Skip Links

USGS - science for a changing world

Scientific Investigations Report 2012–5274

Prepared in cooperation with the U.S. Department of Agriculture—Forest Service

Two-Dimensional Simulation of the June 11, 2010, Flood of the Little Missouri River at Albert Pike Recreation Area, Ouachita National Forest, Arkansas

By Daniel M. Wagner

Thumbnail of and link to report PDF (2.38 MB)Abstract

In the early morning hours of June 11, 2010, substantial flooding occurred at Albert Pike Recreation Area in the Ouachita National Forest of west-central Arkansas, killing 20 campers. The U.S. Forest Service needed information concerning the extent and depth of flood inundation, the water velocity, and flow paths throughout Albert Pike Recreation Area for the flood and for streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The two-dimensional flow model Fst2DH, part of the Federal Highway Administration’s Finite Element Surface-water Modeling System, and the graphical user interface Surface-water Modeling System (SMS) were used to perform a steady-state simulation of the flood in a 1.5-mile reach of the Little Missouri River at Albert Pike Recreation Area. Peak streamflows of the Little Missouri River and tributary Brier Creek served as inputs to the simulation, which was calibrated to the surveyed elevations of high-water marks left by the flood and then used to predict flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The simulated extent of the June 11, 2010, flood matched the observed extent of flooding at Albert Pike Recreation Area. The mean depth of inundation in the camp areas was 8.5 feet in Area D, 7.4 feet in Area C, 3.8 feet in Areas A, B, and the Day Use Area, and 12.5 feet in Lowry’s Camp Albert Pike. The mean water velocity was 7.2 feet per second in Area D, 7.6 feet per second in Area C, 7.2 feet per second in Areas A, B, and the Day Use Area, and 7.6 feet per second in Lowry’s Camp Albert Pike. A sensitivity analysis indicated that varying the streamflow of the Little Missouri River had the greatest effect on simulated water-surface elevation, while varying the streamflow of tributary Brier Creek had the least effect. Simulated water-surface elevations were lower than those modeled by the U.S. Forest Service using the standard-step method, but the comparison between the two was favorable with a mean absolute difference of 0.58 feet in Area C and 0.32 feet in Area D. Results of a HEC-RAS model of the Little Missouri River watershed upstream from the U.S. Geological Survey streamflow-gaging station near Langley showed no difference in mean depth in the areas in common between the models, and a difference in mean velocity of only 0.5 foot per second. Predictions of flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent indicated that the extent of inundation of the June 11, 2010, flood exceeded that of the 1 percent flood, and that for both the 1 and 2 percent floods, all of Areas C and D, and parts of Areas A, B, and the Day Use Area were inundated. Predicted water-surface elevations for the 1 and 2 percent floods were approximately 1 foot lower than those predicted by the U.S. Forest Service using a standard-step model.

First posted November 14, 2013

For additional information, contact:
Director, Arkansas Water Science Center
401 Hardin Rd.
Little Rock, AR 72211-3528
http://ar.water.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Wagner, D.M., 2013, Two-dimensional simulation of the June 11, 2010, flood of the Little Missouri River at Albert Pike Recreational Area, Ouachita National Forest, Arkansas: U.S. Geological Survey Scientific Investigations Report 2012–5274, 28 p., http://pubs.usgs.gov/sir/2012/5274/.


Contents

Acknowledgments

Abstract

Introduction

Methods

Two-Dimensional Simulation

Summary

References Cited


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2012/5274/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Tuesday, 12-Nov-2013 17:53:52 EST