Scientific Investigations Report 2012–5131
AbstractThe U.S. Army Corps of Engineers and the Metropolitan Water Reclamation District of Greater Chicago regulate flows through control structures along the Lake Michigan lakefront and the Chicago Sanitary and Ship Canal (CSSC) for Lake Michigan diversion accounting, flood control, sanitary, and navigation purposes. This report documents the measurement and computation of flow through the Lockport Controlling Works (LCW) and the Lockport Powerhouse. This analysis aided in evaluation of the ratings at both structures, and the development of new ratings at the controlling works. The LCW structure consists of seven 30-feet (ft) wide sluice gates and is used to divert water from the CSSC and into the Des Plaines River. The flow regimes for the sluice gate included both free and submerged weir. Forty and 491 flow values from U.S. Geological Survey streamflow-gaging stations were used to develop equations describing free- and submerged-weir flow, respectively, through the sluice gates. The equations were developed for canal headwater elevations ranging from −7.0 to −10.5 ft Chicago City Datum (CCD), and tailwater (Des Plaines River at Lockport) to headwater (CSSC-LCW-Base) ratios ranging from 0.31 to 0.66. The Lockport Powerhouse structure consists of nine 9-ft wide by 14-ft high sluice gates and two 10-ft diameter turbines. Both tailwater and no-tailwater effect flow regimes occurred during nine measurements. Also, the canal headwater elevations ranged from −2.74 to −8.45 ft CCD, and the gates were configured six different ways during the measurements. |
First posted August 3, 2012 For additional information contact: Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge. |
Straub, T.D., Johnson, K.K., Hortness, J.E., and Duncker, J.J., 2012, Control-structure ratings on the Chicago Sanitary and Ship Canal near Lockport, Illinois: U.S. Geological Survey Scientific Investigations Report 2012–5131, 25 p.
Abstract
Introduction
Lockport Controlling Works
Lockport Powerhouse
Potential Future Work
Summary
References Cited