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Abstract

Flood-frequency information is important in the Central
Valley region of California because of the high risk of
catastrophic flooding. Most traditional flood-frequency studies
focus on peak flows, but for the assessment of the adequacy
of reservoirs, levees, other flood control structures, sustained
flood flow (flood duration) frequency data are needed. This
study focuses on rainfall or rain-on-snow floods, rather than
the annual maximum, because rain events produce the largest
floods in the region. A key to estimating flood-duration
frequency is determining the regional skew for such data.

Of the 50 sites used in this study to determine regional

skew, 28 sites were considered to have little to no significant
regulated flows, and for the 22 sites considered significantly
regulated, unregulated daily flow data were synthesized

by using reservoir storage changes and diversion records.
The unregulated, annual maximum rainfall flood flows for
selected durations (1-day, 3-day, 7-day, 15-day, and 30-day)
for all 50 sites were furnished by the U.S. Army Corps of
Engineers. Station skew was determined by using the expected
moments algorithm program for fitting the Pearson Type

3 flood-frequency distribution to the logarithms of annual
flood-duration data.

Bayesian generalized least squares regression procedures
used in earlier studies were modified to address problems
caused by large cross correlations among concurrent rainfall
floods in California and to address the extensive censoring
of low outliers at some sites, by using the new expected
moments algorithm for fitting the LP3 distribution to rainfall
flood-duration data. To properly account for these problems
and to develop suitable regional-skew regression models
and regression diagnostics, a combination of ordinary least

squares, weighted least squares, and Bayesian generalized
least squares regressions were adopted. This new methodology
determined that a nonlinear model relating regional skew

to mean basin elevation was the best model for each flood
duration. The regional-skew values ranged from —0.74 for a
flood duration of 1-day and a mean basin elevation less than
2,500 feet to values near 0 for a flood duration of 7-days and

a mean basin elevation greater than 4,500 feet. This relation
between skew and elevation reflects the interaction of snow
and rain, which increases with increased elevation. The
regional skews are more accurate, and the mean squared errors
are less than in the Interagency Advisory Committee on Water
Data’s National skew map of Bulletin 17B.

Introduction

Flood-frequency estimates are required by engineers,
land-use planners, resource managers, dam operators, and
others for effective and safe use of all resources in and near
California streams. Commonly, flood-frequency analyses are
based on annual peak flows because peak flows on unregulated
streams produce maximum flood levels. However, the flood
frequency of a volume of flood flow over a duration of time—
also known as the annual maximum n-day flood flow, where
n represents the number of days, or duration, of flooding—is
critical for the design, construction, and operation of dams and
levees. Most rivers in the Central Valley region are dammed,
and many of these dams are massive, such as the Oroville
Dam, which has a height of 770 feet (ft), contains a volume
of 77,619,000 cubic yards (yd3) of material, and provides a
reservoir capacity of 3,538,000 acre-feet (acre-ft), and the
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Shasta Dam, which has a height of 602 ft, contains a volume
of 6,270,000 yd? of material, and provides a reservoir capacity
of 4,552,000 acre-ft. Reliable estimates of n-day flood
frequency are crucial for reservoir operation at these dam sites
and also at key levee locations, where prolonged flooding
could weaken structures and threaten safety. For the Central
Valley region of California, the Bureau of Reclamation and the
U.S. Army Corps of Engineers (USACE) determined that the
frequency associated with the annual maximum 3-day rainfall
flood is often the most critical flood frequency for reservoir
operation. (Cudworth, 1989; U.S. Army Corps of Engineers,
1997 and 2002; National Reasearch Council, 1999; and
Hickey and others, 2002). The maximum 3-day rainfall flood
is critical for dam release rates and associated flood-control
storage space in many reservoirs. The frequency associated
with the annual maximum 7-day rainfall flood is also
important because it represents back-to-back 3-day duration
rainfall floods, which are not uncommon in the Central Valley
region of California.

Consequently, the regional-skew analysis for this
study focuses on annual maximum n-day flood-duration
flows. Specifically, regional skew was determined for the
annual maximum 1-day, 3-day, 7-day, 15-day, and 30-day
flood-duration flows. Results from this study complement
a regional-skew analysis for annual peak flow in California
recently completed by Parrett and others (2011).

This study was initiated through a collaborative effort
between the USACE, and the U.S. Geological Survey (USGS)
California Water Science Center (CAWSC). Currently,
USACE and the California Department of Water Resources
are reassessing flood hazards in the Central Valley region of
California. The Sacramento and San Joaquin River basins
lie within this region, where river and tributary flooding
historically have threatened several large population centers,
including the City of Sacramento. Many of the levees
that compose the extensive flood protection system in the
Sacramento and San Joaquin River basins are being upgraded,
or have been targeted for rehabilitation or upgrading. To
ensure that levee enhancements are designed using the best
available flood-frequency estimates, a new regional-skew
analysis was conducted. This study is an extension of a
previous flood-duration study by USACE (Hickey and others,
2002; U.S. Army Corps of Engineers, 2002). The previous
study used only at-site rainfall flood data because rainfall
generally produces the largest floods in the Central Valley
region. Accordingly, this study also used only rainfall n-day
flood data and did not include snowmelt n-day flood data.

Bulletin 17B from the Hydrology Subcommittee of
the Interagency Advisory Committee on Water Data (1982),
hereinafter referred to as Bulletin 17B, recommends the
use of log-Pearson Type III distribution when estimating
flood frequency at gaged sites. The shape of the log-Pearson

Type III distribution depends on the standard deviation

and skew coefficient. The precision of flood-frequency
estimates depends largely on the precision of the estimated
skew coefficient, particularly for extreme floods, which

are of greatest interest (Griffis and others, 2004). The

skew coefficient is difficult to estimate from small sample
sizes because it is very sensitive to the presence of outliers

or unusual observations. For this reason, Bulletin 17B
recommends the use of a weighted skew coefficient that is a
weighted average of a combination of the skew coefficient
estimated from the flood data at a site and the regional-skew
coefficient. The weighted skew coefficient is used to estimate
the flood quantiles of interest, and the weights assigned to the
at-site and regional skew depend on the relative precision of
the two skew estimators.

Since the publication of Bulletin 17B in 1982, there
have been significant advances in statistical methodologies
and computing technology that supports regional hydrologic
regression assessments. Studies by Reis and others (2005),
Weaver and others (2009), Feaster and others (2009),
and Gotvald and others (2009) have shown that Bayesian
Generalized Least Squares (GLS) regression provides an
effective statistical framework for estimating regional-skew
coefficients for annual peak flows as well as their precision.
Bayesian GLS regression provides more precise regional-
skew coefficients for annual peak flows than the National
skew map provided in Bulletin 17B. Bayesian GLS regression
was adapted for use in the California regional-skew analysis
for annual peak flows reported by Parrett and others (2011).
The study reported here uses a similar methodology to that
of Parrett and others (2011) with some modifications. The
regional-skew analysis for peak flows in California and this
study are both based on a hybrid weighted least squares and
generalized least squares (WLS/GLS) procedure, which
was needed because of the large cross-correlations among
concurrent flood flows at stream sites in California.

An important first step in the regional-skew analysis is
the estimation of the skew coefficient of the logarithms of
the flood data for each site included in the study. Many of
the sites had flood data that contained low outliers or zero
flow observations, both of which require special treatment in
order to calculate skew coefficients that are characteristic of
the largest observations. The expected moments algorithm
(EMA), which has been shown to more efficiently account
for censored observations than Bulletin 17B recommended
procedures, was used to fit a log-Pearson Type III distribution
to each of the flood records in this study (Cohn and others,
1997, 2001; Griffis and others, 2004). Unregulated, annual
maximum rainfall flood data for 1-day, 3-day, 7-day, 15-day,
and 30-day durations for each study site were provided by
USACE, and basin characteristics for each study site were
provided by the USGS.



This study was a collaboration between Cornell
University and the USGS. Previous collaborations produced a
new regional skew for annual peak flows for the southeastern
region of the United States, including parts of Virginia,
Tennessee, Alabama, North Carolina, South Carolina, and
Florida (Weaver and others, 2009; Feaster and others, 2009;
and Gotvald and others, 2009), and for much of California
(Parrett and others, 2011).

Purpose and Scope

The primary purposes of this report are to (1) present the
results of regional-skew analysis for rainfall floods for selected
n-day durations for the Central Valley and adjacent regions of
California, and (2) to describe the newly developed hydrologic
regression methodology that was used. Fifty sites of interest
(streamgages and major dams) to USACE in the region were
used in the study. A database of unregulated, annual maximum
rainfall floods for durations of 1-day, 3-days, 7-days, 15-days,
and 30-days at these sites was provided by USACE and is
presented in appendix 1. The n-day flood-duration flow is the
maximum avarge discharge of any consecutive n-day period
in a water year for a site. Because dam sites were included in
the regional-skew analysis, unregulated, flood-duration data at
those sites had to be synthesized. For most of these sites, the
daily unregulated discharge was synthesized from reservoir
storage or diversion records. For one dam site, however, the
maintenance of variance extension, type 1 method (MOVE.1;
Helsel and Hirsch, 1992), was used to synthesize flow data.

A database of basin characteristics was also developed for
the basin upstream from each site. These characteristics are
presented in appendix 2.

The new EMA methodology was used to compute
moments of the logarithms of discharge for the LP3
distribution to determine a station skew at each site to be used
in the regional-skew analysis. A visual censoring procedure
for low outliers and zero flows was utilized. The number of
censored observations and zero flows for each site is given in
appendix 2. A newly developed Bayesian hybrid WLS/GLS
regression procedure was used to develop the regional-skew
model for each duration. The approach is described in
appendix 3. Finally, diagnostic statistics commonly reported
for Bayesian GLS, including values of leverage and influence
for each site, are presented in appendix 3.
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Study Area Description

The stream sites used in this regional-skew study of the
Central Valley region of California are shown in figure 1.
Originally, 55 sites were considered for this study, but only
50 sites were employed in the final analysis. Three of the
five sites were dropped (site 2, Clear Creek near Igo; site 21,
Lost Banos Creek at Los Banos Dam; and site 27, Littlejohn
Creek at Farmington Dam) because reliable flood records
were unavailable. Two sites (site 22, Orestimba Creek near
Newman, and site 29, Cosgrove Creek near Valley Springs)
were dropped because their basin hydrology is uncharacteristic
of the Central Valley study region and particularly
uncharacteristic of the major dam sites of interest to USACE.

Roughly two-thirds of the sites included in this study
drain the western slopes of the Sierra Nevada Range, located
along California’s eastern border. Streams draining this region
account for the majority of the flow into the Sacramento and
San Joaquin Rivers. Peak elevations generally increases in the
Sierra Nevada with decreasing latitude. Basins in this region
with a mean elevation greater than about 4,000 ft experience
significant annual snowpack, which probably affects annual
flood characteristics. Also, this region experiences rain-on-
snow events, where warm temperatures cause precipitation
to fall as rain, which causes the snowpack to melt and runoff
rapidly (Parrett and others, 2011; Mount, 1995). Flood data
resulting from these rain-on-snow events are considered to be
rainfall floods for this report.

The remaining one-third of the study sites drain the
Coastal Ranges, which parallels California’s Pacific coast.
Peak elevations in the Coastal Ranges generally are much
lower than in the Sierra Nevada, and basins in the Coastal
Ranges generally do not accumulate significant snowpack
compared to basins in the Sierra Nevada. Annual maximum
floods in the Coastal Ranges are generally caused by large
winter rainstorms (Parrett and others, 2011). Hydrologic
conditions in basins in this region vary widely from north to
south, but generally the northern Coastal basins have more
annual rainfall than the southern Coastal basins.

Parrett and others (2011) discuss the influence of the
complicated interaction of rain and snow in forming annual
maximum floods. They noted that annual peak floods in
basins that have a mean elevation lower than 4,000 ft are
usually caused by rain and that the influence of rain and snow
interactions is greater with increasing elevation. Annual peak
floods in basins with mean elevations greater than 8,000 ft
are most often caused by snowmelt runoff. Data from floods
caused by snowmelt runoff were not used in this study.
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Figure 1. Study basins and site numbers for regional-skew analysis of n-day rainfall flood flows, Central Valley, California.
(See table 1 for site names corresponding to the site numbers shown.)




Rainfall Flood Data

Unregulated, annual maximum flow data resulting
from rainfall for the 1-day, 3-day, 7-day, 15-day, and 30-day
durations were provided by USACE for each of the 50 sites
used in the study (appendix 1). These sites have record lengths
ranging from 30 to 113 years, and all but four sites have
records through water years 2008 or 2009. Site information
for each of the study basins is listed in table 1. Of the 50 sites,
28 experienced no significant regulation during the period
of record. For the remaining 22 sites, daily unregulated-flow
data were synthesized from daily regulated-flow records and
reservoir storage or diversion records. From the synthesized,
daily unregulated-flow data for each year, USACE determined
the annual maximum n-day floods from rainfall for each year.
The USACE methodology for generating an annual series of
n-day floods from rainfall is as follows: (1) obtain daily mean
flow data for a site; (2) if necessary, augment the daily mean
flow data using reservoir storage or diversion data to obtain
synthesized daily unregulated-flow data; (3) if necessary, for
each year of daily unregulated-flow data, remove daily data
predominantly due to snowmelt runoff; and (4) for each year
of resulting daily unregulated flows from rainfall, calculate
the annual maximum value of daily flow averaged over each
n-day duration.

Twenty-eight of the fifty sites in this study also
were included in the earlier Sacramento—San Joaquin
Comprehensive Study (hereafter referred to as “Comp
Study”), which published annual maximum values of n-day
flood flows from rainfall through water years 1998 or 1999
(U.S. Army Corps of Engineers, 2002). These records were
extended through water years 2008 or 2009 except for four
sites (appendix 1). Seven sites were extended through water
year 2009. The Calaveras River at New Hogan Dam (site 30)
record was extended from 1908 to 1964 by applying the
MOVE.1 technique (Maintenance Of Variance-Extension,
type 1; Helsel and Hirsch, 1992) to streamflow records at
one downstream and three upstream gages and the change in
storage records from old Hogan Dam.

Runoff events in the Sierra Nevada can be characterized
by two overlapping statistical populations: rainfall events
and snowmelt events. For basins with mean elevations lower
than about 3,000 ft, runoff is essentially all from rainfall. As
basin elevations increase above about 3,000 ft, the effects of
snowpack and snowmelt on runoff increase. Although the
snowpack that melts during a rainfall flood event could have
accumulated over several months, the snowmelt runoff was
still considered part of the rainfall flood in this study.

In basins with mean elevations above about 8,000 ft,
significant snowpack can remain late into the spring and
early summer. In these watersheds, annual maximum flows
can be the result of rainfall runoff, snowmelt runoff, or a
combination of these events. Twenty sites were identified
by visual inspection of the unregulated, daily flow series to
have both rainfall and snowmelt flood flows in the record
of annual maximum n-day flows. As described above,
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daily flows resulting from snowmelt were removed from

the annual records. Bulletin 17B (Interagency Advisory
Committee on Water Data, 1982, p. 16) provides guidance

for event separation: “Separation by calendar periods in lieu
of separation by events is not considered hydrologically
reasonable unless the events in the separate periods are
clearly caused by different hydrometeorologic conditions.”
Previously, in the Comp Study, rainfall and snowmelt

flood populations were separated by visually inspecting

the unregulated-flow hydrograph for each water year. The
inspection was augmented by snowpack and temperature data.
Analyst judgment was used to determine the beginning of

the snowmelt season for each year. In most water years, this
served as the date of segregation. If the annual maximum flow
was the result of a late season rainfall event that occurred after
the start of snowmelt, the date of segregation was adjusted

to include the late season event in the rainfall population.

The separation procedure used by USACE in this study was
consistent with the Comp Study procedure.

The Kern River at Isabella Dam (site 38) and the Kaweah
River at Terminus Dam (site 36; fig. 1) have basins where
snowmelt runoff represents an annual base flow or minimum
flow due to snowmelt that can be subtracted from the rain
flood record. Base flow was estimated graphically as a lower
bound for the frequency curves. Base flows of 150 cubic feet
per second (ft¥/sec) for the Kern site and 60 ft3/sec for the
Kaweah site were subtracted from rainfall flood series for all
five durations before log-Pearson Type III (LP3) distributions
were fit to the adjusted datasets. This corresponds to a flow-
separation procedure that allowed the statistical analysis to
focus on the magnitude of the larger annual maximum rainfall
flood series for each duration.

Basin and Climatic Characteristics

The suite of basin characteristics for each of the 50 sites
in the regional duration-discharge skew analyses was derived
from various national geographic information system (GIS)
databases, including the National Hydrologic Dataset
(NHDPlus), National Land-Cover Dataset (NLCD), and the
Parameter-Elevation Regressions on Independent Slopes
Model (PRISM) climatic dataset for data from 1970 to 2000.
Table 2 describes the explanatory GIS variables and their data
sources. The same quality-assurance standards used to create
the GIS database of basin characteristics in the report by
Parrett and others (2011) were used in this study. Differences
between the older, manually measured drainage areas in the
NWIS (National Water Information System) database and
the drainage areas determined from the GIS database were
identified. Differences in drainage area for the two databases
were never more than 10 percent and were within the
precision of both databases. Thus, the accuracy of the basin
characteristics derived from the digital GIS database was
judged to be sufficient for this study.
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Table 1. Site number, site name, location, record-length information, drainage area, and mean basin elevation for study basins, Central
Valley region, California.

[Abbreviations: NAVD 88, North Americal Vertical Datum of 1988; NC, located in the North Coast Ranges north of San Francisco; S, located in the Sierra
Nevada; SC, located in the South Coast Ranges south of San Francisco]

Drainage Mean
Site . Location Period of Number area elevation
number Site name of site record ;‘:;ZT; (square (feet above
miles) NAVD 88)
1 Sacramento River at Shasta Dam S 11932-2008 177 6,403 4571
3 Cottonwood Creek near Cottonwood NC 1941-2008 68 922 2,221
4 Cow Creek near Millville S 1950-2008 59 423 2,251
5  Battle Creek below Coleman Fish Hatchery S 1941-2008 68 361 4,074
6 Mill Creek near Los Molinos S 1929-2008 80 131 3,962
7 Elder Creek near Paskenta NC 1949-2008 60 93 2,998
8  Thomes Creek at Paskenta NC 1921-1996 76 204 4,146
9  Deer Creek near Vina S 1912-1915, 92 209 4,199
1921-2008
10  Big Chico Creek near Chico S 1932-2008 77 72 3,111
11 Stony Creek at Black Butte Dam NC 11901-2008 1108 740 2,416
12 Butte Creek near Chico S 1931-2008 78 148 3,717
13  Feather River at Oroville Dam S 1902-2008 107 3,591 5,031
14 North Yuba River at Bullards Bar Dam S 1941-2008 68 489 4,899
15 Bear River near Wheatland S 1906-2008 103 292 2,250
16  North Fork Cache Creek at Indian Valley Dam NC 11931-2008 178 120 2,627
17  American River at Fair Oaks S 1905-2008 104 1,887 4,356
18 Kings River at Pine Flat Dam S 1896-2008 113 1,544 7,634
19  San Joaquin River at Friant Dam S 1904-2008 105 1,639 7,046
20  Chowchilla River at Buchanan Dam S 119221923, 180 235 2,152
1931-2008
23 Del Puerto Creek near Patterson SC 19662009 44 73 1,835
24 Merced River at Exchequer Dam S 119022008 1107 1,038 5,473
25  Tuolumne River at New Don Pedro Dam S 1897-2008 112 1,533 5,882
26  Stanislaus River at New Melones Dam S 11916-2008 193 904 5,663
28  Duck Creek near Farmington S 1980-2009 30 11 249
30 Calaveras River at New Hogan Dam S 1908-1943, 96 372 1,991
1951-2008
31  Mokelumne River at Camanche Dam S 11905-2008 1104 628 4918
32 Cosumnes River at Michigan Bar S 1908-2008 101 535 3,064
33 Fresno River near Knowles S 1912, 76 134 3,201
1916-1990
34 South Yuba River at Jones Bar S 1941-1948, 57 311 5,362

1960-2008
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Site number, site name, location, record-length information, drainage area, and mean basin elevation for study basins, Central
Valley region, California.—Continued

[Abbreviations: NAVD 88, North Americal Vertical Datum of 1988; NC, located in the North Coast Range north of San Francisco; S, located in the Sierra

Nevada; SC, located in the South Coast Range south of San Francisco]

Drainage Mean
. . . Number .
Site . Location Period of area elevation
Site name . of years
number of site record of record (square (feet above
miles) NAVD 88)
35 Middle Yuba River below Our House Dam S 1969-1971, 37 145 5,365
1975-2008
36 Kaweah River at Terminus Dam S 1960-2009 50 560 5,635
37  Tule River at Success Dam S 1959-2008 50 392 3,975
38  Kern River at Isabella Dam S 1894-1907, 114 2,075 7,198
1909-1915,
1917-2009
39  Mill Creek near Piedra S 1958-2009 52 115 2,637
40  Dry Creek near Lemoncove S 1960-2009 50 76 2,668
41  Deer Creek near Fountain Springs S 1969-2009 41 83 3,989
42  White River near Ducor S 1943-1953, 46 91 2,443
1971-2005
43 Cache Creek at Clear Lake NC 1922-2008 87 527 2,004
44 Putah Creek at Monticello Dam NC 1931-2008 78 567 1,327
45  Middle Fork Eel River near Dos Rios NC 1966-2008 43 745 3,685
46  South Fork Eel River near Miranda NC 1941-2008 68 537 1,726
47  Mad River above Ruth Reservoir near Forest Glen NC 1981-2008 28 94 3,705
48  East Fork Russian River near Calpella NC 1942-2008 67 92 1,630
49  Salinas River near Pozo SC 1943-1983 41 70 2,211
50  Arroyo Seco near Soledad SC 11902-2008 1107 241 2,494
51 Salmon River at Somes Bar NC 1912-1915, 84 751 4,261
1928-1929,
1931-2008
52  Santa Cruz Creek near Santa Ynez SC 19422008 67 74 3,355
53  Salsipuedes Creek near Lompoc SC 1942-2008 67 47 920
54 Trinity River above Coffee Creak near Trinity Center NC 1958-2008 51 148 5,340
55  Scott River near Fort Jones NC 19422008 67 662 4,333

! The period of record and number of years of record could be less than the given value for some flood durations.
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Table 2.

Basin characteristics considered as explanatory variables and their source, Central Valley region, California.

[Abbreviations: cm, centimeter; m, meter; na, not applicable; °, degrees; °, minutes; , seconds]

Name Description Data source

BASINPERIM Perimeter, in miles 30-m DEM, NHDPlus elev_cm grid
http://www.horizon-systems.com/NHDPlus/

RELIEF Relief, in feet 30-m DEM, NHDPlus elev_cm grid
http://www.horizon-systems.com/NHDPlus/

ELEV Mean basin elevation, in feet 30-m DEM, NHDPlus elev_cm grid
http://www.horizon-systems.com/NHDPlus/

DRNAREA Basin drainage area, in square miles na

ELEVMAX Maximum elevation, in feet 30-m DEM, NHDPlus elev_cm grid
http://www.horizon-systems.com/NHDPlus/

MINBELEV Minimum elevation, in feet 30-m DEM, NHDPlus elev_cm grid
http://www.horizon-systems.com/NHDPlus/

LAKEAREA Percent of area covered by lakes and ponds 2001 National Land Cover Database (NLCD)— land Cover
http://www.mrlc.gov/nlcd2001.php

EL6000 High Elevation Index— percent of basin area with 30-m DEM, NHDPlus elev_cm grid

elevation greater than 6,000 feet http://www.horizon-systems.com/NHDPIlus/

OUTLETELEV Elevation at outlet, in feet 30-m DEM, NHDPlus elev_cm grid
http://www.horizon-systems.com/NHDPlus/

RELRELF Basin relief divided by basin perimeter, in feet per mile na

DIST2COAST Distance in miles from basin centroid to coast along na

a line perpendicular to eastern California border

BSLDEM30M Average basin slope, in percent 30-m DEM, NHDPlus elev_cm grid
http://www.horizon-systems.com/NHDPlus/

FOREST Percentage of basin covered by forest 2001 National Land Cover Database (NLCD)— percent Canopy
http://www.mrlc.gov/nled2001.php

IMPNLCDO1 Percentage of basin covered by impervious surface 2001 National Land Cover Database (NLCD)— percent Impervious
http://www.mrlc.gov/nled2001.php

PRECIP Mean annual precipitation, in inches 800M resolution PRISM 1971-2000 data
http://www.prism.oregonstate.edu/products/

JANMAXTMP Average maximum January temperature, in Fahrenheit 800M resolution PRISM 19712000 data
http://www.prism.oregonstate.edu/products/

JANMINTMP Average minimum January temperature, in Fahrenheit 800M resolution PRISM 1971-2000 data
http://www.prism.oregonstate.edu/products/

CENTROIDX X coordinate of the centroid, in decimal degree na

CENTROIDY Y coordinate of the centroid, in decimal degree na

OUTLETX X coordinate of the basin outlet, in meters * na

OUTLETY Y coordinate of the basin outlet, in meters na

NL Elev Nonlinear function of elevation Computed from the mean basin elevation

! Project parameters: 1st standard parallel = 29°30°00”; 2nd standard parallel = 45°30°00”; central meridian = -96°00°00”; base latitude = 23°00°00”; false
easting = 0.000; false northing = 0.000.


http://www.horizon-systems.com/NHDPlus/
http://www.horizon-systems.com/NHDPlus/
http://www.horizon-systems.com/NHDPlus/
http://www.horizon-systems.com/NHDPlus/
http://www.horizon-systems.com/NHDPlus/
http://www.mrlc.gov/nlcd2001.php
http://www.horizon-systems.com/NHDPlus/
http://www.horizon-systems.com/NHDPlus/
http://www.horizon-systems.com/NHDPlus/
http://www.mrlc.gov/nlcd2001.php
http://www.mrlc.gov/nlcd2001.php
http://www.prism.oregonstate.edu/products/
http://www.prism.oregonstate.edu/products/
http://www.prism.oregonstate.edu/products/
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shows drainage area for each site sorted in ascending order.

endix 21 lists all of the basin characteristics for the

50 sites used in the regional duration-skew analysis. For three
basins (sites 1, 13, and 20), some basin characteristics could

not be determined, but drainage area, mean basin elevation,

A

The Sacramento River at Shasta Dam (site 1) has the largest
drainage area at 6,403 square miles (mi2), and Duck Creek

near Farmington (site 28) has the smallest drainage area at

11 mi2. Most of the study basins range in size from 100 to

1,000 miZ.

relief, maximum basin elevation, minimum basin elevation,
and basin centroid were available for all sites. Figure 2
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Figure 2. Basin drainage area and site names and numbers sorted by ascending drainage area, Central Valley

region, California.
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Mean basin elevation for each site, sorted in ascending
order, is shown in figure 3. Mean basin elevation ranged
from 249 to over 7,600 ft. The Kings River at Pine Flats Dam
(site 18; mean basin elevation of 7,634 ft), the San Joaquin
at Friant Dam (site 19; mean basin elevation of 7,046 ft) and
the Kern River at Isabella Dam (site 38; mean basin elevation
of 7,198 ft) have the highest mean basin elevations in the
study area. These three basins drain westerly from around
Mt. Whitney (elevation of 14,505 ft and tallest mountain in the
continuous US) in the southern portion of the Central Valley
(fig. 1). At 249 ft, Duck Creek near Farmington (site 28) has

Development of Regional Skews for Selected Flood Durations for the Central Valley Region, California, Data Through Water Year 2008

the lowest mean basin elevation in the study area, as well as
having the smallest drainage area. Whereas most basins drain
either the Sierra Nevada or Coastal Range mountains, Duck
Creek near Farmington drains very low-lying lands on the
valley floor of the Central Valley. The mean basin elevation

is a simple one-dimensional measure of the elevation of these
basins. Flood hydrology in the basins depends upon a complex
interaction of the drainage area, elevation, precipitation, basin
orientation and rain shadow effects of the mountains, and

soil conditions.
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Figure 3. Mean basin elevations and site names and numbers sorted by ascending elevation, Central Valley region,

California.
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The drainage area and mean basin elevation for sites in and the Sierra regions. Figure 4 indicates that Duck Creek near
different areas are shown in figure 4. The highest and largest Farmington (site 28), which is a very small and low basin on
basins are located in the Sierra. The South Coast basins tend the western Central Valley floor, is an obvious outlier.

to be smaller and slightly lower than basins in the North Coast
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Figure 4. Relation between drainage area and mean basin elevation for sites draining different areas, Central
Valley region, California.
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Cross-Correlation Model of Concurrent
Flood Durations

An important step in regional-skew studies is the
development of an appropriate model for the cross correlation
of annual maximum n-day flood-duration flows at different
sites. These cross-correlation models are used to estimate
the cross correlation among skew coefficients at the different
sites. Cross correlation is important, particularly when
assessing model uncertainty, because sites with highly
correlated concurrent annual maxima do not represent
independent samples.

Basins that are spatially close to one another probably
experience similar hydrologic conditions, which increases
cross correlation among the concurrent n-day flood flows.

For example, the three study basins with the greatest average
elevations (site 18, Kings River at Pine Flat Dam; site 38,
Kern River at Isabella Dam; and site 19, San Joaquin River

at Friant Dam) drain the western slopes in and around Mt.
Whitney in the southern Sierra Nevada Range and usually
experience the same regional storms. Similarly, basins that

are farther apart probably experience relatively different
hydrologic conditions, resulting in lower cross correlation
among the annual floods for each duration. Thus, the cross
correlation between flood flows in two basins can be estimated
as a function of the distance between basin centroids. Previous
studies have tried functional relations with other explanatory
variables, such as the ratio of drainage areas of two basins, but
have generally found that functions of distance are the most
useful (Gruber and Stedinger, 2008; Parrett and others, 2011).

Cross correlations between longer duration floods are
expected to be greater than for shorter duration floods. The
shorter duration floods are more likely to be linked to spatially
limited variations in storm intensities, whereas longer duration
floods are most likely linked to longer duration, spatially
extensive storm systems with less variable average intensities.
While 1-day and 30-day floods at a site are often linked to the
same storm system, averaging runoff over the longer duration
tends to dampen the effects of spatial and temporal variability
on the 30-day flood.

A cross-correlation model for each n-day duration flood
was developed by using sites that had at least 50 years of
concurrent records with every other site. A logit model using
the Fisher Z Transform,

Z = 05log[(1+r) /(1-1)] @

provided a convenient transformation of the [-1, +1] range
of the sample correlations r;; to the (—oo, +o0) range. The
adopted model for the cross correlations of concurrent annual
maximum n-day discharges at two sites, which used the
distance (d;;) between centroids of basins i and j as the only
explanatory variable, is as follows:

G e (2a)
U exp(2z;)+1
where
Z, =a+exp(b-cxd,) (2b)

This model is similar to those used in the earlier California
and Southeast United States annual maximum flood studies.
Ordinary least squares regression was used to fit the
cross-correlation model for each duration. Table 3 presents
the parameters for the 1-day, 3-day, 7-day, 15-day, and 30-day
flood-duration models. Figure 5 shows the fitted Fisher
Z transformed cross-correlation model and the distance
between basin centroids for 628 station pairs for the 1-day
flood-duration flows.

Figure 6 displays the fitted correlation functions for
each of the five durations in this study together with the
cross-correlation function for annual peak flows reported by
Parrett and others (2011). The cross correlations in this study
of rainfall n-day duration floods were significantly greater than
the cross correlations of annual peak flows (Parrett and others,
2011). Cross correlations increased with increasing duration
and with decreasing distance between basin centroids.



FISHER TRANSFORMATION (Z) OF CROSS CORRELATION
FOR CONCURRENT ANNUAL 1-DAY MAXIMUM FLOWS

Cross-Correlation Model of Concurrent Flood Durations

Table3. Model coefficients (a, b, and c) in equation 2b of cross
correlation of concurrent annual maximum flows for selected

durations.
Duration Coefficients

(days) a b c
1 0.378 0.147 0.00605
3 0.384 0.222 0.00562
7 0.377 0.261 0.00496
15 0.355 0.315 0.00458
30 0.414 0.283 0.00480

25 I
. o ° Site pairs

—— Z=0.378 + EXP (0.147 - 0.006 D)
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Figure 5. Fisher transformation (Z) of cross correlation between concurrent annual
1-day maximum flows and the distance between basin centroids, Central Valley

region, California.

13



14

MODEL CROSS-CORRELATION

0.3

0.2

0.1

0.0

Development of Regional Skews for Selected Flood Durations for the Central Valley Region, California, Data Through Water Year 2008

= = = Annual peak flows

Duration
1-Day

3-Day
7-Day
15-Day

30-Day

100

200 300 400
DISTANCE BETWEEN CENTROIDS, IN MILES

Figure 6. Cross correlation for selected annual maximum n-day flows and annual peak flow in the Central Valley, California.
Annual peak flows from Parrett and others (2011).

600



Flood-Frequency Analysis

Flood-frequency analysis for gaged sites generally
involves fitting a probability distribution to the series of
annual maximum discharges. Flood-frequency quantiles are
often reported as T-year discharges, where T is a recurrence
interval corresponding to the average number of years between
annual flood discharges of the same or greater magnitude.
Alternatively, flood quantiles are also reported in terms of their
annual exceedance probability. Annual exceedance probability
for a T-year discharge is 1/T. The annual exceedance
probability is often multiplied by 100 and expressed in terms
of annual percent chance of exceedance. Thus, a 100-year
flood discharge has an annual exceedance probability of 0.01
and a 1.0-percent chance of exceedance in any year. Bulletin
17B (Interagency Advisory Committee on Water Data, 1982),
provides guidelines and procedures for flood-frequency
analysis used by federal agencies in the United States. As
recommended by Bulletin 17B, the log-Pearson Type III
distribution (LP3) was used for flood-frequency analyses in
this study.

Flood Frequency Based on LP3 Distribution

For this study, the annual maximum n-day flows caused
by rainfall were fit to the LP3 distribution. Bulletin 17B
recommends fitting the Pearson Type III (P3) distribution
by using the method-of-moments estimators of the mean,
standard deviation, and skew coefficient of the logarithms of
the flows which is the log-Perason Type III (LP3) distribution.
Given these three parameters, various flood quantiles can be
computed by using the following equation:

logQ; = X +K;S ®)

where
Q; is the flood quantile, in cubic feet per second,
with recurrence interval T, in years;
X is the estimated mean of the logarithms of the
annual n-day flows;

Ky is a frequency factor based on the skewness
coefficient and recurrence interval, T,
years; and

S is the estimated standard deviation of the
logarithms of the annual n-day flows.

Rather than using the sample-skew coefficient calculated from
the flow record directly, Bulletin 17B recommends the use of a
weighted average of the sample skew from the flow record and
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a regional-skew coefficient. The weight given to each value
is proportional to its relative precision, expressed as mean
squared error. The precision of the sample-skew estimator is
a function of the record length at a site, so that the longer the
period of record, the more weight that is given to the sample
skew relative to the regional value.

Expected Moments Algorithm (EMA)

This study used the expected moments algorithm (EMA)
for fitting the LP3 distribution (Cohn and others, 1997; Cohn
and others, 2001; England and others, 2003a,b; Griffis and
others, 2004; Parrett and others, 2011). The EMA method for
calculating the LP3 moment estimators is more robust and
efficient than those described in Bulletin 17B when various
forms of censored flows are part of the flow record, including
zero flows; low outliers; “below-threshold” observations,
wherein the flow is described as Q is less than Q, for some
threshold Qg; and historical or paleoflood flows. For this study,
the only forms of censored flows in the records were zero
flows and low outliers. Bulletin 17B includes a Grubbs-Beck
(GB) test for determining if an observed flow should be
classified as a low outlier. Most low outliers are flows that are
significantly less than other flows in a flood record. A very
important concern is that unusually low flows in a flood record
can cause the fitted flood distribution to have a very negative
skew, which, in turn, causes the distribution to diverge from
the largest floods in the record. Because large floods are the
main concern in flood-frequency studies, it is often advisable
to censor the smaller flood flows to allow the fitted distribution
to correctly describe the risk of large flood flows. Table 4
summarizes the number of sites that had differing numbers
of censored low flows for each n-day duration. Table 2-2 in
appendix 2 contains a detailed accounting of censoring and
zero flows for each site included in the study.

Table 4. Number of study sites for differing numbers of censored
low flows for each duration (see appendix 2-2 for greater details).

Number

censored D&  3-Day  7-Day  15-Day  30-Day
0 16 16 16 16 16
1 28 28 28 28 28
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About one-third of the 50 sites included in this study

had neither zero-flow observations nor censored low outliers.

The flood-frequency curve for annual maximum 3-day flows
for the Feather River at Oroville Dam (site 13), displayed in
figure 7, is an example of an LP3 curve fit for a site that had
no censored observations.

The other two-thirds of the study sites had at least one
zero flow or other flood observation that was identified as a
low outlier by using the GB test. The GB test is a 10-percent

significance test for the smallest observation in a log-normally
distributed sample, which corresponds to an LP3 distribution
with zero skew (Interagency Advisory Committee on Water
Data, 1982). The GB test identified low outliers in about

half of the records in this study. In many instances, the

GB criterion worked well and markedly improved the LP3
curve fit. In some cases, additional censoring was advisable;
appendix 2-2 summarizes the actions taken for this study.
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Figure 7.
(site 13), California.

Flood-frequency curve for maximum 3-day duration flows for the Feather River at Oroville Dam



The Trinity River above Coffee Creek near Trinity Center
(site 54) provides an example of the effects caused by a single
low outlier. The GB test identified one low outlier in the flow
record for the annual maximum 3-day flood flows at this site.
As shown in figure 8A, the calculated skew based on all the
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flood flows (—0.254) produces a flood-frequency curve that is
concave and does not fit the three largest observations. After
censoring the smallest observation, as indicated by the GB
test, the calculated skew is less negative (—0.061), and the
frequency curve fits the largest observations better (fig. 8B).
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Figure 8. Flood-frequency curve for maximum 3-day duration flows for the Trinity River at Coffee Creek
(site 54), California, (A) with no censoring and (B) with censoring.
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Figure 8.—Continued

Although the GB test provides a reasonable procedure for
determining all low outliers at many sites, visual inspection
of the plotted frequency curves is often required to identify
and censor other low outliers that could significantly affect the
LP3 curve fits to the greatest observed flood flows. Additional
low-outlier censoring was most common for basins in drier
regions. Additional low outliers were visually identified in
about 25 to 30 percent of the flow records, depending on the
duration. For example, the GB test failed to identify any low
outliers in the annual maximum 3-day flood record for the
American River at Fair Oaks (site 17), but visual inspection
of the flood-frequency curve clearly revealed one low outlier
(fig. 9). Censoring that observation by describing it as less
than the smallest retained observation improved the fit of the
frequency curve to the greatest observed flood flows.

Another concern with flood data for the American River
at Fair Oaks (site 17) was consistency in censoring the flood
record across durations. The apparent low outlier visually
identified in the annual maximum 3-day flow record was from
1977. While the GB test failed to identify the maximum 3-day
flow in 1977 as a low outlier, the GB test did identify the
1977 flood event as a low outlier for other n-day durations.
Annual flood maxima for various n-day durations are usually
produced by the same storm; thus, an outlier for one duration
was generally treated as an outlier at other durations in this
study. For the American River example, censoring the same
annual flood flow for all durations maintained consistency in
the fitting of the LP3 curves to flows for all durations.
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Figure 9. Flood-frequency curve for maximum 3-day duration flows for the American River at Fair Oaks

(site 17), California, after additional censoring.

Additional visual censoring in this study typically
involved the removal of just one or two observations that
were not identified by the GB test. However, a few sites such
as Putah Creek at Monticello Dam (site 44), required more
extensive censoring because the LP3 frequency curve was
unable to provide a good fit to both the smallest and largest
observations in the record. The censoring process entailed
censoring the lowest observations one-by-one until there
was an adequate fit of the frequency curve to the larger flood
observations. Censoring increases the mean square error
(MSE) of the at-site skew-coefficient estimate, and extensive
censoring—used to improve the at-site LP3 curve fit to larger

observations—can critically effect the weight placed on
station skew in a regional-skew analysis because the weight
given to each estimated skew depends inversely upon its MSE.
The most extensive censoring in this study was carried out for
flow records at Putah Creek at Monticello Dam (site 44). The
GB test identified only one low-outlier in the annual maximum
1-day flood flows at this site, but visual inspection indicated a
significantly improved LP3 curve fit when 11 additional flows
were censored (fig. 10). The EMA censoring threshold for all
12 low outliers was the smallest retained flood observation,
which represents the upper bound that is assigned to all of the
lower censored observations.
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Figure 10. Flood-frequency curve for maximum 3-day duration flows for Putah Creek at Monticello Dam

(site 44), California, after additional censoring.

After calculating the skew at each site for each selected
n-day duration, the data were examined to determine whether
the calculated skew showed consistent trends over the selected
durations and whether relations between skew and selected
basin characteristics were apparent. Figure 11 shows a plot
of sample-skew coefficient for each duration on the y-axis
versus the sites, ordered by ascending 7-day skew coefficients
along the x-axis. Calculated skew coefficients ranged from
—1.092 to +0.248. At-site skew coefficients for different
durations showed no consistent trends. For example, three
sites had a consistently decreasing skew with increasing n-day
duration, and six sites had a consistently increasing skew with
increasing n-day duration. At all other sites, skews varied in
no consistent way with n-day duration. Because basin drainage
area is a commonly used characteristic for making hydrologic
comparisons, data in figure 11 were replotted in figure 12
against ascending drainage area along the the x-axis. No clear

trend was exhibited between skew coefficients and drainage
area, however. In the regional-skew analysis for peak-flow
frequency in California, Parrett and others (2011) found that
a non-linear function with mean basin elevation represented
the site-to-site variability in skew coefficients best. Figure 13
shows the skew coefficient for each duration plotted against
the sites ordered in ascending order of mean basin elevation.
Skew coefficients for sites with lower mean basin elevations
are usually more negative than sites with higher basin
elevations. A non-linear trend in skew coefficients for each
duration is apparent in figure 13. A transition zone apparently
exists between the two clusters of skew values, but the at-site
data also exhibit considerable scatter. Appendix 2-3 gives the
log-space skew for each site and duration. Statistical analysis
of other explanatory variables revealed that only elevation
related variables were significant.
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Regional Duration-Skew Analysis

Tasker and Stedinger (1986) proposed a weighted least
squares (WLS) regression model for estimating regional
skew by relating sample skew to basin characteristics. This
model accounts for sampling error in the data (a function
of record length) as well as model error variance, which
describes the precision of the model. Stedinger and Tasker
(1985) and Tasker and Stedinger (1989) also presented
a generalized least squares (GLS) regression model for
estimating flood quantiles from basin characteristics, and Reis
and others (2005) presented a Bayesian analysis of that GLS
model, which aimed at estimating regional skew. The main
advantage of a GLS regression analysis compared to a WLS
regression analysis for regional skew is that GLS regression
explicitly accounts for sampling error due to cross correlation
among skew-coefficient estimators in addition to sampling
error due to finite record lengths. This is an important
consideration because highly cross-correlated data are not
independent. Failure to account for this cross correlation
can lead to misrepresentation of model precision. Bayesian
GLS regression also is an improvement over traditional GLS
regression because Bayesian GLS regression provides the
posterior distribution of the model error variance. Moreover,
traditional GLS regression can generate a model error variance
of zero, which unreasonably indicates that no model error
exists (Reis and others, 2005). Bayesian GLS methods have
been used to determine regional skew for annual peak flow in
the Southeastern U.S. (Feaster and others, 2009; Gotvald and
others, 2009; Weaver and others, 2009) and California (Parrett
and others, 2011).

A WLS regression was first used to develop the
regression model relating regional skew to mean basin
elevation, and then a Bayesian GLS model was used to
estimate the precision of the WLS regression parameters
and the regression diagnostics. For this study, the cross
correlations among the annual maximum flows of n-day
durations were even greater than those among annual peak
flows. Accordingly, a similar hybrid WLS/GLS regression
approach to that used by Parrett and others (2011) was used
for this study. The hybrid WLS/GLS regression used for this
study also used OLS regression to provide initial estimates of
the skew coefficients, as described in appendix 3.

Standard GLS Analysis

The GLS model assumes that the regional skew can
be described by a linear function of basin and climatic
characteristics (explanatory variables) for k explanatory
variables and n sites with an additive error (Reis and others,
2005). In matrix notation, the model is as follows:

7=Xp+e (4)

where

v is an (n X I)Vector of unbiased at-site skews
for each site;

X is an(nxk)vector of basin characteristics for
each site;

Bisa (kx 1) vector of GLS regression coefficients;
and

gisan (n ><1) vector of total errors representing
the sum of the regional regression model
error and the sampling error in the at-site
sample-skew estimate for each site.

For this model, E[€] =0, and the covariance matrix for ¢ is
A=E [SST ]-

The covariance matrix A of the vector of errors is given
by the equation:

A=c3I+2(7) ®)

where
o2 is the model error variance, and
2(¥) is a matrix containing the variances and
covariances of the at-site sample-skew
estimates for the nsite and is a function of
record length and cross correlation of annual
peaks at different sites.

Given the covariance matrix A, the unbiased minimum
variance GLS estimator of §, B is as follows:

B=(x" A’lX)_l XA (6)

Because A is not known, it must be estimated from the
data (Reis and others, 2005). The weighted least squares
(WLS) estimator of B is obtained when A is a diagonal matrix,
wherein the cross correlations among the floods at different
sites are ignored. For a GLS analysis, the off-diagonal
elements of A should be the covariance of the sampling errors.

Martins and Stedinger (2002) developed the following
relation between the cross correlations of concurrent annual
peaks and the cross correlation of at-site skew-coefficient
estimators through extensive Monte Carlo experimentation:



p(71:71) = sin oy )ofy oy %

where

pjj is the cross correlation between concurrent
annual peak flows at two gaged sites,
iand j,

K 1s a constant between 2.8 and 3.3, and

cfij accounts for the difference between the
length of record at each station relative
to the concurrent record length and is

defined as follows :

where
Nj; is the length of the period of concurrent
record, and

N;, N; is the number of non-concurrent observations
corresponding toiand j.

Thus, given this estimate of the average cross correlation
of sample-skew estimates for any two sites and an estimate
of their individual sampling variances, the covariance can
be calculated.

WLS/GLS Analysis

The standard Bayesian GLS regression approach
described previously could not be used in this study because
of the high cross correlations among the concurrent flood
flows at different sites. Instead, a hybrid WLS/GLS procedure,
similar to that developed by Parrett and others (2011) for the
regional-skew analysis of peak flows, was developed. This
hybrid approach first used OLS regression to estimate at-site
skew coefficients for each of the n-day duration flows, which
were in turn used to compute the sampling error variance for
each of the at-site sample skew coefficient estimates. WLS
regression was used secondly to generate robust estimators
of the regional-skew model parameters, and GLS regression
was used thirdly to estimate the precision of the parameter
estimators and the model error variance. The details and
mathematics of the hybrid WLS/GLS procedure are described

in appendix 3.
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Skew-Duration Analysis

In this study, five regional-skew models were generated,
one for each of the five selected flood durations (1-day, 3-day,
7-day, 15-day, and 30-day). Skew coefficients for a site should
vary modestly from the annual maximum 1-day flood-duration
flow to the annual maximum 30-day flood-duration flow.
Significant differences in regional skews from one n-day
duration to another would mean significant differences in
the shape of the LP3 flood-frequency curves and potential
inconsistent estimates of n-day flood flows.

This study was based on annual maximum rainfall
n-day flood-duration flows at 50 sites in California (fig. 1)
having an average of 74 years of record. Because of GIS
difficulties and the limited resources available for this study,
all basin characteristics for all sites were not available. Basin
characteristics other than drainage area, mean basin elevation,
relief, maximum elevation, minimum elevation, and basin
centroid could not be estimated at three sites. These three sites
were site 1, Sacramento River at Shasta Dam; site 14, Feather
River at Oroville Dam; and site 20, Chowchilla River at
Buchannan Dam. Regression models were first developed and
compared by using the data from 47 sites because those sites
contained the full set of basin characteristics.

In the WLS/GLS analysis, the estimated variance of the
skew for each site depended on the record length available at
that site and the skew coefficient for that site estimated from
an OLS regression equation relating sample skew to mean
basin elevation.

Zero flows and other low outliers were treated as
censored observations in the EMA analysis. When the
number of censored observations at a site was less than five,
the presence of censored observations was ignored when
computing the sampling variance estimate for the unbiased
skew estimator given by Griffis and Stedinger (2009). On
that basis, the only two sites with a greater level of censoring
were Santa Cruz Creek near Santa Ynez (site 52) and Putah
Creek at Monticello Dam (site 44). For these two sites, the
Griffis and Stedinger (2009) expression for the variance of
the skew estimator was not appropriate, and the estimate
of the sampling error in the skew coefficient produced by
the EMA output (PeakfqSA program, Tim Cohn, USGS,
written communication, 2010) was adopted, together with
an additional factor to reflect the unbiasing of the sample-
skew estimator. The unbiasing factor for the skew coefficient
described by Tasker and Stedinger (1986) as (1 + 6/N),
where N is the length of record, was used with all of the
skew estimators.
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Of the twenty basin characteristics considered
as potential explanatory variables, only mean basin
elevation (ELEV) and percentage of basin area
with elevation greater than 6,000 ft (EL6000) were
found to be statistically significant in the regression

Table 5.

Mathematical models used in the regional-skew analyses.

[Abbreviations: ELEV, mean basin elevation in feet; EL6000, percentage of basin area
above 6,000 feet elevation; y, regional skew; 3 and B, regional-skew coefficients as defined
in table 6; <, less than]

analyses. Similarly, mean basin elevation was the

Model type

Regional skew (y) models

only significant basin explanatory variable in the
regional-skew regression for annual peak discharge
in California (Parrett and others, 2011). Table 5
presents five candidate skew models for each of
the n-day flow durations: (1) a model based on a

(1) Constant

(2) Linear elevation

(3) Discontinuous EL6000
(4) Nonlinear elevation

(5) Nonlinear elevation—final

Y =B,

y=B,+B,(ELEV)

v =B, + B,, where B, = 0 when EL6000 <4 percent
v =P, * B,[1 - exp{-(ELEV/3600)**} ]

y =B, + B,[1 —exp{—(ELEV/3600)**}]

constant value of skew, generally termed a constant
model; (2) a model based on a linear relation

between skew and mean basin elevation, termed a linear
elevation model; (3) a discontinuous constant model with
two regression constants, 3, and 3;, where the value of 3, is
zero for basins where the percentage of area above 6,000 ft
elevation (EL6000) is less than 4 percent and equals the value
indicated in table 6 for basins where EL6000 is 4 percent or
greater; (4) a model based on a nonlinear relation between
skew and mean basin elevation; and (5) the same model as 4,
but with data based on basin elevation characteristics from all
50 basins, rather than just the 47 basins that had a complete
set of basin characteristics. Model 5 (nonlinear equation—final
model) thus represents the final and best fit model for regional
skew for annual maximum n-day flood flows for all 50 basins.
Table 6 shows several statistics that were used to assess
model performance. Pseudo R? indicates the fraction of the
variation in the true skew that is explained by a model (Gruber
and others, 2007). The pseudo R? statistic is calculated
as follows:

re =1 (k) ©)

where

Gg (k) is model error variance obtained with a
model using k explanatory variables,
and,

c§ (0) is model error variance for the constant
model, 1

Another statistic used to assess model performance is the
average sample error variance (ASEV). This statistic describes
the contribution of the sampling error in the model parameters
to the average variance of prediction (Stedinger and Tasker,
1985). ASEV plus the expected model error variance is the

average value of the variance of prediction for a new site
(E[VP,,]), which is comparable to the MSE reported in
Bulletin 17B for the error in the national map of regional skew
for annual peak flow. The average ERL is the average effective
record length for a regional-skew estimate and indicates the
at-site record length required to calculate a skew coefficient
with a variance equal to the variance of prediction for the
regional-skew model.

As indicated in table 6, the constant model, 1, always has
a pseudo R52 value of zero. In addition, the constant model
had larger model error variance (c§ ) and average variance of
prediction (E[VP, ] ) than any of the other models for all n-
day durations. As a result, the constant model had the shortest
average effective record length of any model for all durations.
The constant model generally overestimated the skew for
basins having a mean elevation of less than about 3,200 ft and
generally underestimated the skew for basins having a mean
elevation greater than about 4,000 ft.

Although the linear elevation model, 2, had a smaller
average model error variance cs?, than model 1 and a pseudo
R§ value greater than zero, it did not fit the data well for
basins with low (less than about 3,000 ft) or high (above about
4,000 ft) mean basin elevations. The Discontinuous constant
model, 3, where the value of the constant depends on the
value of EL6000, performed better than either model 1 or 2
for all durations on the basis of the regression performance
statistics shown in table 6. However, model 3 can provide
unrealistic estimates of skew for hydrologically similar and
nearby basins if one has an EL6000 just under 4 percent and
the other has an EL6000 just over 4 percent. The models based
on the nonlinear relation of skew to mean basin elevation
(models 4 and 5) represent an attempt to provide a continuous
relation of skew to basin elevation over the complete range
of both basin elevation and skew, which tends to cluster near
a constant value when mean basin elevation is low and at a
different constant value when mean basin elevation is high.



Table 6. Summary of statistical results of five regional-skew models for five durations.

Regional Duration-Skew Analysis

[Numbers in parentheses represent the model used and are defined in table 5. Nonsignificant values are bold. Abbreviations: ASEV, average sample error

variance; ERL, effective record length in years; E[VP ], average value of the variance of prediction for a new site; E[c,?], posterior mean of the model error

new

8

21

variance; Pseudo R 2, fraction of the variability in the true skews explained by each model (Gruber and others, 2007); B, and B,, regional skew coefficients; —, not

applicable]
D(l::;:;n Model type B, B, EsZl  ASEV  EVP ] Ps;:'zd" Average

1 (1) Constant * -0.3197 - 0.078 0.035 0.113 0 66
(2) Linear elevation * —-1.0235 0.0002 0.026 0.040 0.066 0.665 110

(3) Discontinuous EL6000 * —0.6903 0.6227 0.017 0.038 0.055 0.780 131

(4) Nonlinear elevation * —0.7263 0.6923 0.012 0.038 0.049 0.848 146

(5) Nonlinear elevation — final 2 —0.7346 0.6859 0.011 0.037 0.048 0.864 150

3 (1) Constant * —0.2689 - 0.080 0.039 0.118 0 62
(2) Linear elevation * -0.9689 0.0002 0.025 0.043 0.068 0.689 104

(3) Discontinuous EL6000 * —0.6417 0.6290 0.016 0.041 0.057 0.795 122

(4) Nonlinear elevation * —0.6847 0.7109 0.008 0.040 0.049 0.897 143

(5) Nonlinear elevation — final 2 —0.6905 0.6822 0.009 0.040 0.049 0.891 143

7 (1) Constant * —0.2206 - 0.053 0.040 0.093 0 76
(2) Linear elevation * -0.8287 0.0002 0.014 0.045 0.059 0.736 117

(3) Discontinuous EL6000 * -0.5380 0.5287 0.013 0.043 0.056 0.750 121

(4) Nonlinear elevation * —0.5812 0.6111 0.007 0.042 0.049 0.873 138

(5) Nonlinear elevation — final 2 —0.5877 0.5899 0.007 0.042 0.049 0.875 140

15 (1) Constant * -0.3027 - 0.034 0.043 0.076 0 95
(2) Linear elevation * -0.8802 0.0001 0.010 0.048 0.058 0.713 124

(3) Discontinuous EL6000 * -0.6017 0.4879 0.008 0.046 0.055 0.752 130

(4) Nonlinear elevation * —0.6453 0.5685 0.006 0.046 0.052 0.835 138

(5) Nonlinear elevation — final 2 —0.6453 0.5493 0.005 0.046 0.051 0.848 141

30 (1) Constant * —0.3576 - 0.033 0.044 0.076 0 98
(2) Linear elevation * -0.8415 0.0001 0.017 0.049 0.066 0.481 113

(3) Discontinuous EL6000 * —0.6030 0.4044 0.012 0.047 0.059 0.627 125

(4) Nonlinear elevation * -0.6379 0.4698 0.011 0.047 0.058 0.667 128

(5) Nonlinear elevation — final 2 —0.6331 0.4410 0.010 0.046 0.056 0.688 133

! Forty-seven sites were used in the regression analysis;

were not available. See table 1 for a list of sites.

three sites (1, 13, and 20) were excluded from the analysis because physiographic data for these sites

2 Fifty sites were used in the regression analysis. See table 1 for a list of sites.
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The transition in skew from a lesser constant value to a greater
constant value was accommodated by using a nonlinear,
exponential function of ELEV in the regional regression rather
than ELEV itself. After some exploratory trials, the following
regression model relating skew and mean basin elevation

was developed:

v =P +Py [ 1-exp{—(ELEV /3600y2} ] (102)

or
Y = Ymin * (Ymax — Ymin )| 1~ exp{~(ELEV /3600)'?} |~ (100)

where
ELEV is mean basin elevation in feet,
Ymin 18 the minimum regional-skew coefficient
(equal toBy ), and
Ymax 1S the maximum regional-skew coefficient
(equal toBy +p, ).

Equations 10a and 10b represent two formulations of the
same model. Equation 10a expresses regional skew in terms
of regression parameters 3, and f3,, whereas equation 10b
expresses regional skew in terms of the maximum and
minimum regional-skew values for the study region. This
second formulation emphasizes that the regional-skew
coefficient model has a minimum skew-coefficient value for
low elevation sites and a maximum skew-coefficient value
for high elevation sites with a transition occurring around
3,600 ft. The non-linear elevation term (the bracketed portion
in both equations) varies between zero at low elevations and
one at high elevations. The denominator constant (3,600)
inside the exponential function (exp) is a scale parameter that
determines the location of the transition between high and
low elevation skew coefficients. The exponent (12) inside the
exponential function is a shape parameter that controls how
rapid the transition is between low and high elevation constant
skew coefficients. As indicated by the results in table 6, the
nonlinear elevation models (models 4 and 5) provided the best
regression fits to the data for all durations on the basis of the
regression performance statistics. Model 5, which represents
the final, best nonlinear elevation model for regional skew
based on data for all 50 basins, generally had slightly better
performance statistics than those for model 4, which was
based on data from 47 of the 50 sites.

Table 6 shows that the E[VP,_ ] for model 5 ranged
from 0.048 for a 1-day flood flow to 0.056 for a 30-day flood
flow. The average ERL values for model 5 in table 6 ranged
from 133 years for the 30-day flood flow to 150 years for

the 1-day flood flow. In contrast, the mean squared error of
0.303 reported for the National skew map in Bulletin 17B
corresponds to only 17 years of effective record length for the
estimate of the skew coefficient based on annual peak flows.
Overall, model errors for model 5 are notably small, the fitted
functions are reasonable, and the equivalent years of record
are notably long.

Results from the pseudo analysis of variance (ANOVA)
for model 5 for each duration are given in table 7. The analysis
divides the variability observed in the skew estimators into
three sources: the variability explained by the model, the
variability in the true skew that the model cannot explain
(model error), and the variability due to the sampling error
in the individual skew estimators. The model error describes
the precision with which the regression model can estimate
the “true” skew. For all durations, the model error was much
less than the sampling error. The table also reports the total
variability, which is the sum of the three variabilities (model,
model error, and sampling error). The major source of
variability for all durations is the sampling error.

The error variance ratio (EVR) in table 7 is the average
sampling variance divided by the variance of the model
error. This statistic is used to determine if an OLS analysis is
adequate or if a WLS or GLS analysis is needed. Values less
than about 0.2 indicate that an OLS analysis is appropriate,
whereas values much greater than one indicate a WLS or
GLS analysis is needed. EVR values ranged from 12.4 to 26.3
across all durations, indicating that an WLS or GLS analysis
was needed.

Table 7. Pseudo ANOVA table for the final non-linear regional-
skew model for all n-day flood durations, Central Valley region,
California.

[Abbreviations: ANOVA, analysis of variance; EVR, error variance ratio;
MBYV, misrepresentation of the beta variance]

Durations
Source
1-Day 3-Day 7-Day  15-Day  30-Day

Model 3.384 3.660 2.347 1.359 1.070
Model error 0.533 0.448 0.336 0.244 0.485
Sampling error  6.602 6.439 6.234 6.399 6.348
Total 10.519 10.548 8.916 8.002 7.902
EVR 12.4 14.4 18.6 26.3 13.1
MBV 13.4 15.2 17.1 18.4 18.0
Pseudo R? 0.86 0.89 0.87 0.85 0.69




Table 7 also reports the misrepresentation of beta
variance (MBV) statistic. MBV is the ratio of the sampling
variance that the GLS regression analysis ascribes to the
constant in the model to the variance that a WLS regression
analysis (that neglects cross correlations) would ascribe to the
constant (Parrett and others, 2011). The MBV statistic is used
to determine if a WLS regression analysis of model precision
is adequate or if a GLS regression analysis is required. If
MBYV values are much greater than one, a GLS analysis is
needed to properly assess model precision. MBV values
ranged from 13.4 to 18.4 across all durations, indicating that
the error analysis produced by a WLS regression analysis
would overestimate the precision of the constant term. Thus,
a GLS regression analysis is needed to correctly evaluate
the precision with which the constant term can be resolved.
This is particularly important for these analyses because the
contribution of parameter uncertainty to the average variance
of prediction is at least twice as great as the model error
variance. The sampling error is usually the predominant
source of error in regional skew-coefficient predictions which
is caused by the large correlations among flood records that
limit the amount of information a regional dataset provides.

Figure 14 shows the at-site sample-skew coefficients
plotted against their mean basin elevations together with the
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fitted curve from model 5 for 1-day, 3-day, 7-day, 15-day, and
30-day durations. There is much scatter in the data displayed
in these figures, largely because of the sampling error in the
skew-coefficient estimators. Moreover, residual errors were
also correlated because of the many correlations among the
at-site annual maximum flood flows for each duration. Despite
the considerable scatter in the at-site data in figure 14, the
data and the model curves indicated a significant change in
skew as mean basin elevation increased from about 3,000 ft
to about 4,000 ft. The changes in skew with increasing mean
basin elevation were more dramatic for annual peak flows
(Parrett and others, 2011) probably because the regional-skew
analysis for annual peak discharge used all (snowmelt- and
rainfall-caused) annual peak-flow data and not just annual
peak flows from rainfall. Nevertheless, the significant, albeit
smaller, changes in skew with increasing elevation in this
study indicated that increasing basin elevation changes flood
response even when annual maximum flood flows from
snowmelt were eliminated from the data. The changes in
flood response are still probably largely related to increasing
snow effects at higher elevations. Thus, some storms that

are rainfall at lower elevations can be in the form of snow at
higher elevations. In addition, runoff from warm rain can be
intensified by snowmelt at high elevations.
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The regional-skew models for each duration developed
from the final model, 5, are represented by the curves in
figure 15. Overall, regional skew ranged from —0.74 for the
1-day duration flood flow for mean basin elevations less
than 2,500 ft to about 0 for the 7-day duration flood flow for
mean basin elevations greater than 4,500 ft. The difference
between the minimum and maximum skew coefficients was
greatest for the 1-day duration flood model and least for
the 30-day duration flood model. The differences between
maximum and minimum skew were somewhat less for the
longer duration flood flows (15- and 30-day duration) than
for the shorter duration flood flows (1- and 3-day duration).
These differences, though subtle, could indicate that flood-
frequency characteristics are more uniform across the study
region for longer duration floods than for shorter duration
floods. The dampening effect of averaging daily maximum
flows over longer time spans for the longer durations probably
is partly responsible for the increased uniformity. Another
possible explanation is that basin infiltration becomes
significantly reduced as soils become saturated after prolonged
storms. The effects of variable infiltration characteristics on
runoff thus become reduced for longer duration flood flows.
Overall, the results in table 6 indicate that the 30-day duration

model has somewhat more scatter (lowest psuedo R? and
shortest effective record length) and a lower elevation signal
(smaller beta coefficient for mean basin elevation) than any
duration model.

Because the models include an explanatory variable that
depends on elevation, the actual variance of prediction for
a site depends on its mean basin elevation (ELEV). Table 8
gives the variance of prediction for a site not included in
this study (VP ) as a function of its mean basin elevation
between 0 and 10,000 ft. For sites with mean basin elevations
less than 2,500 ft, skew was constant, and the variance
of prediction did not change with mean basin elevation.
Similarly, sites with mean basin elevations greater than
4,500 ft had a constant skew, and the variance of prediction
did not change with mean basin elevation. The variation
in the effective record lengths (ERL) was low with respect
to changes in mean basin elevation despite an appreciable
variation in the variance of prediction. The change in the
sampling variance of the skew estimators due to the change
in estimated skew with elevation was approximately balanced
by the difference in the prediction variance between lower and
higher elevation basins.
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Table 8. Variance of Prediction (VP) and Effective Record Length (ERL) for five durations as a function of mean basin elevation.

[Abbreviations: >, greater than; <, less than]

Mean Durations
basin
elevation 1-day 3-day 1-day 15-day 30-day
(ELEV) ERL ERL ERL ERL ERL
(feet) VPoew (years) VPoew (years) VPoew (years) VPoew (years) VPoew (years)
<2,500 0.058 186 0.059 172 0.058 156 0.062 157 0.066 145
3,000 0.055 182 0.056 168 0.055 155 0.059 156 0.063 144
3,200 0.052 177 0.053 164 0.053 153 0.055 155 0.060 144
3,400 0.047 170 0.049 159 0.049 151 0.051 154 0.056 143
3,600 0.043 164 0.044 155 0.045 151 0.046 154 0.052 142
3,800 0.040 162 0.042 155 0.042 153 0.042 156 0.049 141
4,000 0.039 162 0.041 157 0.041 156 0.041 157 0.048 141
>4,500 0.039 162 0.040 157 0.041 156 0.041 157 0.048 140

Given the high degree of censoring for some sites, there
was concern that large sampling variance at those sites could
adversely affect the statistical analysis. As a check, the WLS/
GLS regression analysis for the nonlinear elevation—final
model (model 5) for each duration was rerun without the four
most heavily censored sites (site 43, Cache Creek at Clear
Lake; site 16, North Fork Cache Creek at Indian Valley Dam;
site 52, Santa Cruz Creek near Santa Ynez; and site 44, Putah
Creek at Monticello Dam). Differences in model results and
regression diagnostics were minimal, indicating that censoring
at these four sites had little effect on the final model results.
Appendix 2-4 shows the regional-skew coefficient estimates
for the 50 study sites at the five durations. The associated
variance of prediction for weighting the regional sample
skew-coefficient estimator is given in appendix 2-5.

Use of Regional-Skew Models

The previous section showed that regional skews are
more accurate, and mean squared errors (MSE) are less than
in the National skew map of Bulletin 17B. Regional skew
and MSE, along with the corresponding at-site values, are
needed to estimate a weighted skew coefficient necessary
for flood-frequency estimates at gaged sites. This is the case
because the shape, or skew, of the flood distribution is often
significantly affected by the presence of very small or very
large discharges in the record (outliers) and also by the length
of the record.

The non-linear regional-skew models for each duration
(1-day, 3-day, 7-day, 15-day, and 30-day) are presented in
figures 14 and 15. These figures, or equation 10a, can be used
to estimate the regional skew at a gaged site, but the mean
basin elevation for a site must be known. For example, the
regional-skew coefficient for a 3-day duration is needed for
a site with a mean basin elevation (ELEV) of 3,500 ft. In
figure 14B, the regional-skew coefficient is approximately
—0.34, the intersection of 3,500 ft and the model (green line).
Using equation 10a with an elevation of 3,500 ft, a regional-
skew coefficient was calculated to be —0.3426 with the values
of B, (-0.6905) and B, (0.6822) given from table 6. For sites
used in this study, the regional skews for each duration are
given in appendix 2-4.

The variance of prediction (VP) is equivalent to the
MSE from the National map of regional skew for annual
peak flow of Bulletin 17B. Table 6 reports the VP as
E[VP,..], which is an average for each model and duration.
Because skew is a function of elevation, table 8 presents the
VP for each duration as a function of ELEV (mean basin
elevation). From the previous example, the MSE for a 3-day
duration regional skew is 0.0465, which was calculated by
averaging the VP values surrounding 3,500 ft (0.0465 =
(0.049 + 0.044)/2) from table 8. For sites used in this study,
the MSEs (which is equivalent to VP ;) for each duration are

given in appendix 2-5.
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Summary

Accurate and reliable estimates of the magnitude and
frequency of flood flow volumes for a n-day duration are
critical for the evaluation of the risk of flooding and the
operation and reliability of dams and levees. Recognizing the
need for accurate estimates of volume-duration frequencies in
the Central Valley region of California, the U.S. Geological
Survey, in cooperation with the U.S. Army Corps of Engineers
(USACE), conducted a study to develop regional-skew models
for the 1-day, 3-day, 7-day, 15-day, and 30-day rainfall-flood
durations. The analysis of regional-skew coefficient estimators
is important because flood-frequency estimates can be
determined with greater accuracy by using the more precise
estimates of the skew coefficients. This report documents
the methods in developing regional-skew models for five
flood-flow durations for the Central Valley region. Fifty sites,
all but four of which had records through either 2008 or 2009,
were used in the development of regional-skew coefficient
models. Twenty-two of these sites were at dams, and the daily
unregulated-flow records at these sites were synthesized from
records of flow, reservoir storage levels, and diversions. The
other 28 sites had no significant regulation during the study
period. The record at one site was extended by using the
MOVE.I technique with flow records from several other sites.

Flood-frequency analysis is usually conducted on peak
flows, but peak flows are not as critical to the operations
of large dams and reservoirs as much as sustained flows
(volume-duration). The 3-day maximum rainfall flood volume
is the most critical duration found by USACE and the Bureau
of Reclamation for much of the Central Valley region of
California because of the many large control structures.

The 7-day maximum rainfall flood volume is also important
because it can represent two 3-day back-to-back events which
is not an uncommon meteorological event in the region.

In accordance with recommendations in Bulletin 17B, the
Pearson Type 111 distribution applied to the logarithms (base
10) of the selected annual maximum rainfall flood-duration
data was used to determine flood-frequency statistics at
each site for this study. The expected moment algorithm
(EMA) was used, when necessary, for fitting the LP3
distribution in order to determine station skew for sites used
in the regional-skew analysis that had flood-duration flows
identificed as low outliers and (or) zero flows.

This study employed recently developed generalized
least squares (GLS) regression procedures for regional skew
analyses. To properly account for the high cross correlations
among annual peak discharges and in the skew-coefficient
estimators, a combination of Bayesian weighted least squares
(B-WLS) and Bayesian generalized least squares (B-GLS)
regression was adopted to ensure that the regression model
and the diagnostics for the regression analysis were reliable.

Several basin characteristics were considered as possible
explanatory variables in the regression analysis for regional
skew. The basin characteristic that explained the site-to-site

variability in skew best was the mean basin elevation. Five
skew models were developed: (1) a model that uses a constant
skew, (2) a model that uses a linear relation between skew
and mean basin elevation , (3) a discontinuous model that
uses one constant term for sites with EL6000 less than or
equal to 4 percent and another for sites with EL6000 greater
than 4 percent, (4) a model that uses a nonlinear relation
between skew and mean basin elevation, and (5) a model that
uses the same nonlinear relation between skew and mean
basin elevation as model 4, but is based on data from 50 sites
rather than the 47 sites used to develop models 1 through 4.
The nonlinear elevation—final model (model 5) provided a
reasonable fit to the data and had smaller model errors and
greater pseudo R? values than the other models. The average
value of the variance of prediction at a new site (E[VP,_,])
corresponds to the mean square error (MSE) for the regional-
skew estimator. It describes the precision of the generalized
skew. E[VP ] was smallest for the final model, 5. Just as the
generalized skew coefficient varies from site-to-site depending
on mean basin elevation, so too does the value of the variance
of prediction for a new site, VP, . The final regional-skew
model, 5 had VP values ranging from about 0.041 to 0.066
and a corresponding effective record length (ERL) between
140 years and 186 years, depending upon the values of mean
basin elevation and flood duration. In contrast, the National
skew map for peak flows of Bulletin 17B has a MSE of 0.302
and ERL of only 17 years.
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Appendix 1. Unregulated Annual Maximum Rain Flood Flows for Selected
Durations for all 50 Sites in the Central Valley Region Study Area, California.

[The flood-duration data in this appendix were provided by U.S. Army Corps of Engineers. The n-day flood-duration flow
is the maximum average discharge of any consecutive n-day period in a water year for a site]

This appendix is available for download at http://pubs.usgs.gov/2012/5130/Appendix]1.
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Appendix 2. Ancillary Tables for Regional-Skew Study in the Central Valley
Region of California
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Appendix 2-2. Summary of censoring decisions for each site and duration in the Central Valley region of California.

[Abbreviations: Cens, censored; EMA, Expected Moments Algorithm]
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number

Site name

Number
of years
of record

Type of Censoring

Number of censored flows for
the indicated duration

—
1
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3-Day

7-Day

15-Day 30-Day

1

10

11

12

13

14

15

16

Sacramento River at Shasta Dam

Cottonwood Creek near Cottonwood

Cow Creek near Millville

Battle Creek below Coleman Fish Hatchery

Mill Creek near Los Molinos

Elder Creek near Paskenta

Thomes Creek at Paskenta

Deer Creek near Vina

Big Chico Creek near Chico

Stony Creek at Black Butte Dam

Butte Creek near Chico

Feather River at Oroville Dam

North Yuba at Bullards Bar Dam

Bear River near Wheatland

North Fork Cache Creek at Indian Valley Dam

77

68

59

68

80

60

76

92

77

t108

78

107

68

103

178

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total

EMA Cens/ zeros
Additional censored
Total
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Appendix 2-2. Summary of censoring decisions at each site and duration in the Central Valley region of California.—Continued

[Abbreviations: Cens, censored; EMA, Expected Moments Algorithm]

Number of censored flows for

Site . Number . the indicated duration
number Site name of years  Type of Censoring
of record 1-Day 3-Day 7-Day 15-Day 30-Day
17  American River at Fair Oaks 104 EMA Cens/ zeros 0 0 0 1 1
Additional censored 1 1 1 0 0
Total 1 1 1 1 1
18  Kings River at Pine Flat Dam 113 EMA Cens/ zeros 0 0 0 0 0
Additional censored 0 0 0 0 0
Total 0 0 0 0 0
19  SanJoaquin River at Friant Dam 105 EMA Cens/ zeros 0 0 0 0 0
Additional censored 0 0 0 0 0
Total 0 0 0 0 0
20 Chowchilla River at Buchanan Dam 180 EMA Cens/ zeros 1 0 0 0 0
Additional censored 0 1 1 1 1
Total 1 1 1 1 1
23 Del Puerto Creek near Patterson 44 EMA Cens/ zeros 1 0 0 0 1
Additional censored 0 1 1 1 0
Total 1 1 1 1 1
24 Merced River at Exchequer Dam 1107 EMA Cens/ zeros 1 1 1 1 1
Additional censored 0 0 0 0 0
Total 1 1 1 1 1
25  Tuolumne River at New Don Pedro Dam 112 EMA Cens/ zeros 0 0 0 0 0
Additional censored 0 0 0 0 0
Total 0 0 0 0 0
26  Stanislaus River at New Melones Dam 193 EMA Cens/ zeros 0 0 0 0 0
Additional censored 1 1 1 1 1
Total 1 1 1 1 1
28  Duck Creek near Farmington 30 EMA Cens/ zeros 1 1 0 0 0
Additional censored 0 0 1 1 1
Total 1 1 1 1 1
30  Calaveras River at New Hogan Dam 96 EMA Cens/ zeros 1 1 1 1 1
Additional censored 0 0 0 0 0
Total 1 1 1 1 1
31  Mokelumne River at Camanche Dam 1104 EMA Cens/ zeros 0 0 0 0 0
Additional censored 0 0 0 0 0
Total 0 0 0 0 0
32  Cosumnes River at Michigan Bar 101 EMA Cens/ zeros 1 1 1 1 1
Additional censored 0 0 0 0 0
Total 1 1 1 1 1
33  Fresno River near Knowles 76 EMA Cens/ zeros 0 0 0 0 0
Additional censored 0 0 0 0 0
Total 0 0 0 0 0
34 South Yuba River at Jones Bar 57 EMA Cens/ zeros 0 0 0 1 1
Additional censored 1 1 1 0 0
Total 1 1 1 1 1
35  Middle Yuba River below Our House Dam 37 EMA Cens/ zeros 0 0 0 0 0
Additional censored 0 0 0 0 0
Total 0 0 0 0 0
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Appendix 2-2. Summary of censoring decisions at each site and duration in the Central Valley region of California.—Continued

[Abbreviations: Cens, censored; EMA, Expected Moments Algorithm]
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Kaweah River at Terminus Dam

Tule River at Success Dam

Kern River at Isabella Dam

Mill Creek near Piedra

Dry Creek near Lemoncove

Deer Creek near Fountain Springs

White River near Ducor

Cache Creek at Clear Lake

Putah Creek at Monticello Dam

Middle Fork Eel River near Dos Rios

South Fork Eel River near Miranda

Mad River above Ruth Reservoir near Forest Glen

East Fork Russian River near Calpella

Salinas River near Pozo

Arroyo Seco near Soledad
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Appendix 2-2. Summary of censoring decisions at each site and duration in the Central Valley region of California.—Continued

[Abbreviations: Cens, censored; EMA, Expected Moments Algorithm]

Number of censored flows for
Number

Site . . the indicated duration
number Site name of years  Type of Censoring
of record 1-Day 3-Day 7-Day 15-Day 30-Day
51  Salmon River at Somes Bar 84 EMA Cens/ zeros 1 1 1 1 1
Additional censored 0 0 0 0 0
Total 1 1 1 1 1
52  Santa Cruz Creek near Santa Ynez 67 EMA Cens/ zeros 2 2 1 0 0
Additional censored 4 3 4 5 4
Total 6 5 5 5 4
53  Salsipuedes Creek near Lompoc 67 EMA Cens/ zeros 0 0 0 0 0
Additional censored 0 0 0 0 0
Total 0 0 0 0 0
54 Trinity River above Coffee Creak near Trinity Center 51 EMA Cens/ zeros 0 1 1 1 1
Additional censored 1 0 0 0 0
Total 1 1 1 1 1
55  Scott River near Fort Jones 67 EMA Cens/ zeros 1 1 1 1 1
Additional censored 0 0 0 0 0
Total 1 1 1 1 1

! The period of record and number of years of record could be less than the given value for selected durations.



Appendix 2-3. Sample skew for each site and duration used in the regional-skew analyses for the Central Valley region of California.
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Site ) Number Sample log-space skew for indicated duration
number Site name of years
of record 1-Day 3-Day 1-Day 15-Day 30-Day
1  Sacramento River at Shasta Dam 77 -0.104 —0.467 -0.282 —0.163 —0.368
3 Cottonwood Creek near Cottonwood 68 -0.556 -0.579 -0.417 —0.568 -0.594
4 Cow Creek near Millville 59 -0.762 -0.623 —-0.400 -0.316 -0.350
5  Battle Creek below Coleman Fish Hatchery 68 -0.284 —0.065 0.039 0.017 0.046
6  Mill Creek near Los Molinos 80 0.009 -0.029 0.014 -0.055 -0.052
7  Elder Creek near Paskenta 60 -1.092 -1.007 -0.731 —0.881 -0.972
8  Thomes Creek at Paskenta 76 -0.069 -0.035 -0.069 -0.197 -0.411
9  Deer Creek near Vina 92 -0.286 -0.223 -0.189 -0.198 -0.247
10  Big Chico Creek near Chico 77 —0.936 —0.700 —0.454 —0.523 —0.584
11 Stony Creek at Black Butte Dam 1108 -0.714 —0.796 —0.407 —0.606 -0.762
12 Butte Creek near Chico 78 -0.241 -0.246 -0.140 -0.157 -0.167
13 Feather River at Oroville Dam 107 -0.240 -0.206 -0.224 -0.332 -0.412
14 North Yuba River at Bullards Bar Dam 68 -0.030 0.107 0.088 -0.154 -0.315
15  Bear River near Wheatland 103 —0.780 -0.747 -0.627 -0.750 —0.839
16  North Fork Cache Creek at Indian Valley Dam 178 —0.841 —1.008 —0.824 —0.810 —0.830
17  American River at Fair Oaks 104 -0.066 0.021 -0.001 -0.131 -0.308
18  Kings River at Pine Flat Dam 113 0.148 0.227 0.205 0.190 0.100
19  SanJoaquin River at Friant Dam 105 0.186 0.222 0.182 —0.002 —0.058
20  Chowchilla River at Buchanan Dam 180 —0.843 -0.787 -0.689 -0.621 -0.534
23 Del Puerto Creek near Patterson 44 -0.852 -0.974 -0.806 -0.809 -0.754
24 Merced River at Exchequer Dam Li107 -0.228 -0.104 —-0.085 -0.238 —-0.343
25  Tuolumne River at New Don Pedro Dam 112 -0.183 -0.120 -0.160 -0.349 -0.480
26  Stanislaus River at New Melones Dam 193 0.175 0.192 0.180 0.010 -0.037
28  Duck Creek near Farmington 30 —0.744 —0.823 —-1.003 —1.032 -1.029
30  Calaveras River at New Hogan Dam 96 —1.048 -0.870 —-0.855 -0.728 —-0.725
31  Mokelumne River at Camanche Dam 1104 0.088 0.082 0.035 —0.144 -0.301
32 Cosumnes River at Michigan Bar 101 —0.588 -0.533 -0.514 —0.558 —-0.603
33 Fresno River near Knowles 76 -0.187 -0.230 —-0.303 -0.315 -0.284
34 South Yuba River at Jones Bar 57 —0.005 0.198 0.182 0.055 0.048
35  Middle Yuba River below Our House Dam 37 -0.319 -0.188 -0.024 0.110 0.172
36  Kaweah River at Terminus Dam 50 0.194 0.217 0.189 0.111 0.000
37  Tule River at Success Dam 50 0.057 0.027 0.020 -0.001 0.036
38  Kern River at Isabella Dam 114 0.282 0.221 0.180 0.145 0.080
39  Mill Creek near Piedra 52 -0.192 -0.256 -0.198 -0.141 -0.113
40  Dry Creek near Lemoncove 50 —0.534 —0.594 —0.504 -0.391 —0.427
41  Deer Creek near Fountain Springs 41 —0.046 0.013 0.095 0.179 0.248
42  White River near Ducor 46 -0.317 -0.181 —0.088 0.004 0.089
43  Cache Creek at Clear Lake 87 —0.466 -0.442 -0.398 -0.813 -0.799
44 Putah Creek at Monticello Dam 78 -1.010 -0.741 -0.573 -0.798 -0.455
45  Middle Fork Eel River near Dos Rios 43 -0.312 —0.262 -0.292 —0.442 —0.680
46  South Fork Eel River near Miranda 68 -0.096 -0.050 -0.220 -0.423 -0.449
47  Mad River above Ruth Reservoir near Forest Glen 28 -0.473 -0.182 0.011 0.028 -0.230
48  East Fork Russian River near Calpella 67 —0.330 -0.179 —0.134 —0.441 —0.480
49  Salinas River near Pozo 41 -0.730 -0.611 -0.528 -0.478 -0.371
50  Arroyo Seco near Soledad 1107 —0.608 -0.717 —0.743 —0.738 -0.651
51  Salmon River at Somes Bar 84 -0.073 -0.032 0.041 -0.091 -0.259
52  Santa Cruz Creek near Santa Ynez 67 -0.526 -0.483 -0.417 -0.345 -0.402
53  Salsipuedes Creek near Lompoc 67 —0.608 -0.472 -0.361 -0.297 -0.193
54 Trinity River above Coffee Creak near Trinity Center 51 —0.069 —0.061 —0.043 —0.258 -0.276
55  Scott River near Fort Jones 67 -0.277 —0.246 -0.278 -0.321 -0.354

! The period of record and number of years of record could be less than the given value for selected durations.
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Appendix 2-4. Regional skew for each site and duration as determined by the regional-skew analyses for the Central Valley region of
California.

Site ] Regional log-space skew for the indicated duration
Site name

number 1-Day 3-Day 7-Day 15-Day 30-Day
1 Sacramento River at Shasta Dam -0.049 —-0.008 0.002 —-0.096 -0.192
3 Cottonwood Creek near Cottonwood -0.733 -0.688 —0.586 -0.644 -0.632
4 Cow Creek near Millville -0.732 —0.688 —-0.586 —0.643 -0.632
5 Battle Creek below Coleman Fish Hatchery -0.057 -0.017 —0.005 -0.103 -0.197
6 Mill Creek near Los Molinos -0.078 -0.037 -0.023 -0.119 -0.211
7 Elder Creek near Paskenta -0.662 -0.619 -0.526 -0.587 —0.587
8 Thomes Creek at Paskenta -0.052 -0.011 0.000 —-0.098 -0.194
9 Deer Creek near Vina -0.050 -0.010 0.001 -0.097 -0.193
10 Big Chico Creek near Chico -0.626 -0.582 -0.494 —-0.558 —-0.563
11 Stony Creek at Black Butte Dam —0.729 —0.685 —0.583 —0.641 —0.629
12 Butte Creek near Chico -0.207 -0.166 -0.134 -0.223 -0.294
13 Feather River at Oroville Dam -0.049 -0.008 0.002 -0.096 -0.192
14 North Yuba River at Bullards Bar Dam -0.049 —-0.008 0.002 -0.096 -0.192
15 Bear River near Wheatland -0.732 —0.688 —0.586 —0.643 -0.632
16  North Fork Cache Creek at Indian Valley Dam -0.719 —0.675 -0.574 —0.633 —0.623
17 American River at Fair Oaks -0.049 —-0.008 0.002 —-0.096 -0.192
18 Kings River at Pine Flat Dam —0.049 —0.008 0.002 —0.096 —0.192
19  San Joaquin River at Friant Dam —-0.049 —-0.008 0.002 —-0.096 -0.192
20 Chowchilla River at Buchanan Dam -0.733 —0.689 —0.586 —0.644 —0.632
23 Del Puerto Creek near Patterson -0.734 -0.690 —0.588 -0.645 -0.633
24 Merced River at Exchequer Dam —0.049 —0.008 0.002 —0.096 —0.192
25 Tuolumne River at New Don Pedro Dam -0.049 -0.008 0.002 -0.096 -0.192
26 Stanislaus River at New Melones Dam -0.049 -0.008 0.002 -0.096 -0.192
28  Duck Creek near Farmington -0.735 —-0.691 —0.588 —0.645 —0.633
30 Calaveras River at New Hogan Dam —0.734 —0.690 —0.587 —0.645 -0.633
31 Mokelumne River at Camanche Dam -0.049 -0.008 0.002 —-0.096 -0.192
32 Cosumnes River at Michigan Bar —0.642 -0.599 —0.508 -0.571 -0.574
33 Fresno River near Knowles —0.586 —0.543 —0.460 —0.526 —0.538
34 South Yuba River at Jones Bar -0.049 —-0.008 0.002 -0.096 -0.192
35 Middle Yuba River below Our House Dam -0.049 -0.008 0.002 -0.096 -0.192
36 Kaweah River at Terminus Dam -0.049 -0.008 0.002 -0.096 -0.192
37 Tule River at Success Dam -0.074 -0.034 -0.020 -0.117 -0.209
38 Kern River at Isabella Dam -0.049 —-0.008 0.002 -0.096 -0.192
39 Mill Creek near Piedra -0.718 -0.674 -0.574 -0.632 -0.623
40 Dry Creek near Lemoncove -0.716 -0.672 -0.572 -0.630 -0.621
41 Deer Creek near Fountain Springs -0.071 -0.031 -0.017 -0.114 —0.206
42 ‘White River near Ducor —0.728 -0.684 -0.582 -0.640 -0.629
43 Cache Creek at Clear Lake -0.734 -0.690 —0.587 —0.645 —0.633
44 Putah Creek at Monticello Dam —0.735 —0.691 —0.588 —0.645 —0.633
45 Middle Fork Eel River near Dos Rios -0.231 -0.190 —0.155 —0.242 -0.309
46 South Fork Eel River near Miranda -0.735 -0.690 —0.588 -0.645 -0.633
a7 Mad River above Ruth Reservoir near Forest Glen -0.216 -0.175 -0.142 -0.230 -0.300
48 East Fork Russian River near Calpella -0.735 —0.690 —0.588 —0.645 -0.633
49 Salinas River near Pozo -0.733 -0.689 —0.586 -0.644 -0.632
50  Arroyo Seco near Soledad —0.726 —0.682 —0.581 -0.639 —0.628
51 Salmon River at Somes Bar -0.049 -0.009 0.002 -0.096 -0.192
52 Santa Cruz Creek near Santa Ynez -0.495 -0.453 —0.382 —0.454 -0.479
53  Salsipuedes Creek near Lompoc -0.735 —0.691 —0.588 —0.645 —0.633
54 Trinity River above Coffee Creak near Trinity Center —-0.049 —-0.008 0.002 —-0.096 -0.192
55 Scott River near Fort Jones -0.049 -0.008 0.002 -0.096 -0.192
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Appendix 2-5. Variance of prediction (VP_ ) for each site and duration as determined by the regional-skew analyses for the Central
Valley region of California.
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Site . VP, for indicated duration
Site name

number 1-Day 3-Day 7-Day 15-Day 30-Day
1 Sacramento River at Shasta Dam 0.0384 0.0396 0.0401 0.0404 0.0468
3 Cottonwood Creek near Cottonwood 0.0572 0.0587 0.0578 0.0614 0.0654
4 Cow Creek near Millville 0.0573 0.0588 0.0578 0.0615 0.0655
5 Battle Creek below Coleman Fish Hatchery 0.0386 0.0398 0.0403 0.0406 0.0470
6 Mill Creek near Los Molinos 0.0387 0.0399 0.0404 0.0409 0.0472
7 Elder Creek near Paskenta 0.0543 0.0557 0.0551 0.0583 0.0627
8 Thomes Creek at Paskenta 0.0384 0.0397 0.0401 0.0405 0.0468
9 Deer Creek near Vina 0.0382 0.0395 0.0400 0.0404 0.0467
10 Big Chico Creek near Chico 0.0526 0.0541 0.0536 0.0566 0.0611
11 Stony Creek at Black Butte Dam 0.0571 0.0585 0.0578 0.0614 0.0653
12 Butte Creek near Chico 0.0406 0.0420 0.0424 0.0433 0.0494
13 Feather River at Oroville Dam 0.0380 0.0393 0.0399 0.0403 0.0465
14 North Yuba River at Bullards Bar Dam 0.0385 0.0397 0.0402 0.0405 0.0469
15 Bear River near Wheatland 0.0568 0.0583 0.0575 0.0612 0.0650
16 North Fork Cache Creek at Indian Valley Dam 0.0565 0.0580 0.0572 0.0607 0.0647
17 American River at Fair Oaks 0.0381 0.0394 0.0399 0.0403 0.0465
18 Kings River at Pine Flat Dam 0.0380 0.0393 0.0399 0.0402 0.0464
19 San Joaquin River at Friant Dam 0.0381 0.0394 0.0399 0.0403 0.0465
20 Chowchilla River at Buchanan Dam 0.0571 0.0586 0.0577 0.0614 0.0653
23 Del Puerto Creek near Patterson 0.0576 0.0590 0.0581 0.0617 0.0658
24 Merced River at Exchequer Dam 0.0380 0.0393 0.0399 0.0403 0.0465
25 Tuolumne River at New Don Pedro Dam 0.0380 0.0393 0.0399 0.0402 0.0465
26 Stanislaus River at New Melones Dam 0.0382 0.0395 0.0400 0.0403 0.0466
28 Duck Creek near Farmington 0.0578 0.0592 0.0582 0.0618 0.0660
30 Calaveras River at New Hogan Dam 0.0570 0.0585 0.0576 0.0613 0.0651
31 Mokelumne River at Camanche Dam 0.0381 0.0394 0.0399 0.0403 0.0466
32 Cosumnes River at Michigan Bar 0.0530 0.0546 0.0540 0.0572 0.0615
33 Fresno River near Knowles 0.0511 0.0526 0.0522 0.0550 0.0597
34 South Yuba River at Jones Bar 0.0386 0.0398 0.0403 0.0405 0.0470
35 Middle Yuba River below Our House Dam 0.0388 0.0400 0.0404 0.0406 0.0472
36 Kaweah River at Terminus Dam 0.0387 0.0399 0.0403 0.0406 0.0471
37 Tule River at Success Dam 0.0389 0.0402 0.0406 0.0410 0.0474
38 Kern River at Isabella Dam 0.0380 0.0393 0.0399 0.0402 0.0464
39 Mill Creek near Piedra 0.0568 0.0582 0.0573 0.0609 0.0650
40 Dry Creek near Lemoncove 0.0567 0.0581 0.0573 0.0608 0.0649
41 Deer Creek near Fountain Springs 0.0390 0.0402 0.0406 0.0409 0.0475
42 White River near Ducor 0.0573 0.0587 0.0578 0.0614 0.0655
43 Cache Creek at Clear Lake 0.0571 0.0585 0.0577 0.0614 0.0652
44 Putah Creek at Monticello Dam 0.0575 0.0589 0.0580 0.0616 0.0656
45 Middle Fork Eel River near Dos Rios 0.0413 0.0427 0.0430 0.0440 0.0501
46 South Fork Eel River near Miranda 0.0573 0.0588 0.0579 0.0615 0.0655
47 Mad River above Ruth Reservoir near Forest Glen 0.0412 0.0425 0.0428 0.0437 0.0499
48 East Fork Russian River near Calpella 0.0573 0.0588 0.0579 0.0615 0.0655
49 Salinas River near Pozo 0.0576 0.0590 0.0580 0.0616 0.0657
50 Arroyo Seco near Soledad 0.0565 0.0580 0.0572 0.0609 0.0647
51 Salmon River at Somes Bar 0.0383 0.0395 0.0401 0.0404 0.0467
52 Santa Cruz Creek near Santa Ynez 0.0481 0.0496 0.0494 0.0517 0.0568
53 Salsipuedes Creek near Lompoc 0.0573 0.0588 0.0579 0.0615 0.0655
54 Trinity River above Coffee Creak near Trinity Center 0.0387 0.0399 0.0403 0.0406 0.0471
55 Scott River near Fort Jones 0.0385 0.0397 0.0402 0.0405 0.0469
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Appendix 3. Methodology for Regional-Skew Analysis for Rainfall Floods of
Differing Durations

Parrett and others (2011) showed in the California Annual Peak Flow Study that the cross correlations among annual peak
discharges in California are often greater than those reported in other studies. This presents difficulties in the regional-skew
analysis because a Bayesian generalized least squares (B-GLS) analysis seeks to exploit the cross correlations among the sample
skews to obtain the best possible estimates of the model parameters. If the cross correlations are high, the generalized least
square (GLS) estimators can become relatively complicated as a result of the effort to find the most efficient estimator of the
parameters. Unfortunately, the precision of the estimated cross correlation between any two sites is not sufficient to justify the
sophisticated weights (both positive and negative) that the B-GLS analysis generates. Thus, an alternate model fitting procedure
using both weighted least squares (WLS) and generalized least squares (GLS) was developed so that the regional-skew analysis
would provide stable and defensible results.

In this study, which considered floods of different durations, the cross correlations among flows were even greater. An
alternative procedure was developed to identify a regional-skew model for each flood duration. This alternative procedure uses
an ordinary least squares (OLS) analysis to generate an initial regional-skew model, which is used to generate a regional-skew
estimate for each site. That OLS skew estimate is used to compute the sampling variance of each skew estimator for use in a
WLS analysis. Then, WLS is used to generate the estimator of the regional-skew model parameters. Finally, B-GLS is used
to estimate the precision of that parameter estimator and to estimate the model error variance. The three-step procedure was
repeated to develop a regional-skew model and the associated error analysis for each flood duration.

Step 1: Ordinary Least Squares Analysis

The first step in the regional-skew analysis is the estimation of a regional-skew model by using OLS. This is an iterative
procedure. For the first iteration, the constant model is used. After the subsequent WLS and GLS analyses determine which basin
characteristics are statistically significant in explaining regional skew, the OLS regional model can be expanded to incorporate
those additional basin characteristics. The OLS analysis estimates the regional regression parameters, which can then be used
to generate stable regional-skew estimates for each site in the study. The OLS analysis uses unbiased at-site sample-skew
estimators.

The at-site skews are unbiased by using the correction factor developed by Tasker and Stedinger (1986) and employed by
Reis and others (2005). The unbiased at-site skew estimator is as follows:

7= {1+ Ni} G (3-1)

where, ¥i is the unbiased at-site sample skew for site i, N; is the systematic record length at site i, and G; is the traditional biased
at-site skew estimator for site i or the expected moments algorithm (EMA) estimate if the site has zero flows, low outliers, or
historical peaks. When unbiasing the skew, N;, is the number of systematic peaks. Thus, additional information provided by any
historical flood period is neglected. N

The regional regression parameters estimated by OLS, B, s, are calculated as follows:

ﬁOLS = (XT X)_l X'y (3-2)

where the superscript T denotes a matrix transpose, X is the (n x k) matrix of basin characteristics, y is the (n x 1) vector of
the unbiased at-site sample skews, n is the number of gage sites, and k is the number of basin parameters, including a column
of ones to estimate the constant. After computing B, s, the unbiased regional estimate of the skew for each site is given by the
following:

Yos = XBors (3-3)
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These estimated regional-skew values, ¥, 5, are then used with the at-site record lengths to estimate the variance of the at-
site sample skew. The variance of the unbiased at-site skew estimators is calculated by the following equation:

Var[7,]= {1+%TV&I’ Gi] (3-4)

The variance of the unbiased at-site regional-skew estimator from equation 3—1 is calculated by using the equations
developed by Griffis and Stedinger (2009):

Var[§,] - (1+Nij [ﬁa(N)J[H(% b(N )j(yOLs,i ? +(%+c( N ))(yOLS,i )“j (3-5)

where

17.75 50.06
a=—7 T3
Ni Ni

392 311 3486

b_N_o.s CONOE N0
1 1 1

and

731 459 865
CONOSY T NLIE L7
1 I 1

The variances of the at-site skews, calculated with equation 3—5, are based on the regional OLS estimator of the skew coefficient
instead of the at-site skew estimator. This makes the weights in the subsequent steps for the at-site skew estimates relatively
independent. The computation generally neglects complicating factors, such as zero-flow years, censored observations (low
outliers), and historical information.

Step Two: Weighted Least Squares Analysis

A weighted least squares (WLS) analysis is used to develop estimators of the regression coefficients for the regional-skew
model for each flood duration. The WLS analysis explicitly reflects variations in record length but neglects cross correlations,
thereby avoiding the problems encountered with the GLS analysis. After the regression model coefficients are determined by
using WLS, the precision of the model and the precision of the regression coefficients are estimated by using an appropriate
GLS analysis.
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The first step in the WLS analysis is to use Bayesian-WLS (B-WLS) to estimate the model error variance,

denoted céB,WLS (Reis and others, 2005). Using a B-WLS approach to estimate the model error variance will avoid the possible
pitfall of estimating the model error variance as zero, which can occur when using method-of-moments WLS. Given the model

error variance estimator, cng_WLS , @ WLS analysis is used to generate the weight matrix, W, needed to compute estimates of
the regression parameters ﬁWLS. In order to compute W, a diagonal covariance matrix, Ay, s (G?,,B_W,_s ) is created. As specified
in equation 3—-6, the diagonal elements of the covariance matrix are the sum of the estimated model error variance, cng_WLS,
and the variance of the unbiased at-site skew estimator, \ar [?] , which depends on the at-site record length and the estimate of
the regional skew for each site calculated by OLS, ¥, - (See equation 35 for the calculation of Var [Q] ). The off-diagonal
elements of Ay g (GéZS,B—WLS ) are zero because cross correlations among gage sites are not considered in a WLS analysis. Thus,
the (n x n) covariance matrix, Ay, s (cgyB,WLS ) , is given by the equation:

Awis (Gg,B—WLS ) = Gg,B—WLS I +diag (Var [ﬂ) (3-6)

where | is an (n x n) identity matrix, n is the number of gage sites in the study, and diag (Var[?]) is an (n x n) matrix containing
the variance of the unbiased at-site sample-skew estimators, \/ar [-}] , on the diagonal and zeros on the off-diagonal. By using that
covariance matrix, the WLS weights are calculated as follows:

— -1 —
W= I:XTAWLS (Gg,B—WLS ) l X} X" Awis (Gg,B—WLS ) 1 @7

where W is the (k x n) matrix of weights, X is the (n x k) matrix of basin parameters, and k is the number of columns in the X
matrix. These weights are used to compute the final estimates of the regression parameters B :

ﬁWLS =Wy (3-8)

where ﬁWLS is the (k x 1) vector of estimated regression parameters.

Step Three: Bayesian-Generalized Least Squares Analysis

After the regression model coefficients, By, s , and weights, W, are determined by using
WLS, the precision of the model and the precision of the regression coefficients are estimated by using a B-GLS analysis.
Following the B-GLS regression framework for regional skew developed by Reis and others (2005), the posterior probability
density function for the model error variance, cng,GLS , becomes

f (Gg,B—GLS | ?:ﬁWLs ) * &(Gg,B—GLS )‘AGLS (Gg,B—GLS )‘70.5 (3-9)

exp {—0-5(? - XﬁWLS )T (AGLS (Gg,B—GLS ))_l (? - XﬁWLS )}

where ¥ represents the skew data and F,(Gg,B_G,_S ) is the exponential prior for the model error variance, which has the following
form:

) _ }\‘e*x(‘yéBfGLs) (3-10)

2 2
E.\(GS,B—GLS » O58-6Ls >0
A value of 10 was assigned for A, corresponding to a mean model error variance of one-tenth. The resulting prior assigns a
63-percent probability to the interval, [0, 0.1]; a 86-percent probability to the interval, [0,0.2]; and a 95-percent probability to the
interval, [0, 0.3].
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The B-GLS model error variance can then be used to compute the precision of the regression parameters, ﬁWLS , that were
calculated with the WLS weights,W. The GLS covariance matrix for the WLS B-estimator, ﬁWLS, is simply the following:

Z(ﬁWLS ) =WAgs (Gg,B—GLS )WT (3-11)

where Ag g (Gng_GLS ) is an (n x n) GLS covariance matrix calculated as follows:

Acis (Gg,B—GLS ) = Gg,B—GLS I+2(7) (3-12)

Here, | is the (n x n) identity matrix, and Z('?) is an (n X n) matrix containing the sampling variances of the unbiased skewness
estimators, Var [¥; ], and the covariances of the skewness estimators, 7; . The elements of Z(¥) are determined by the the cross

correlation of concurrent systematic annual peak discharges (eqg.7) and the cf factor (eq. 8). When calculating the cf factor by
using the ratio of the number of concurrent peak flows at a pair of sites to the total number of peak discharges at both sites, only
the systematic records are considered. Thus, any additional information provided by a historical flood period included in the
EMA analysis is neglected in calculating the cross correlation of peak flows and the cf factor. This was not an issue in this study
because no historical flood information was used.

Diagnostic Statistics for WLS/GLS Regional Analysis

This section describes statistics for evaluating the precision of model predictions and whether particular sites have unusual
leverage or influence on the results. The variance of prediction is a common metric used to choose the one model among several
that provides the most accurate estimator of the dependent variable because it combines both the model error variance and the
sampling error in the model parameters.

Variance of Prediction

The variance of prediction depends on whether one is considering a new site, which was not used to derive the estimate of
the parameters, or an old site, where the sample estimator of the skew was used to compute the estimates of the parameters. For
an old site, there is correlation between error in the at-site estimator and the estimated parameters.

The Bayesian variance of prediction of the skew at a new site with basin characteristics
X; is given by the equation:

VP (i)= ,E [GEZS,B—GLS + XiW(AGLS (Gg,B—GLS ))WT Xt } (3-13a)

O3,B-GLS

VP (i) = E [Gg,B—GLS J +xvar [ﬁv\n_s ]XuT

where 6§’B_GLS reflects the underlying error in the model, and XiWAWT xiT reflects the precision with which the model
parameters can be estimated and the possible errors that would occur in predicting the skew at a site with basin characteristics X;.
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However, if the predictions are made for the n old sites that were used in the regression analysis, the Bayesian variance of
prediction is given by the equation:

o (1)= ,E [Gg,B—GLS + XiW(AGLS (Gg,B—GLS )) WTx{ —203 515X We, } (3-13b)

O%,B-GLS
VP4 (i)=E |:6§,B—GLS J +Xxvar [ﬁ\NLs ]XuT - 2(E |:G§,B—GLS :|)Xiwei

where g, is the (n x 1) column vector with one at the i row and zero otherwise.

Leverage

The leverage measure, H”, for a GLS regression, as described by Tasker and Stedinger (1989, eq. 23), is calculated as
follows:

_ -1 _
H = X{XT (AGLS (Gg,MM ~GLS )) l X} XT (AGLS (GEZS,MM ~GLS )) 1 (3-14)

With the WLS/GLS methodology used in this study, the WLS step selects weights, W, to be used to estimate the coefficients
and, thus, determines the leverage that should be associated with each observation. In calculating the leverage, a diagonal
covariance matrix is used with the B-WLS model error variance. Thus, by using the framework for leverage provided by Tasker
and Stedinger (1989), the leverage for this study is as follows:

Hys = XW (3-15)
or
-1

- -1
H\jVLS = X{XT (AWLS (Gg,B—WLS )) ' X} X' (AWLS (Gg,B—WLS ))

where Ay s (cng,WLS ) is an (n x n) covariance matrix, described in equation 3—6, in which o5 g_w.s iS the mean model error
variance estimated by B-WLS.

Influence

The influence measure, D”, for a GLS analysis, as proposed by Tasker and Stedinger (1989, egs. 25-26), is a generalized
form of the Cook’s D and was computed as follows:

*

(3-16)

[H (Ao (B aus )| &

[(I - H*)(AGLS (Gg,MM—GLS ))li

where K is the number of estimated regression coefficients, g; is the residual error for site i, H"is an (n x n) matrix of the
GLS leverage, Ag s (cgyMM,GLS) is an (n x n) covariance matrix, and I is an (n X n) identity matrix. Equation 3—16 can be
simplified:

L
k

A2
. h;e;

D, = S— (3-17)
k(}“ii _hii)
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where h; are the diagonal elements of the following:

4 -1
H=H (AGLS (Gg,MM -GLs )) = X{XT (AGLS (GEZS,MM -GLs )) l X} X' (3-18)

and A; is the ith diagonal element of A (céMM _GLS).

The influence metric adopted by Tasker and Stedinger (1989) needs to be recast for the WLS/GLS methodology used in this
study. Here, the regression coefficients are estimated by using WLS, whereas the precision of those coefficients and the precision
of the model are calculated by using Bayesian GLS.

As shown in equation 3—16, Cook’s D contains two terms. The first describes the leverage of a point, which is measured as

Var[7; [WLS model]/Var [&; |WLS model], and the second is the square of the residual error divided by its variance.

The values of the required variance follow. In this formulation, A = Ag g (cgnyeLS ), L=Ays (Gg,B—WLS ) , and
H:;,,_S = WLS/GLS Leverage (see eq. 3—15).
This is done to simplify the following equations:
Var 7 |WLS model] = (Hy,s )L (Hus ) (3-19)
= XWiys LWVTILS X'
=X(xT |_‘1x)71 XTI (XT |:1x)7l X
=X(x" |_—1x)71 X" = XWL = (Hys JL
. . T
Var [& |WLS model] = E{(y = (s )7) (v~ (Hws )v) } (3-20)
= L_(H;VLS )L_ L(H\j\/LS )T +(H\7VL5 )L(H;\/Ls )T
Var[&|GLS model] = E{(y ~(Hius )'y)(y ~(Hiws )y)T } (3-21)
= A‘(H\i;\/Ls )A_A(H;VLS )T +(H\7VLS )A(H;VLS )T
_(1)(Var[7; IWLS model] g2
o _(Ej[Var[é: |WLS model]](Var[éi |GII_S model]] (3-22)

or

Dyve_(lj h;ILS,ii 8i2
' Wk 1-hys i )\ Var[£ | GLS model]

Here, hXILS,ii are the diagonal elements of Hy, s . The influence metric, described by equation 322 takes into account
the mixed WLS/GLS analysis used to generate the regional-skew model. The predicted regional-skew model is estimated by
using WLS, and, thus, the leverage metric reflects the WLS weights that depend on the diagonal covariance matrix. However,
GLS describes the actual precision of the model and the precision of the residuals. Thus, the last term in equation 3—15 uses the
correct estimate of the variance of the computed residuals as computed by the GLS analysis.
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Leverage and Influence for Sites in the Regional-Skew Analysis for Rainfall Floods of Differing
Durations

Equations 315 and 3-22 provide the leverage and influence values for each site and duration included in the WLS/GLS
regression analyses. If B has dimensionality k and n is the sample size (number of basins in the study), the mean of the leverage
values is k/n; thus, values greater than 2k/n are generally considered to be large. Influence values greater than 4/n are typically
considered to be large (Stedinger and Tasker, 1985). By using these relationships, in this study, leverage values greater than 0.12
were considered to be large, and influence values greater than 0.08 were considered to be large.

Figure 3-1 shows influence and leverage statistics for each site for 1-day, 3-day, 7-day, 15-day, and 30-day durations.
Leverage values did not change radically from one duration to another because the matrix of basin characteristics and the sample
sizes were the same for all durations; however, the model error variances were different, which resulted in some differences
in the leverage values. On the other hand, the influence values depended on the residuals computed from the individual skew
regressions for each duration and, thus, changed from one duration to another. None of the basins in this study had high leverage
values at any duration. Furthermore, no more than three basins showed high influence for any duration. Those basins whose
influence did exceed 0.08 did not exceed it by much, so their influences were not large enough to be alarming. No basin had high
influence at all durations.

South Fork Eel River near Miranda (site 46) had high influence at shorter durations (1 day and 3 days). With 68 years
of record, this site had a very high residual for the 1-day and 3-day durations. The influence, particularly for 1 day, was only
marginally high and therefore not significant to the study.

The Tuolumne River at New Don Pedro Dam (site 25) and the Kings River at Pine Flat Dam (site 18) had high influence
at longer durations (15 days and 30 days). These sites have a long record length (112 years and 113 years, respectively) which
results in larger weights and, thus, relatively high leverage. Since the residuals are large at the longer durations and those sites
have long record lengths, it was not surprising that the influences were very high.

Upon inspection of leverage and influence values for this study, the Sacramento River at Shasta Dam (site 1) had very high
influence for the 1-day duration but only moderate and low influence at other durations. This warranted a closer examination of
the 1-day duration for this site. It was found that a low outlier was not censored, as it should have been, during the frequency
analysis. This resulted in an uncharacteristically negative skew in the frequency curve. After this additional value was censored
and the regression was re-run, the fit of the regional-skew model improved, and the influence of the 1-day duration at this site
was reasonable. Usually, it is not a good practice to change the number of observations censored explicitly to achieve a desired
result, but in this case, the diagnostic statistics alerted the researchers to an error in a previous analysis, which after correction,
by happenstance, resulted in an improved model.

Overall, site 1 is an example where large leverage values were not expected. The value of the nonlinear function of
elevation ranged from zero for basins below 3,000 feet to one for basins above 4,200 feet. Thus, it was impossible for any basin
to have an extreme value. Sampling error associated with each skew coefficient also contributed to the leverage. The longer-
record sites did not have record lengths much longer than 100 years, and many sites had record lengths about that long. Thus, no
sites were unusual. Examining the final leverage and influence statistics indicated there were no problems in the development of
the flood data, the basin characteristics file, the at-site skew estimators, or in the statistical analyses.
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Figure 3-1.
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