Skip Links

USGS - science for a changing world

Scientific Investigations Report 2012–5132

Prepared in cooperation with Sonoma County Water Agency and Santa Cruz County Department of Environmental Health Services

Simulation of Climate Change in San Francisco Bay Basins, California: Case Studies in the Russian River Valley and Santa Cruz Mountains

By Lorraine E. Flint and Alan L. Flint

Thumbnail of and link to report PDF (22.3 MB)Abstract

As a result of ongoing changes in climate, hydrologic and ecologic effects are being seen across the western United States. A regional study of how climate change affects water resources and habitats in the San Francisco Bay area relied on historical climate data and future projections of climate, which were downscaled to fine spatial scales for application to a regional water-balance model. Changes in climate, potential evapotranspiration, recharge, runoff, and climatic water deficit were modeled for the Bay Area. In addition, detailed studies in the Russian River Valley and Santa Cruz Mountains, which are on the northern and southern extremes of the Bay Area, respectively, were carried out in collaboration with local water agencies. Resource managers depend on science-based projections to inform planning exercises that result in competent adaptation to ongoing and future changes in water supply and environmental conditions.

Results indicated large spatial variability in climate change and the hydrologic response across the region; although there is warming under all projections, potential change in precipitation by the end of the 21st century differed according to model. Hydrologic models predicted reduced early and late wet season runoff for the end of the century for both wetter and drier future climate projections, which could result in an extended dry season. In fact, summers are projected to be longer and drier in the future than in the past regardless of precipitation trends. While water supply could be subject to increased variability (that is, reduced reliability) due to greater variability in precipitation, water demand is likely to steadily increase because of increased evapotranspiration rates and climatic water deficit during the extended summers. Extended dry season conditions and the potential for drought, combined with unprecedented increases in precipitation, could serve as additional stressors on water quality and habitat.

By focusing on the relationship between soil moisture storage and evapotranspiration pressures, climatic water deficit integrates the effects of increasing temperature and varying precipitation on basin conditions. At the fine-scale used for these analyses, this variable is an effective indicator of the areas in the landscape that are the most resilient or vulnerable to projected changes. These analyses have shown that regardless of the direction of precipitation change, climatic water deficit is projected to increase, which implies greater water demand to maintain current agricultural resources or land cover. Fine-scale modeling provides a spatially distributed view of locations in the landscape that could prove to be resilient to climatic changes in contrast to locations where vegetation is currently living on the edge of its present-day bioclimatic distribution and, therefore, is more likely to perish or shift to other dominant species under future warming. This type of modeling and the associated analyses provide a useful means for greater understanding of water and land resources, which can lead to better resource management and planning.

First posted August 2, 2012

For additional information contact:
Director, California Water Science Center
U.S. Geological Survey
6000 J Street, Placer Hall
Sacramento, California 95819-6129
http://ca.water.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Flint, L.E., and Flint, A.L., 2012, Simulation of climate change in San Francisco Bay Basins, California: Case studies in the Russian River Valley and Santa Cruz Mountains: U.S. Geological Survey Scientific Investigations Report 2012–5132, 55 p.



Contents

Abstract

Introduction

Methods

Results and Discussion of Model Simulations

Conclusions

References Cited

Appendix 1: Mean 30-Year Values for Climate and Water-Balance Components for Current and Four Future Projections for Major Water Supply Basins in the Russian River Valley, California

Appendix 2: Cumulative Frequency of Basin Discharge for All Basins in the Santa Cruz Mountains, California

Appendix 3: Mean 30-Year Values for Climate and Water-Balance Components for Current and Four Future Projections for Major Water Supply Basins in the Santa Cruz Mountains, California


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2012/5132/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Thursday, 10-Jan-2013 19:57:54 EST