respectively, with atrazine occurrence. This is 
consistent with what is expected—atrazine tends to sorb onto 
soils with high organic matter contents, and soils with greater 
permeability tend to have more infiltration. The standardized 
coefficients indicate that the depth of the well has the greatest 
impact on atrazine detections, followed by the organic matter 
of the soil. 

Several preliminary models using various combinations 
of independent variables were developed before selecting 
the final atrazine model shown in table 3. Depth to top of 
well screen was a significant variable in several preliminary 
models, as were population density and change of population 
density. Precipitation was a significant variable is several 
preliminary models, but when probability maps were produced 
for Oahu it became apparent that precipitation was not a 
viable variable because precipitation had an anomalously 
large influence in the probability ratings, resulting in 
lowland areas having anomalously large probability ratings. 
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Subsequent logistic regression models that did not incorporate 
precipitation were much more effective in Oahu, and they still 
produced effective models in the Central Columbia Plateau 
and the Snake River Plain. Percent of urban lands was a 
significant variable in some preliminary models, which is to 
be expected because atrazine is used on lawns and recreational 
grasses. These preliminary models were not selected for the 
final model because they had inferior statistical performance. 

Soils properties at point locations had more significant 
statistical correlations with atrazine detections than soils 
properties mapped within 500-meter buffers around the 
wellheads. This is probably because the STATSGO soils data 
were generalized from 1:24,000-scale to 1:250,000-scale maps 
to construct the STATSGO soils database. Averaging the soils 
data within 500-meter buffers only serves to further generalize 
the data, reducing statistical significance. 

Recharge was never a significant variable in any of 
the models, probably because other variables, such as crop 
type and organic matter content, are more closely related to 
atrazine occurrence. Atrazine use data are available for Central 
Columbia Plateau and Snake River Plain but are not available 
for Oahu, so atrazine use was not included in the models. It 
is likely that atrazine use would be a significant independent 
variable, if such data were available for Oahu. 

Percent row crops was the only agricultural land-
use variable positively related with atrazine occurrence, 
whereas nitrate was positively correlated with all agricultural 
lands (orchards, pasture/hay, row crops, small grains, and 
fallow). This is probably because atrazine is only applied to 
irrigated row crops, but nitrogen fertilizers are applied to all 
agricultural lands. 

Overall performance of the atrazine model was good with 
the chi-squared p-value calculated from the log likelihood 
ratio of the entire model less than 0.001 and a McFadden’s 
rho-squared of 0.184. To help confirm that the atrazine models 
are calibrated to the groundwater quality data, regressions 
were made between the percentage of actual detections 
of atrazine and its breakdown products and the predicted 
probability of detecting atrazine and its breakdown products 
(fig. 32). The percentage of predicted detections of atrazine 
and its breakdown products was determined by dividing the 
predicted probabilities for the study areas into deciles, or 
groupings of 10 percent (0 to 10 percent, greater than 10 to 
20 percent, greater than 20 to 30 percent, and so on). The 
percentage of atrazine detections within each group then was 
calculated and included in the regressions shown in figure 32. 
The atrazine model exhibits good calibration, with an 
r-squared value of 0.97.

Maps showing the probability of detecting atrazine at 
or greater than concentrations of 0.001 μg/L (fig. 33) in the 
Central Columbia Plateau, Snake River Plain, and Oahu 

were constructed using the logistic regression models. Before 
constructing the maps, all GIS data were converted to grids. 
Data in Oahu were converted from polygon coverages to 
30-meter grids. All GIS data in Central Columbia Plateau and 
Snake River Plain were converted to 1-kilometer grids because 
the percent land cover grids (Naomi Nakagaki, electronic 
commun.) were already mapped at 1-kilometer. Then, the 
logistic regression models similar to equation 1 were entered 
into a GIS and a probability rating was calculated for each of 
the grid nodes in each of the three study units.

Areas with a high percentage of land in crops (such as 
potatoes or sugarcane), a low percentage of fallow land, and 
highly permeable soils with low amounts of organic matter 
are most likely to have atrazine detected in the groundwater 
(fig. 33). Areas where agricultural activities were absent 
had much lower probabilities of atrazine being detected. 
The Snake River Plain had a much higher probability 
of atrazine detections, with more than 50 percent of the 
land area having greater than a 50-percent probability of 
atrazine contamination. Oahu had a much lower probability 
of atrazine contamination, with only 24 percent of the 
land area having greater than a 50-percent probability of 
atrazine contamination. 
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Figure 32. Percentage of actual detections 
of atrazine in groundwater versus the atrazine 
logistic regression model predicted probability of 
detections of atrazine in groundwater.
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Figure 33. Probability from the model that atrazine will be detected in groundwater of the Columbia Plateau, Snake 
River Plain, and Oahu and percentage of row crops grown within a 500-meter radius in those areas. 
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Atrazine and deethylatrazine concentrations and 
frequencies of detections tended to be greater in younger 
groundwater (fig. 34). This is because atrazine was first 
registered for use in the United States by the USEPA in 1958, 
and it was not widely used in the United States until the 
mid-1960s (U.S. Environmental Protection Agency, 2003d). 
Atrazine use on crops increased over time, so its occurrence 
and concentrations in groundwater increased. The youngest 
groundwater is commonly located in the uppermost portions 
of an aquifer. It can take many years for groundwater 
contamination to move into deeper parts of an aquifer. 
Relations such as those shown in figure 34 are important, 
because they indicate that it can take many years for 
contamination to travel into the aquifer, and that contaminants 
can persist in groundwater for many decades. 

The year the groundwater was recharged was determined 
in water samples from a subset of wells sampled in the Snake 
River Plain and Oahu using chlorofluorocarbons, tritium, and 
sulfur hexafluoride (Plummer and others, 2000; Hunt, 2004). 
Estimates of the year the groundwater was recharged have 
some error associated with them because of mixing of old 
waters and young waters within the well bore during sampling 
(Plummer and others, 2006). This mixing of old and young 
groundwater produces a mean groundwater age of the sample. 
The atrazine/deethylatrazine detections in waters older than 
1960 in figure 34 are probably because of this mixing of older 
and younger groundwater; the atrazine or deethylatrazine 
probably is present in the young fraction of groundwater, even 
though the mean recharge date of the water as a whole is older 
than 1960. 

Volatile Organic Compounds
Fourteen volatile organic compounds (VOCs) were 

detected in 5 percent or more of water samples from 
any one of the three study areas (fig. 35); 29 VOCs were 
detected altogether. The most frequently detected VOCs 
were fumigants and solvents; chloroform may originate as 
a chlorination byproduct. Oahu had the highest percentage 
of groundwater samples with VOC detections, both at any 
concentration (blue bars, including low “trace” concentrations) 
and at or above a common assessment level of 0.2 micrograms 
per liter (red bars). Detection rates at any concentration were 
high for Oahu in part because of lower reporting levels (see 
following section, “VOC Reporting Levels”).

At the common assessment level of 0.2 micrograms per 
liter (red bars on figure 35), VOCs were far more prevalent 
in Oahu groundwater samples than in samples from the 
Columbia Plateau and Snake River Plain. VOC detections on 
Oahu were as high as 36 percent for the fumigant compound 
1,2,3-trichloropropane (TCP) and 24 percent for the solvent 
trichloroethene (TCE). Other VOCs detected in 5 percent 
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Figure 34. Atrazine and deethylatrazine 
concentrations versus groundwater recharge date for 
the Snake River Plain and Oahu and total atrazine use 
in the United States. 

or more of samples include the solvent and disinfection 
byproduct chloroform (also known as trichloromethane), 
solvents perchloroethene (PCE) and carbon tetrachloride 
(tetrachloromethane), and the fumigant 1,2-dichloropropane 
(DCP), which was the most frequently detected VOC in the 
Columbia Plateau and Snake River Plain at and above the 
common assessment level.

Fumigant contamination in all three study areas is 
thought to have originated as nonpoint pollution from 
widespread agricultural application. Solvent contamination at 
high concentrations on Oahu likely originated from military 
sources, whereas origins for the fewer solvent detections in 
the Columbia Plateau and Snake River Plain are less clear and 
could range from urban sources to use on farm machinery to 
impurities in fumigant or pesticide formulations.

Chloroform was the most frequently detected VOC, 
present in 56 percent of Oahu samples. Chloroform is a 
compound in the trihalomethane class of VOCs (also known 
as disinfection byproducts). Its presence in groundwater is 
usually attributed to infiltration of chlorinated water from 
lawn or landscape irrigation. On Oahu, however, highest 
concentrations of chloroform were in water samples that 
also had high concentrations of TCE and PCE solvents, 
whereas low chloroform concentrations were codetected with 
moderate to low concentrations of fumigants and pesticides 
in agricultural areas where chlorinated water would not be 
used for irrigation. Judging from Oahu results, chloroform 
is present in solvent formulations and likely is present 
in fumigant or pesticide formulations as an additive or 
manufacturing byproduct or impurity (Hunt, 2004). This may 
explain many of the chloroform detections in the Columbia 
Plateau and Snake River Plain as well.
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Figure 35. Percentage of groundwater samples with detections of selected volatile organic compounds, at any concentration 
(includes very low “trace” concentrations) and at or above a common assessment level of 0.2 micrograms per liter. 

VOC Reporting Levels

A common assessment level is necessary for valid 
comparison among the three study areas because laboratory 
reporting levels and practices have varied during the two 
decades of NAWQA data collection. In the 1992–95 time 
span of NAWQA Cycle 1 sampling in the Columbia Plateau 
and Snake River Plain, the VOC laboratory analysis had a 
fixed minimum reporting level of 0.2 µg/L for all compounds 
analyzed. “Fixed” means that no concentrations were 
reported below the 0.2 µg/L reporting limit (values were 
reported as “less than 0.2”). By the time of Oahu’s sampling in 
2000–2001, refinements in the laboratory method had lowered 
reporting levels nearly an order of magnitude, to as low as 
0.03 µg/L for some compounds. Furthermore, concentrations 
below reporting limits were reported as estimated 
concentrations, as low as 0.01 µg/L (some laboratories would 
report these as “trace” levels). The low reporting levels 

revealed widespread VOC contamination on Oahu, but mostly 
at low concentrations below human-health benchmarks for 
drinking water. Similar low-level contamination may be 
present in the Columbia Plateau and Snake River Plain and 
may be discovered as well networks are resampled with the 
improved VOC laboratory method. Cycle 2 resampling of two 
Columbia well networks (a major-aquifer network ccptsus1b, 
and an orchard monitor-well network, ccptlusor1b) contributed 
a small subset of low-level VOC results (note the blue bars 
in the Columbia graph of figure 35). However, the only VOC 
results from the Snake River Plain were at the higher fixed 
reporting level of 0.2 µg/L, and it is this concentration that 
was chosen as a common assessment level for comparing 
across all three study areas. Oahu VOC results parallel those 
nationally, where VOCs were detected in 20 percent of 
wells at 0.2 µg/L but in more than 50 percent of wells at an 
assessment level an order of magnitude lower, at 0.02 µg/L 
(Zogorski and others, 2006).
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VOC Detection Rates by Network and Well Type

Among drinking-water wells (fig. 36A), VOCs were 
detected in 5 percent or fewer of domestic wells but in 
as many as 30 percent of public-supply wells. Domestic 
wells were sampled only in the Columbia Plateau and 
Snake River Plain but not on Oahu. Many public-supply 
wells were sampled in the Columbia Plateau and Oahu, but 
only a few were sampled in the Snake River Plain. So the 
domestic-well graph in figure 36A has no Oahu representation 
and the public-supply well graph has little Snake River Plain 
representation and is highly skewed by results from Oahu, 
where VOCs were much more prevalent in groundwater than 
in the Columbia Plateau and Snake River Plain (see fig. 35). 
Domestic wells likely have lower VOC detection rates because 
they draw water from a small area of aquifer and many of 
the wells are on rural farm homesteads with few conspicuous 
sources of solvents and other VOC compounds (with the 
notable exception of fumigants). Public-supply wells with 
large cones of depression likely have higher VOC detection 
rates because they draw water from greater distances in 
the aquifer, thereby having a greater chance of intercepting 
contamination from solvent leaks or agriculturally applied 
fumigants. This is particularly true of Oahu wells, which 
make up 23 of the public-supply wells in figure 36A and are 
known to be affected by solvents used on military bases and 
agricultural fumigants.

Similarly, VOCs were detected at much higher rates in 
major-aquifer studies than in agricultural land-use studies 
(fig. 36B). But again, results are closely related to well type. 
The agricultural land-use graph only includes wells from the 
Columbia Plateau and Snake River Plain (mostly domestic and 
monitoring wells) because no land-use studies were conducted 
on Oahu. Moreover, the major-aquifer graph only includes 
wells from the Columbia Plateau and Oahu (mostly public-
supply wells) because VOCs were not analyzed in Snake River 
Plain major-aquifer studies, only in the Snake River Plain 
land-use studies. The major-aquifer graph therefore reflects 
samples from public-supply wells, and high rates of detection 
can again be attributed to the wider capture of groundwater by 
the high-capacity wells and by the outsize influence of Oahu 
wells, previously shown to have high rates of contamination 
by solvents used on military bases and agricultural fumigants.

Sources of VOCs

Volatile organic compounds form a broad class of organic 
compounds that include solvents and degreasers, refrigerants, 
fumigants, gasoline components, and trihalomethanes, which 
can form when water is chlorinated for disinfection. Many 
of the compounds have multiple uses; for example, some 
solvent-class compounds can also originate as manufacturing 
byproducts, impurities in other solvents or as additives in 
pesticide formulations.

Groundwater can be contaminated by VOCs from a 
number of sources: accidental spills, improper disposal, 
chronic leakage from point sources such as storage tanks, and 
nonpoint application of chemical products at the land surface 
such as for agriculture. VOCs can even dissolve into water 
from the atmosphere, where they are present at generally low 
concentrations from industrial and manufacturing releases. 

The most prominent use of VOCs common to all 
three study areas is nonpoint agricultural application of 
soil fumigants to combat nematodes (root worms). This 
is discussed in more detail in the following “Fumigants” 
section of this report. In addition to nonpoint application, 
point sources of fumigants have been identified at sites where 
fumigants were spilled during mixing and preparation.

Another prominent use of VOCs specific to Oahu is 
military use of solvents at bases in the central Oahu plateau. 
Solvent use for aircraft and automotive degreasing dates back 
to the World War II era of the 1940s. A greater awareness 
and environmental concern about chemical releases evolved 
over subsequent decades. Solvent disposal at automotive 
and machine shops often was to unlined earth or to drains 
that routed to sumps and cesspools. Landfills also have been 
documented sources of disposed solvents, typically in drums 
(Harding Lawson Associates, 1995; U.S. Environmental 
Protection Agency, 2000).

VOC use in the urban environment has included specific 
industries such as dry cleaning and manufacturing, as well as 
various incidental uses in household products by the general 
population. Gasoline is a source of several VOCs known 
as BTEX compounds (benzene, toluene, ethylbenzene, and 
xylene). Point releases of gasoline to the environment have 
been from spills and from chronic leakage from storage tanks 
and fuel-transmission pipelines. 

Fumigants

Widespread agricultural use of soil fumigants, which 
are VOCs used as pesticides, in the Columbia Plateau, 
Snake River Plain, and Oahu has led to their detection 
in groundwater. Fumigant concentrations exceeded 
drinking-water benchmarks in all three study areas and caused 
well closures on Oahu in the 1980s. 

NAWQA sampling detected fumigant compounds in 
only a few areas across the United States, corresponding to 
areas of known fumigant use. The Columbia Plateau, Snake 
River Plain, and Oahu are three such areas where fumigants 
have been applied extensively for agriculture. Although 
several fumigant compounds were banned from use during 
the late 1970s, they are still being detected in groundwater 
decades later. 
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Figure 36. Percentage of wells with VOC detections for (A) public-supply and domestic drinking water wells and (B) wells in the 
land-use and major-aquifer study networks.
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Fumigants were detected frequently in 
NAWQA sampling on Oahu, less frequently 
in the Columbia Plateau, and in water from 
only one well in the Snake River Plain (fig. 37 
and table 4). Fumigants were detected in 
groundwater from 20 of the 45 wells sampled 
on Oahu: in 12 of 30 public-supply wells and 
in 8 of 15 monitoring wells (Hunt, 2004). 
Concentrations in some water samples were 
greater than Hawaii MCLs (Maximum 
Contaminant Levels; State of Hawaii, 2011), 
which are human-health benchmarks used to 
define and regulate safe drinking water. Of 30 
samples from Oahu public-supply wells, 4 (13 
percent) had fumigant concentrations greater 
than Hawaii MCLs for Dibromochloropropane 
(DBCP) or 1,2,3-Trichloropropane (TCP). 
Hawaii MCLs for these compounds are lower 
than USEPA MCLs. 

Although fumigants were detected 
less frequently in the Columbia Plateau and 
Snake River Plain than on Oahu, they are 
still a concern in those areas because some 
concentrations were greater than human-health 
benchmarks. In the Columbia Plateau, two 
water samples had concentrations greater than the USEPA 
MCL for Ethylene dibromide (EDB) and the Columbia Plateau 
and Snake River Plain each yielded one water sample in which 
1,2-Dichloropropane (DCP) concentration was greater than the 
USEPA MCL (table 4).

Fumigant Use
Soil fumigants are volatile organic compounds 

(VOCs) used as pesticides. They are applied to soils to 
reduce populations of plant parasitic nematodes (harmful 
rootworms), weeds, fungal pathogens, and other soil-borne 
microorganisms (U.S. Environmental Protection Agency, 
2005, 2008). Being volatile, fumigants evaporate easily from 
liquid to vapor or gas (their other main agricultural use besides 
soil application is grain fumigation, where fumigant vapor 
is infused through stored grain to kill pests). Fumigants are 
injected or incorporated into the soil before planting crops, 
at which time the fumigant vapor permeates the soil and kills 
soil-borne pests. Much of the fumigant would evaporate to 
the atmosphere before having the desired effect, so the soil is 
compacted or plastic sheeting laid down to retain the chemical 
long enough for it to act. Soil fumigants are used across the 

Nation on a variety of different crops (U.S. Environmental 
Protection Agency, 2005), but on Oahu they are used most 
commonly for pineapple, and in the Columbia Plateau and the 
Snake River Plain they are used most commonly for potatoes 
and sugar beets. 

Fumigant use dates back to the 1940s and 1950s, 
when the compounds were first formulated and marketed 
commercially. Most of the fumigants detected in our three 
study areas were banned for soil application or usage 
was ceased in the late 1970s and early 1980s, and only 
1,3-Dichloropropene is still used as a soil fumigant in the 
United States. DBCP was banned by the USEPA in 1979 after 
it was found to cause infertility in male workers exposed to it, 
and because of its potential to cause tumors in the breast, lung, 
and other organs in laboratory animals (Clark and Snedeker, 
2004). EDB was banned in 1983 because it was found to be 
contaminating groundwater supplies in a number of States, 
and because laboratory test results had shown EDB to be a 
carcinogen and mutagen and to cause reproductive disorders 
in test animals (U.S. Environmental Protection Agency, 
1983). DCP was withdrawn from soil fumigant formulations 
by manufacturers in the late 1970s and early 1980s. TCP, an 
impurity in DCP products, has been found to cause cancer in 
rodents (California Environmental Protection Agency, 2009). 

fig37_cir1359_ch6_fumigants_20120215_wevo
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Figure 37. Fumigant concentrations detected in groundwater sampled from the 
Columbia Plateau, the Snake River Plain, and Oahu. 
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Millions of pounds of fumigants are used to produce 
crops every year in the United States (U.S. Environmental 
Protection Agency, 2005), although other chemicals have 
replaced the banned compounds. Methyl bromide, DCPE, 
metam sodium, and chloropicrin are the most widely used 
soil fumigants, and they rank in the top 20 pesticides (in 
pounds per year) because of high application rates and 
widespread coverage. In 2001, metam sodium was the third 
most commonly used pesticide in the United States (57 to 
62 million pounds) and methyl bromide was the seventh 
most commonly used pesticide (20 to 25 million pounds). 
DCPE was the eighth most commonly used pesticide (20 
to 25 million pounds), and chloropicrin was the eighteenth 
most commonly used pesticide (5 to 9 million pounds) (U.S. 
Environmental Protection Agency, 2004). Nationally, the 
largest uses of soil fumigants are on potatoes, tomatoes, 
tobacco, carrots, and strawberries. 

Several of the fumigants have been determined to be 
highly carcinogenic, and this is reflected in the maximum 
contaminant levels for safe drinking water that have been 
set by USEPA and various States. USEPA MCLs for EDB 
(0.05 µg/L) and DBCP (0.2 µg/L) are the second and third 
lowest MCLs that have been established; only the MCL 
for dioxin is lower. As a result, even minute fractions of 
soil-applied fumigants can cause unsafe concentrations in 
groundwater. Detection of fumigants has resulted in closures 
of high-capacity public-supply wells and has required 
installation of costly carbon filtration to render the water 
drinkable.

Even though most of the fumigants investigated by this 
report have not been used since the early 1980s, they will 
continue to be detected in groundwater for many years into the 
future. Computer modeling by Rungvetvuthivitaya and others 
(2007) indicate that it can take from 14 to 32 years for DBCP 
and EDB to travel through the soil and bedrock to reach the 
groundwater in Oahu. After they enter the groundwater, they 
can persist for many years. For example, Burlinson and others 
(1982) predict the half-life time for DBCP in Oahu (the time 
that it takes for the concentration of the constituents to break 
down to one-half of the original concentration) to be 38 years 
if the groundwater temperature is 25 degrees Celsius and the 
pH is 7. If the groundwater temperature is 15 degrees Celsius, 
DBCP’s half-life is 141 years (the average temperature of the 
groundwater sampled in Oahu for this Circular was 22 degrees 
Celsius and the average pH was 7.1). For these reasons, 
fumigants may be thought of as “legacy contaminants”—
originating from surface application decades earlier rather 
than corresponding to current land use and chemical 
application practices.

Trace Elements
Trace elements include metals and semi-metallic 

elements that typically are found in natural waters at 
concentrations less than 1 mg/L. These elements originate 
primarily from rock weathering; concentrations of trace 
elements in groundwater reflect their abundance in aquifer 
materials, geochemical conditions, concentrations of other 
constituents, and attenuation processes such as adsorption. 
Many trace elements may occur as multiple ionic species in 
natural waters that, depending on redox conditions and pH, 
have different solubility characteristics. Human activities such 
as mining and waste disposal also can affect concentrations of 
trace elements in groundwater. At high concentrations, many 
trace elements can have adverse health effects, whereas others 
may present aesthetic or nuisance problems. 

Trace metals that can have adverse health effects include 
lead, arsenic, and molybdenum. Long-term exposure to 
lead by infants and children can cause delays in physical 
or mental development; children could show slight deficits 
in attention span and learning abilities. Arsenic, which has 
been recognized as a toxic element for centuries, is a human 
health concern because it can contribute to skin, bladder, and 
other cancers (National Research Council, 1999). Arsenic is a 
naturally occurring element in rocks and soils, and therefore 
in the groundwater that is in contact with them (Welch and 
others, 2000). Elevated arsenic concentrations in groundwater 
can occur naturally, from mobilization of arsenic into 
groundwater as a result of irrigation (Ayotte and others, 2011) 
or from the use of arsenic-containing pesticides. Molybdenum 
is considered an essential trace element in both animals 
and humans (World Health Organization, 2011). However, 
consequences of long-term consumption of drinking water 
with high concentrations of molybdenum can include enlarged 
liver, disorders of the gastrointestinal tract, kidneys, and a 
gout-like disease (joint pain in the hands and feet) (Wisconsin 
Department of Health Services, 2010). 

Trace elements were not analyzed in samples from all 
of the wells sampled in this study. The concentrations of nine 
trace elements—arsenic, cadmium, chromium, copper, lead, 
selenium, zinc, iron, and manganese—were analyzed in about 
260 wells. The remaining trace elements were analyzed in 
about 180 of the sampled wells.
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Figure 38. Percentage of wells in the Columbia Plateau, Snake River Plain, and Oahu 
with trace-element detections.

Many trace elements were minor constituents in the 
well water sampled in this study. Aluminum, arsenic, barium, 
boron, chromium, copper, lithium, molybdenum, nickel, 
strontium, uranium, vanadium, and zinc were each detected 
in about one-half or more of the sampled wells (using a 
common reporting level of 1 μg/L for most trace elements, 
fig. 38). Strontium, barium, boron, and vanadium were the 

most frequently detected and occurred in almost all samples. 
Arsenic, uranium, and molybdenum, which have health 
concerns associated with them, were all detected in more than 
60 percent of samples. Antimony, beryllium, cobalt, cadmium, 
silver, and thallium were not detected (using a common 
reporting level of 1 μg/L).
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Radon
Radon (radon-222) is a water-soluble, radioactive gas that 

originates from radium-226, part of the uranium-238 decay 
series. Because its initial parent uranium occurs ubiquitously 
in trace amounts in the aquifer sediments and rocks, and 
because it is soluble, radon is common in groundwater. 
Radon is chemically inert and does not react with aquifer 
materials or other chemical constituents, but it decays through 
alpha-particle emission and has a short half-life (3.8 days; 
Wanty and Nordstrom, 1993). Radon concentrations in 
groundwater can be affected by multiple factors, including 
the distribution of uranium-bearing minerals in aquifer 
materials, aquifer physical characteristics, and geochemical 
conditions that affect the uranium and radium mobility (Hess 
and others, 1985; Otton, 1992; Wanty and others, 1992). 
Radon concentrations are reported in activity units, picocuries 
per liter (pCi/L), which describe the number of radioactive 
emissions (nuclear disintegrations) over time, rather than 
in mass concentration units. One picocurie per liter equals 
2.2 radioactive disintegrations per minute per liter.

Radon and other naturally occurring radionuclides 
emit ionizing radiation and consequently are carcinogens. 
Radon can contribute to the risk of developing lung and 
gastrointestinal cancers (National Academy of Sciences, 
1999). According to the U.S. Environmental Protection 
Agency (2009b), radon is the second most frequent cause 
of lung cancer, after cigarette smoking, causing 21,000 lung 
cancer deaths per year in the United States. Research has 
shown that the potential of lung cancer from breathing 
radon in air is much larger than the potential of stomach 
cancer from swallowing drinking water with radon in it 
(U.S. Environmental Protection Agency, 2009b). Most of the 
exposure from radon in drinking water comes from radon 
released into the air when water is used for showering and 
other household purposes. Adverse health effects from radon 
in drinking water result primarily from inhalation, after 
the gas is released from solution in the home, although the 
contribution from drinking water usually is small compared 
to other sources of radon in indoor air (Hopke and others, 
2000). Water with about 10,000 pCi/L of radon contributes 
about 1 pCi/L of radon to indoor air (Otton, 1992); USEPA 
recommends that homes with indoor air concentrations at 
or above 4 pCi/L be fixed to reduce concentrations (U.S. 
Environmental Protection Agency, 2009b). Two human-health 
benchmarks, which are regulations proposed by USEPA 
in 1999 for public water systems, are used for comparison 
with radon concentrations in this study. The higher value, 

4,000 pCi/L, is an alternative MCL that is proposed for public 
water systems for states or water-system service areas that 
have programs in place to reduce radon risks from all sources 
(Hopke and others, 2000; U.S. Environmental Protection 
Agency, 2011d). The lower value, 300 pCi/L, is proposed 
as the MCL for states or service areas that do not have 
such programs.

Radon concentrations were measured in nearly all of the 
wells sampled in this study. Radon activities in water exceeded 
the proposed human-health benchmark of 4,000 pCi/L in very 
few of the wells sampled in the Columbia Plateau, Snake 
River Plain, and Oahu (fig. 39). However, using the lower 
USEPA proposed human-health benchmark of 300 pCi/L, 
radon activities exceeded the human-health benchmark 
in water from over 80 percent of the wells sampled in the 
Columbia Plateau and 50 percent of the wells sampled in 
the Snake River Plain. Less than 5 percent of wells sampled 
in Oahu exceeded the lower human-health benchmark of 
300 pCi/L, indicating that there is a much lower potential of 
radon exposure from groundwater in Oahu. 

fig39_radon_20120130

Columbia Plateau,
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Figure 39. Percentage of wells with radon detections 
above human-health benchmarks in water from wells 
sampled in the Columbia Plateau, Snake River Plain, and 
Oahu. 
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Relation of Constituent Concentrations 
to Human-Health Benchmarks

Concentrations of naturally occurring and anthropogenic 
(related to human activities) constituents were detected 
above human-health benchmarks in drinking water from 
domestic and public-supply wells sampled in the Columbia 
Plateau, Snake River Plain, and Oahu (fig. 40 and table 5). 
Naturally occurring compounds detected above human-
health benchmarks are radon, arsenic, and molybdenum. 
Anthropogenic compounds detected above human-health 
benchmarks are nitrate, dieldrin, Ethylene dibromide (EDB), 

fig40_cir1359_ch4_mcl_20120104_wevo
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Figure 40. Percentage of wells with detections of selected constituents above human-health benchmarks in water 
from domestic and public-supply wells sampled in the Columbia Plateau, Snake River Plain, and Oahu. 

Dibromochloropropane (DBCP), 1,2-Dichloropropane (DCP), 
1,2,3-Trichloropropane (TCP), and Trichloroethene (TCE). 
Naturally occurring constituents and nitrate concentrations 
above human-health benchmarks were more common in the 
Columbia Plateau and the Snake River Plain. Anthropogenic 
constituents above human-health benchmarks were more 
common in Oahu than the Columbia Plateau or Snake 
River Plain. The percentage of wells exceeding 10 percent 
of the human health benchmarks provides an indication of 
contaminants that may approach concentrations of potential 
human-health concern, either individually or as mixtures, and 
to identify those that may warrant additional monitoring and 
study (table 5). 
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Nitrate

Nitrate concentrations of water from drinking water wells 
were above the human-health benchmark of 10 mg/L in the 
Columbia Plateau (17 percent of wells) and the Snake River 
Plain (3 percent of wells) but did not exceed the human-health 
benchmark in Oahu (fig. 40). Nitrate can be both naturally 
occurring and from anthropogenic sources. Rupert (1996) 
reported that naturally occurring nitrate concentrations in the 
Snake River Plain are below 1 mg/L; Dubrovsky and others 
(2010) reported that national background concentrations of 
nitrate in groundwater are less than 1 mg/L; and Nolan and 
Hitt (2003) reported that nitrate concentrations of groundwater 
in relatively undeveloped areas of the United States are 
below 1.1 mg/L. The source of nitrate concentrations above 
background levels in groundwater of the Columbia Plateau 
is primarily nitrogen fertilizers, and to a lesser extent animal 
manure (Jones and Wagner, 1995). The sources of nitrate 
in groundwater of the Snake River Plain also are nitrogen 
fertilizers and animal manure (Rupert, 1996; Skinner and 
Donato, 2003). Domestic septic systems account for less than 
1 percent of the total nitrogen input in the Snake River Plain 
(Rupert, 1996). Nitrate concentrations of water from public-
supply wells sampled in Oahu were above the background 
concentration of 1 mg/L, but they were below human-health 
benchmarks. The elevated nitrate concentrations above 
background in Oahu are the results of decades of agricultural 
activities, particularly in sugar cane fields (Hunt, 2004). 

Nitrate concentrations above the human-health 
benchmark are a concern because ingesting nitrate in drinking 
water by infants can cause low oxygen levels in their blood 
(called Methemoglobinemia, or Blue Baby Syndrome). 
Long-term exposure to nitrate at concentrations of 2 to 4 
mg/L in community water supplies has possible links to 
bladder and ovarian cancer (Weyer and others, 2001) and to 
a type of cancer called non-Hodgkins lymphoma (Ward and 
others, 1996). 

Pesticides and VOCs

Anthropogenic constituents were more commonly 
detected in water from drinking water wells in Oahu than the 
Columbia Plateau or Snake River Plain (fig. 40). Although 
Oahu had lower concentrations of radon, trace elements, and 
nitrate than the Columbia Plateau or the Snake River Plain, 
Oahu had higher concentrations and higher occurrences of 
dieldrin, EDB, DBCP, DCP, TCP, and TCE. Soil fumigants 
EDB, DBCP, DCP, and TCP are used in Oahu primarily on 
pineapple crops to help control soil-borne pests and are in the 
volatile organic compound (VOC) chemical class. 

Dieldrin is an insecticide that was formerly used for 
termite control in Oahu. Dieldrin was applied as a parent 
compound and can also be a breakdown product of the 
termiticide aldrin, which was also used in Oahu (Brasher and 
Anthony, 2000). Dieldrin was detected in groundwater above 
the human-health benchmark of 0.002 µg/L from 10 percent 
of the public-supply wells sampled in Oahu (table 5). 
Originally developed in the 1940s as an alternative to DDT, 
dieldrin proved to be a highly effective insecticide and was 
very widely used during the 1950s to early 1970s. However, 
dieldrin is an organic pollutant that does not easily break 
down over time and tends to biomagnify (U.S. Environmental 
Protection Agency, 2003c). Long-term exposure has proven 
toxic to a very wide range of animals, including humans—far 
greater than to the original insect targets (U.S. Environmental 
Protection Agency, 2003c). For this reason, it is now banned 
in most of the world. Dieldrin has been linked to health 
problems such as Parkinson’s disease, breast cancer, and 
immune, reproductive, and nervous system damage (U.S. 
Environmental Protection Agency, 2003c). It can also 
adversely affect testicular descent in the fetus if a pregnant 
woman is exposed to Dieldrin (U.S. Environmental Protection 
Agency, 2003c). 

Trichloroethylene was detected above the human-health 
benchmark of 5 µg/L in water from less than 5 percent 
of public-supply wells in Oahu. Tetrachloroethylene and 
tetrachloromethane (carbon tetrachloride) were also detected 
in water from public-supply wells in Oahu, but below 
human-health benchmarks (fig. 40). 

Radon

Radon activities in water from drinking water wells 
exceeded the proposed human-health benchmark of 
4,000 pCi/L in only 1 percent of the wells sampled in the 
Columbia Plateau and Snake River Plain and in none of the 
wells sampled in Oahu (fig. 40). However, USEPA also has 
proposed a lower human-health benchmark of 300 pCi/L. 
Using this lower human-health benchmark, radon activities 
exceeded the proposed human-health benchmark in water 
from more than 80 percent of the wells sampled in the 
Columbia Plateau and the Snake River Plain. Only 3 percent 
of public-supply wells sampled in Oahu exceeded the lower 
human-health benchmark of 300 pCi/L. 



Relation of Constituent Concentrations to Human-Health Benchmarks  65

Trace Metals

Uranium concentrations were below the human-health 
benchmark of 30 µg/L, but exceeded one-tenth of the 
human-health benchmark (3 µg/L), in water from 55 percent 
of the drinking water wells sampled in the Columbia 
Plateau and 25 percent of the wells sampled in the Snake 
River Plain (fig. 40). None of the water samples collected 
from public-supply wells in Oahu exceeded 1/10th of the 
human-health benchmark for uranium. Uranium occurrence 
was similar to radon occurrence in groundwater, which is to be 
expected because radon is derived from uranium. As indicated 
by uranium and radon concentrations in groundwater, uranium 
concentrations in the aquifer materials of Oahu are lower than 
concentrations in the Columbia Plateau and Snake River Plain. 

Arsenic exceeded the human-health benchmark of 
10 µg/L in water from 7 percent of the drinking water wells 
sampled in the Columbia Plateau and in water from 3 percent 
of the wells sampled in the Snake River Plain (fig. 40). 
However, arsenic concentrations exceeded 1/10th of the 
human-health benchmark in more than 75 percent of the 
drinking water wells sampled from the Columbia Plateau and 
Snake River Plain (table 5). Arsenic concentrations measured 
in water from public-supply wells in Oahu were lower than 
1/10th of the human-health benchmark, so arsenic is not a 
concern in Oahu. 

Lead concentrations in water from drinking water wells 
were below their human-health benchmark; it was rare to 
detect lead concentrations above 1/10th of the human-health 
benchmark (fig. 40). However, this study only collected fresh 
groundwater samples collected at the wellheads. In some 
cases, lead can leach from the pipes and other components 
of plumbing and distribution systems, increasing lead 
concentrations to above human-health benchmarks at the tap. 
For this reason, the USEPA specifies a treatment technique 
that requires public water systems to control the corrosiveness 
of their water. If more than 10 percent of tap water samples 
exceed lead concentrations of 0.015 mg/L, water systems must 
take additional steps. 

Molybdenum exceeded the human-health benchmark of 
40 µg/L in water from 7 percent of the drinking water wells 
sampled in the Columbia Plateau; water from 34 percent of 
those wells had molybdenum concentrations greater than 
10 percent of the human-health benchmark (fig. 40). In sharp 
contrast, none of the water samples collected from drinking 

water wells in the Snake River Plain and Oahu exceeded the 
human-health benchmark, and only 2 percent of the water 
samples from the Snake River Plain exceeded 10 percent of 
the human-health benchmark. 

Dissolved Solids, Sulfate, Chloride, Manganese, 
and Iron 

Secondary maximum contaminant levels (SMCLs) were 
exceeded for dissolved solids, sulfate, chloride, manganese, 
and iron in water from drinking-water wells sampled in the 
Columbia Plateau, Snake River Plain, and Oahu (fig. 41 and 
table 6). Dissolved solids (also known as total dissolved 
solids, or TDS) is a measure of the combined content of all 
inorganic and organic constituents dissolved in the water 
sample. Dissolved solids are used as an indication of aesthetic 
characteristics of drinking water and as an aggregate indicator 
of the presence of a broad array of chemical constituents such 
as bromide, calcium, chloride, fluoride, iron, magnesium, 
manganese, nitrate, phosphorus, potassium, silica, sodium, 
and sulfate. Naturally occurring dissolved solids can arise 
from the weathering and dissolution of rocks and soils, but 
elevated dissolved solids can also result from agricultural and 
residential runoff, leaching of soil contamination and point 
source water pollution, discharge from industrial or sewage 
treatment plants, or runoff in snowy climates where road 
de-icing salts are applied. Dissolved solids concentrations 
tended to be higher in the Columbia Plateau and the Snake 
River than in Oahu (fig. 41). 

Manganese and iron concentrations exceeded SMCLs 
much more commonly in the Columbia Plateau and the Snake 
River Plain than in Oahu. Manganese and iron can stain 
plumbing fixtures and can impart an unpleasant taste to the 
water, so they are undesirable constituents in drinking water. 
Elevated manganese and iron concentrations can occur in 
groundwater under reducing conditions, in groundwater with 
low dissolved oxygen, or in groundwater with low pH. Sulfate 
only exceeded the SMCLs in the Columbia Plateau; sulfate 
can impart a bad taste to the water and in high concentrations 
can cause dysentery problems. Chloride concentrations were 
a little higher in Oahu; chloride can impart an unpleasant taste 
and can cause corrosion problems in plumbing fixtures and 
delivery systems. 
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Figure 41. Percentage of wells with concentrations greater than the secondary maximum contaminant levels (SMCL) for 
dissolved solids, sulfate, chloride, manganese, and iron in water from domestic and public-supply wells sampled in the Columbia 
Plateau, Snake River Plain, and Oahu. 

Table 6. Percentage of wells that exceeded secondary maximum contaminant levels for dissolved solids, sulfate, chloride, 
manganese, and iron in water from domestic and public supply wells sampled in the Columbia Plateau, Snake River Plain, and Oahu.

[Abbreviations: SMCL, secondary maximum contaminant level established by the U.S. Environmental Protection Agency; mg/L, milligrams per liter; µg/L 
micrograms per liter]

Constituent
SMCL 
value

The Columbia Plateau, 
Snake River Plain, and 

Oahu combined
Columbia Plateau Snake River Plain Oahu

Number 
of wells 
sampled

Percent 
exceeding 

SMCL

Number 
of wells 
sampled

Percent 
exceeding 

SMCL

Number 
of wells 
sampled

Percent 
exceeding 

SMCL

Number 
of wells 
sampled

Percent 
exceeding 

SMCL

Dissolved solids 500 mg/L 241 18 92 16 119 22 30 10
Sulfate 250 mg/L 300 2 92 4 178 0 30 0
Chloride 250 mg/L 300 1 92 1 178 0 30 3
Manganese 50 µg/L 301 7 93 10 178 6 30 0
Iron 300 µg/L 301 3 93 6 178 1 30 0
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Natural Processes and Human 
Activities Affecting the Quality of 
Water in the Aquifers

Natural characteristics of the Columbia, Snake, and Oahu 
principal aquifers allow water and chemicals to infiltrate to the 
water table despite depths to water commonly in the hundreds 
of feet. The aquifers are essentially unconfined, having few 
extensive clay layers to impede infiltration through alluvial 
sediments and volcanic rock. Agriculture is intensive in all 
three study areas, and heavy irrigation has altered natural flow 
systems and fostered leaching of fertilizers and pesticides 
applied at land surface. The aquifers are mostly oxic, which 
hinders chemical breakdown of nitrate and many solvents but 
fosters breakdown of other constituents such as petroleum 
hydrocarbons.

This section summarizes the natural processes and human 
activities that affect groundwater as it recharges the aquifer 
and moves deeper in the system toward wells used for private, 
public supply, and irrigation.

Natural Aquifer Characteristics 

Principal aquifers in Columbia Plateau, Snake River 
Plain, and Hawaii are highly vulnerable to contamination from 
the land surface. This results from natural properties of earth 
materials that make them susceptible to water and contaminant 
transport (well-drained soils, permeable volcanic rock, lack 
of regionally extensive clay layers) coupled with intensive 
agricultural and urban land use in which chemicals are applied 
or released at the land surface. Although some contaminants 
are natural products of rock weathering and plant decay, 
most constituents of concern in the study areas originate as 
land-applied chemicals or from chemical spills or improper 
disposal. Once released, contaminants join the flow of water 
along hydrologic pathways throughout the landscape (fig. 42). 
Surface runoff transports sediment and chemical residues to 
streams and rivers quickly. Infiltration to the deep water table 
may take a year or more.
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Figure 42. Block diagram showing hydrologic transport pathways on central Oahu. From Anthony and 
others (2004), modified from a block diagram provided by Scot Izuka.
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Once water recharges the water table, it becomes part of 
the regional groundwater flow system within the aquifer or 
aquifer system. Flow is mostly lateral over great distances, but 
also downward to deeper aquifers or parts of the flow system 
in recharge-dominated areas and upward to points of discharge 
at the downgradient ends of the flow systems. Contaminants 
in the groundwater may be drawn into drinking-water wells 
along the way or may affect receiving waters in rivers or 
lakes, for example in cases where groundwater-borne nutrients 
contribute to eutrophication (excessive growth of aquatic 
plants or algal blooms). Estimates of water transit time 
through the entire regional flow system range from a few 
decades for Oahu (Hunt, 1996) to as much as 350 years for 
flow through the entire Eastern Snake River Plain flow system 
(Ackerman, 1995).

The principal basaltic-rock and volcanic-rock aquifers 
are essentially unconfined aquifers, without regionally 
extensive clay layers to inhibit downward infiltration. Rising 
water tables have been recorded in the Columbia Plateau 

and Snake River Plain within days or weeks of seasonal 
filling of irrigation canals or induced recharge experiments 
(for example Wylie and others, 2008), and although some 
estimates of infiltration time to the deep water table on Oahu 
are on the order of years to a decade, much quicker (weeks 
or months) responses of the water table have been observed 
after heavy rains (fig. 43). These quick responses may be due 
in part to “fast pathways” through the volcanic rocks in the 
unsaturated zone, suggesting rapid infiltration of water from 
land surface through at least some part of the terrain. For 
example, the Schofield Shaft in the central Oahu plateau is 
an inclined tunnel excavated to the deep water table 600 feet 
below. Heavy rainfall in November 1954 ended a prolonged 
drought and was followed by several more months of heavy 
rain through March 1955. Despite the 600-foot depth to 
water at the site, the deep groundwater level began to rise 
2–3 months after November and peaked 10 months later in 
September 1955 (fig. 43). 
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Figure 43. Monthly precipitation and groundwater levels in the Schofield Shaft, central Oahu. 
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Irrigation

Irrigation has altered natural flow systems, both by 
diverting surface water from rivers and streams and by 
superimposing large artificial groundwater fluxes of “irrigation 
recharge.” Because climate is semiarid in most cultivated 
areas of the Columbia Plateau, Snake River Plain, and Oahu, 
high crop productivity in all three areas is possible largely 
through the application of irrigation water diverted from rivers 
or pumped from underlying aquifers. Extensive irrigation 
canal systems divert water from the Columbia and Snake 
Rivers and distribute it across the landscape. Oahu has smaller 
scale irrigation ditches that divert water from wetter parts of 
the island. 

When irrigation water is applied, not all of it is used 
by plants; much of it seeps beyond the reach of plant roots 
and infiltrates to deep groundwater, leaching dissolved 
fertilizer nutrients and other chemicals with it. This process 
is referred to in this report as “irrigation recharge” and is 
termed “irrigation-return recharge” in Hawaii. Other than 
direct seepage losses from canals and reservoirs, the amount 
of water infiltrating through irrigated fields depends on the 
irrigation method. “Furrow” or “field flood” irrigation is 
least efficient, losing the greatest fraction of applied water 
to deep infiltration. Estimates of furrow irrigation efficiency 
for sugarcane in Hawaii have centered around 50 percent, 
meaning that half the applied water is used by the plant (that 
is the “efficiency”) and half is lost to deep infiltration. Spray 
irrigation is more efficient than flood, and drip irrigation 
through pinholes in plastic tubing is most efficient, estimated 
at 80–95 percent efficiency. Conversion to spray irrigation has 
progressed since the 1960s in the Columbia Plateau and Snake 
River Plain. Oahu converted from furrow to drip irrigation of 
sugarcane from the 1970s to mid-1980s (sugarcane cultivation 
ceased in 1996). 

Although agricultural producers have transitioned to 
more efficient irrigation methods, prior decades of furrow/
flood irrigation contributed large volumes of irrigation 
recharge, heavily augmenting the groundwater flow systems 
of the three study areas. Figure 44 illustrates the magnitude of 
irrigation-induced recharge in comparison to natural recharge 

under 1970s–1980s conditions. Mean annual recharge under 
natural conditions was estimated to be 5 inches or less over 
large expanses of non-irrigated rangeland in the Columbia 
Plateau and Snake River Plain. However, recharge exceeded 
50 inches in some heavily irrigated areas along the Columbia 
and Snake Rivers (fig. 44). Data for Oahu show a similar 
pattern of higher than natural recharge in irrigated areas, as 
well as very high recharge (up to 214 inches) in the orographic 
belt of high rainfall along the east Oahu mountains. 

Irrigation-induced recharge has raised groundwater levels 
by tens to hundreds of feet in the Columbia Plateau and Snake 
River Plain and has caused landslides from sedimentary bluffs 
(Phillips and others, 2008). On Oahu, irrigation has formed 
a distinct layer of degraded-quality water about 50–200 feet 
thick beneath the deep water table. This “irrigation-recharge 
layer” has been recognized since the 1960s and is discernible 
in geophysical borehole logs by higher water temperature 
and higher specific conductance than the naturally recharged 
groundwater beneath it. The high specific conductance 
corresponds to elevated concentrations of dissolved solids, 
such as nitrate, sulfate, bicarbonate, and other inorganic ions, 
and organic chemicals such as pesticides are also detected 
in the degraded-quality layer. Public-supply wells on Oahu 
typically are solid-cased for the first 100 feet or so below the 
water table in an attempt to exclude much of this degraded 
water from the wells.

Irrigation recharge has diminished in recent decades with 
conversion from flood irrigation to spray and drip irrigation. 
Recent droughts in the Columbia Plateau and Snake River 
Plain have decreased natural recharge and required additional 
pumping for irrigation. Groundwater levels have declined, 
raising concerns about long-term water availability. Drought 
also brings a water quality concern in the Snake River Plain, 
where quality may deteriorate because of less dilution by 
better quality natural recharge. On Oahu, irrigation recharge 
has diminished drastically, first with the conversion from 
furrow to drip irrigation of sugarcane by about 1980 and later 
when sugarcane cultivation ceased altogether in 1996. The 
poor-quality irrigation-recharge layer persists, however, and 
likely will take several decades or much of a century to be 
flushed from the aquifer.
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Figure 44. Mean annual groundwater recharge in (A) the Columbia Plateau, (B) the Eastern Snake River Plain, and (C) Oahu. 
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Figure 44.—Continued.
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Groundwater Recharge Dates

The recharge dates of many groundwater samples from 
the Columbia Plateau, Snake River Plain, and Oahu have 
been determined using several dating methods, including 
chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), 
tritium, and tritium-helium-3. CFCs and SF6 are manmade 
gases present at trace concentrations in the atmosphere and 
have a particular atmospheric concentration history that is 
known and can be matched to dissolved concentrations in 
groundwater to estimate the date that water was recharged 
(the time that water traveled through the unsaturated zone and 
reached the water table). CFCs were first developed to use 
as refrigerants in the early 1930s, so groundwater samples 
containing no CFCs are older than 1930 (Plummer and 
Busenberg, 1999). Significant production of SF6 began in the 
1960s for use in high-voltage electrical switches (Busenberg 
and Plummer, 1997). Tritium in groundwater is the result of 
atmospheric testing of nuclear devices that began in 1952 and 
reached a maximum in 1963–64. Concentrations of tritium 
in precipitation have decreased since the mid-1960s peak of 
nuclear testing, except for some small increases from French 
and Chinese tests in the late 1970s (Solomon and Cook, 1999). 
Radioactive decay of tritium produces the noble gas helium-3. 
The ratio of tritium to helium-3 in groundwater is an effective 
dating tool for groundwaters younger than 1952 and extends 
the usefulness of tritium as an age-dating tracer up to the 
present day (2011). 

Hinkle and others (2010) interpreted SF6 age data 
collected at 10 sites in the Columbia Plateau during 2002. 
The sampled wells were shallow monitoring wells (median 
depth to water 16.7 ft) completed in sedimentary deposits, 
not drawing from the regional basalt aquifer. The mean 
groundwater age was 17.5 years, and the median groundwater 
age was 16 years, indicating that the groundwater ages of the 
shallow waters in the sedimentary deposits are quite young. 

Plummer and others (2000) collected CFC, tritium, and 
tritium-helium-3 samples from 48 wells and 5 springs in the 
Snake River Plain. They identified two types of groundwater: 
(1) regional background water that is unaffected by irrigation 
and fertilizer application and (2) mixtures of irrigation 
water from the Snake River and regional background water. 
Groundwater flow modeling by Garabedian (1992) and 
Ackerman (1995) indicates the age of the regional background 
water on the upgradient side of the Snake River Plain land-use 
studies to range between 50 and 150 years. The CFC, tritium, 
and tritium-helium-3 samples indicate that the young fraction 
of groundwater (that includes a mixture of irrigation water) is 
quite young. Samples from nearly 80 percent of the wells had 
ages younger than 10 years. Half of the samples were between 
5 and 10 years. Only two samples had young fractions that 
were greater than 20 years old. The sources of the young 
fraction of groundwater are irrigation from surface water 
that leaches to the water table from the cultivated fields and 
leaky irrigation canals. Those irrigation waters also transport 
excess nitrate and anthropogenic chemicals to the water table 
(Plummer and others, 2000).

Apparent recharge dates of groundwater in Oahu using 
CFCs and SF6 were “young” for almost all samples, with only 
one date older than 1940 out of 45 wells (Hunt, 2004). The 
median groundwater recharge date for the 30 public-supply 
wells sampled in Oahu was 1966, and the median recharge 
date of the 15 monitoring wells was 1976. The samples were 
collected during 2000, so the median groundwater ages were 
34 and 24 years, respectively. The young apparent ages and 
the prevalence of organic compounds in the same groundwater 
samples highlight the vulnerability of Hawaiian unconfined 
basalt aquifers to contamination: water recharges from land 
surface to the deep water table on a timescale of a few decades 
or less and carries anthropogenic chemicals with it. 

Plots of nitrate concentrations in groundwater of the 
Columbia Plateau, Snake River Plain, and Oahu against 
groundwater recharge dates indicate that the increase of 
total fertilizer use in the United States is reflected in nitrate 
concentrations in groundwater (fig. 45). Before World War I, 
the primary sources of supplemental nitrogen for crops were 
animal manure, mineral sources such as potassium nitrate, 
and crop rotation with legume crops such as alfalfa. Synthetic 
fertilizers were first produced after World War I, when 
facilities that had produced ammonia and synthetic nitrates 
for explosives were converted to the production of N-based 
fertilizers (Rupert, 2008). Inorganic N fertilizer production 
was small until after World War II, when the production 
rates increased dramatically (fig. 45). Nationally, use of N 
fertilizer has increased rapidly from 1950 through about 1980 
and then increased at a slower rate since about 1980. Nitrate 
concentrations in groundwater of the Columbia Plateau, 
Snake River Plain, and Oahu reflect that increase in fertilizer 
use, indicating that younger groundwaters have a higher 
probability of elevated nitrate concentrations. 
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Figure 45. Nitrate concentrations and nitrogen input 
from fertilizer use versus groundwater recharge dates 
in the Columbia Plateau, Snake River Plain, and Oahu. 
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Land-Use Practices

Groundwater contamination reflects decades-old 
chemical releases and land-use practices in addition to 
recent conditions. Groundwater ages estimated from CFCs 
(chlorofluorocarbons) indicate that most groundwater sampled 
in the Columbia Plateau, Snake River Plain, and Oahu was 
recharged since 1940 or contains at least a fraction of young 
water recharged within that period. This period coincided 
with increasingly widespread and intensive manufacturing 
and use of chemicals in the second half of the 20th century. 
The presence of VOCs, pesticides, and elevated nitrate in 
many samples demonstrates that groundwater in the deep 
basaltic-rock and volcanic-rock aquifers is vulnerable to 
contamination from chemicals applied or released at land 
surface; water can travel from land surface to the deep water 
table within years and perhaps even months, carrying with it 
spilled or applied chemicals.

On the other hand, several compounds, such as EDB, 
DBCP, and DDT (whose breakdown product p,p’-DDE was 
detected) were discontinued from use in the late 1970s to early 
1980s yet were still detected by NAWQA sampling decades 
later. The persistence of these “legacy” contaminants indicates 
that, although contamination may reach deep groundwater 
rapidly, it also takes decades for contaminants to flush out of 
the system.

Better chemical-use practices may be instituted from 
time to time, but groundwater systems are inherently slow 
in flushing or turnover time compared to streams and rivers. 
It can take decades to bring about a change in groundwater 
quality, and decades of strategic resampling are required to 
monitor and document those changes.

Redox Conditions 

Groundwater samples indicated that redox conditions 
were predominantly in the oxic state in all of the sampled 
aquifers (fig. 46). Under oxic conditions, nitrate can persist 
for many years, even decades (McMahon and others, 
2007). This was particularly true of the basaltic-rock and 
volcanic-rock aquifers, where samples were almost entirely 
oxic. Groundwater in unconsolidated sedimentary basin-
fill aquifers of the Columbia Plateau and Snake River Plain 
also was predominantly oxic but slightly less so than the 
basaltic-rock aquifers. 

The major-aquifer network in the Columbia Plateau 
basaltic-rock aquifer was an exception, in that a considerable 
number of samples indicated anoxic or mixed oxic-anoxic 
conditions. A mixed redox state of a groundwater sample is 
commonly thought to indicate that the well is drawing water 
from both oxic and anoxic zones or “microzones” in the 
aquifer, a reasonable supposition considering the sometimes 
strongly layered character of aquifer materials. Under reducing 
conditions, nitrate can degrade through denitrification, 
because the denitrifying bacteria prefer reducing conditions. 
Many pesticides such as atrazine degrade much faster under 
strongly reducing conditions than under oxic conditions. Other 
compounds, such as petroleum hydrocarbons, break down 
much faster under oxic conditions because the bacteria that 
consume petroleum hydrocarbons prefer oxic conditions. 

Natural Processes

Some water-quality constituents originate from natural 
processes as water follows the groundwater hydrologic cycle 
from infiltration to groundwater flow and finally to points 
of groundwater discharge. Weathering and dissolution of 
rock minerals contributes some amount of dissolved mineral 
solids to groundwater, mostly major ions such as calcium, 
magnesium, sodium, bicarbonate, and sulfate. Plants also fix 
nitrogen from the atmosphere and derive phosphorus from 
soil minerals, imparting natural background concentrations 
of nitrate and phosphorus in water when the plants eventually 
die and decay and water percolates through the soil. Most 
naturally derived constituents cause little concern in the 
Western Volcanics aquifers, although arsenic is a notable 
exception. Arsenic is present at concentrations above the 
maximum contaminant level for drinking water in some 
Columbia Plateau (7 percent of wells sampled) and Snake 
River Plain drinking-water wells (3 percent of wells sampled), 
and although it may have leached from natural aquifer 
minerals, that leaching may have been fostered by infiltrating 
irrigation water (Busbee and others, 2009). Radon gas—a 
product of radioactive decay of uranium in the rocks—is also 
a natural constituent of concern for the Columbia Plateau and 
Snake River Plain.
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Summary
This NAWQA assessment of groundwater-quality 

conditions of the Columbia Plateau, Snake River Plain, and 
Oahu for the period 1992–2010 shows where, when, why, and 
how specific water-quality conditions occur in groundwater of 
the three study areas and yields science-based implications for 
assessing and managing the quality of these water resources. 
The primary aquifers in the Columbia Plateau, Snake River 
Plain, and Oahu are mostly composed of fractured basalt, 
which makes their hydrology and geochemistry similar. In 
spite of the hydrogeologic similarities, there are climatic 
differences that affect the agricultural practices overlying 
the aquifers, which in turn affect the groundwater quality. 
Understanding groundwater-quality conditions and the 
natural and human factors that control groundwater quality 
is important because of the implications to human health, 
the sustainability of rural agricultural economies, and the 
substantial costs associated with land and water management, 
conservation, and regulation.

The principal regional aquifers of the Columbia 
Plateau, Snake River Plain, and Oahu are highly vulnerable 
to contamination by chemicals applied at the land surface; 
essentially, they are as vulnerable as many shallow surficial 
aquifers elsewhere. The permeable and largely unconfined 
character of principal aquifers in the Columbia Plateau, Snake 
River Plain, and Oahu allow water and chemicals to infiltrate 
to the water table despite depths to water commonly in the 
hundreds of feet. The aquifers are essentially unconfined 
over large areas, having few extensive clay layers to impede 
infiltration through permeable volcanic rock and alluvial 
sediments. Agriculture is intensive in all three study areas, and 
heavy irrigation has imposed large artificial flows of irrigation 
recharge, which rival or exceed natural recharge rates, over 
the natural flow systems. Fertilizers and pesticides applied 
at land surface are leached from soil and transported to deep 
water tables with the infiltrating irrigation recharge, resulting 
in a layer of degraded water quality overlying better quality 
regional groundwater beneath. This “irrigation-recharge 
layer” is best known on Oahu, where it has been studied 
since the 1960s; however the extent of nitrate and pesticide 
contamination in the Columbia Plateau and Snake River Plain 
indicate that the same situation exists there. Contamination 
from agricultural and urban activities is present not only at 
shallow depths in surficial materials of the three areas, but it 
extends over regional extent in the deep, principal bedrock 
aquifers that are tapped for drinking water by domestic and 
public-supply wells.

Both naturally occurring constituents and nitrate 
concentrations above human-health benchmarks were more 
common in the Columbia Plateau and the Snake River 
Plain; anthropogenic constituents (constituents related to 

human activities) above human-health benchmarks were 
more common in Oahu. Naturally occurring contaminants, 
such as arsenic and radon, may be present in groundwater 
at concentrations of potential concern for human health in 
relatively undeveloped settings that otherwise may not be 
perceived as susceptible to contamination. Even though the 
median depth to groundwater in Oahu is more than 300 feet, 
the common occurrence of anthropogenic compounds in 
groundwater indicates that Oahu has a high susceptibility to 
contamination. 

Nitrate concentrations in groundwater were above 
the national background concentration of 1 milligram 
per liter (mg/L) in all three study areas. In the Columbia 
Plateau, nitrate exceeded the human-health benchmark of 
10 mg/L in 17 percent of the wells sampled. In the Snake 
River Plain, nitrate exceeded the human-health benchmark 
of 10 mg/L in 3 percent of the wells sampled. Nitrate can 
persist in groundwater for years and even decades, so prudent 
groundwater protection measures are critical to protect 
drinking water resources.

Nitrate logistic regression models indicated that areas 
with a high percentage of land in crops (such as potatoes or 
sugarcane), and soils with low amounts of organic matter, 
are most likely to have elevated nitrate concentrations in 
the groundwater. Areas where agricultural activities were 
absent had much lower probabilities of detecting elevated 
nitrate concentration. The Columbia Plateau had a much 
higher probability of having elevated nitrate concentrations, 
with most of the land area having greater than a 50-percent 
probability of elevated nitrate concentrations. Oahu and the 
Snake River Plain had a much lower probability of having 
elevated nitrate concentrations because of their lower 
percentage of agricultural land.

Pesticides were detected frequently in groundwater of the 
Columbia Plateau, Snake River Plain, and Oahu, but generally 
at low concentrations below human-health benchmarks. 
Atrazine and its degradate (a compound produced from the 
breakdown of a parent pesticide), deethylatrazine, were the 
most commonly detected pesticides in groundwater sampled 
in the Columbia Plateau and Snake River Plain. Bromacil 
was the most commonly detected pesticide on Oahu. The 
other pesticides most commonly detected in the study areas 
include simazine, hexazinone, metribuzin, diuron, prometon, 
metolachlor, p,p′-DDE, dieldrin, 2-4-D, and alachlor. DDE 
(a degradate of DDT) and dieldrin are still being detected in 
groundwater because of historical use despite having been 
banned for more than 30 years. Codetection of multiple 
pesticides in water from a single well was common. The 
widespread occurrence of pesticides in groundwater in the 
study areas indicates that the groundwater is highly susceptible 
to pesticide contamination. 
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Some pesticides were detected in groundwater samples 
from all three study areas, but other pesticides were detected 
only in samples from Oahu or only in samples from the 
Columbia Plateau and Snake River Plain. This is because 
some pesticides (such as atrazine) are broad-spectrum 
pesticides that are used on many crops in many different 
areas of the United States. Other pesticides (such as simazine, 
metribuzin, and metolachlor) are used on row crops (such as 
potatoes, barley, and alfalfa) grown in the Columbia Plateau 
and Snake River Plain, but not on pineapple or sugarcane 
grown in Oahu. 

Atrazine logistic regression models indicate that areas 
with a high percentage of land in crops (such as potatoes 
or sugarcane), a low percentage of fallow land, and highly 
permeable soils with low amounts of organic matter are most 
likely to have atrazine detected in the groundwater. Areas 
where agricultural activities were absent had much lower 
probabilities of atrazine being detected. The Snake River Plain 
had a much higher probability of atrazine detections, with 
more than 50 percent of the land area having greater than a 
50-percent probability of atrazine contamination. Oahu had a 
much lower probability of atrazine contamination, with only 
24 percent of the land area having greater than a 50-percent 
probability of atrazine contamination.

Oahu and the Columbia Plateau had some of the highest 
percentages of soil fumigant detections in groundwater 
anywhere in the United States. Soil fumigants are volatile 
organic compounds (VOCs) used as pesticides and are applied 
to soils to reduce populations of plant parasitic nematodes 
(harmful rootworms), weeds, fungal pathogens, and other 
soil-borne microorganisms. They are used in Oahu and the 
Columbia Plateau on crops such as pineapple and potatoes. 
All three areas (Columbia Plateau, Snake River Plain, and 
Oahu) had fumigant concentrations that exceed human-health 
benchmarks for drinking water.
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