Skip Links

USGS - science for a changing world

U.S. Geological Survey Scientific Investigation Report 2012–5229

The Development and Application of a Decision Support System for Land Management in the Lake Tahoe Basin—The Land Use Simulation Model

By William M. Forney, I. Benson Oldham, and Neil Crescenti

Thumbnail of and link to report PDF (4.5 MB)Abstract

This report describes and applies the Land Use Simulation Model (LUSM), the final modeling product for the long-term decision support project funded by the Southern Nevada Public Land Management Act and developed by the U.S. Geological Survey’s Western Geographic Science Center for the Lake Tahoe Basin. Within the context of the natural-resource management and anthropogenic issues of the basin and in an effort to advance land-use and land-cover change science, this report addresses the problem of developing the LUSM as a decision support system. It includes consideration of land-use modeling theory, fire modeling and disturbance in the wildland-urban interface, historical land-use change and its relation to active land management, hydrologic modeling and the impact of urbanization as related to the Lahontan Regional Water Quality Control Board’s recently developed Total Maximum Daily Load report for the basin, and biodiversity in urbanizing areas. The LUSM strives to inform land-management decisions in a complex regulatory environment by simulating parcel-based, land-use transitions with a stochastic, spatially constrained, agent-based model. The tool is intended to be useful for multiple purposes, including the multiagency Pathway 2007 regional planning effort, the Tahoe Regional Planning Agency (TRPA) Regional Plan Update, and complementary research endeavors and natural-resource-management efforts. The LUSM is an Internet-based, scenario-generation decision support tool for allocating retired and developed parcels over the next 20 years. Because USGS staff worked closely with TRPA staff and their “Code of Ordinances” and analyzed datasets of historical management and land-use practices, this report accomplishes the task of providing reasonable default values for a baseline scenario that can be used in the LUSM. One result from the baseline scenario for the model suggests that all vacant parcels could be allocated within 12 years. Results also include: assessment of model functionality, brief descriptions of the 7 basic output tables, assessment of the rate of change in land-use allocation pools over time, locations and amounts of the spatially explicit probabilities of land-use transitions by real estate commodity, and analysis of the state change from today’s existing land cover to potential land uses in the future. Assumptions and limitations of the model are presented. This report concludes with suggested next steps to support the continued utility of the LUSM and additional research avenues.

First posted April 4, 2013

  • This report is available only on the Web.

For additional information:
Contact Information, Western Geographic Science Center
U.S. Geological Survey
345 Middlefield Road, MS 531
Menlo Park, CA 94025
http://geography.wr.usgs.gov/

This report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Forney, W.M., Oldham, I.B., Crescenti, N., 2013, The development and application of a decision support system for land management in the Lake Tahoe Basin—The Land Use Simulation Model: U.S. Geological Survey Scientific Investigations Report 2012–5229, 52 p. (Available at http://pubs.usgs.gov/sir/2012/5229/.)



Contents

Abstract

Background

Materials, Data Sources, and Conversions

Methods, Model Design, and Logic

Results

Summary and Conclusion

Acknowledgments

References


Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: https://pubs.usgs.gov/sir/2012/5229/
Page Contact Information: Contact USGS
Page Last Modified: Thursday, April 04, 2013, 06:33:16 PM