Scientific Investigations Report 2013–5144
AbstractIn response to bacterial contamination in the Meduxnekeag River and the desire to manage the watershed to reduce contaminant sources, the Houlton Band of Maliseet Indians (HBMI) and the U.S. Geological Survey began a cooperative effort to establish a baseline of water-quality data that can be used in future studies and to indicate potential sources of nutrient and bacterial contamination. This study was conducted during the summer of 2005 in the Meduxnekeag River Basin near Houlton, Maine. Continuously recorded specific conductance can be a good indicator for water quality. Specific conductance increased downstream from the town of Houlton, between runoff events, and decreased sharply following major runoff events. Collections of discrete samples during the summer of 2005 indicated seasonal positive concentration-discharge relations for total phosphorus and total nitrogen; these results indicate that storm runoff may mobilize and transport these nutrients from the terrestrial environment to the river. Data collected by the HBMI on fecal coliform bacteria indicated that bacterial contamination enters the Meduxnekeag River from multiple paths including tributaries and surface drains (ditches) in developed areas in Houlton, Maine. The Houlton wastewater treatment discharge was not an important source of bacterial contamination. Bacteroidales-based tests for general fecal contamination (Bac32 marker) were predominantly positive in samples that had excessive fecal contamination as indicated by Enterococci density greater than 104 colony-forming units per 100 millilters. Of the 22 samples tested for Bacteroidales-based markers of human-associated fecal contamination (HF134 and HF183), 8 were positive. Of the 22 samples tested for Bacteroidales-based markers of ruminant-associated fecal contamination (CF128 and CF193), 7 were positive. Human fecal contamination was detected consistently at two sites (surface drains in urban areas in the town of Houlton) and occasionally detected at one site (Moose Brook) but was not detected at other sites. Fecal contamination (as indicated by fecal coliform density) apparently is localized under normal flow conditions with the highest levels restricted to drains in urban areas and to a lesser extent B Stream, Pearce Brook, and Big Brook, all tributaries to the main stem of the Meduxnekeag River. Coliphage were enumerated as an alternate indicator of fecal contamination with the intent of typing the virus into host-associated classes (human or ruminant), as was done for Enterococci; however, insufficient coliphage were isolated to provide more than preliminary indications. In spite of low coliphage enumeration, the preliminary results strengthen the conclusion that the Enterococci data correctly indicated the samples that contained human and ruminant fecal contamination. The finding that contamination was in many of the tributaries following storms in mid-July indicates that storm runoff likely carries fecal contaminants to more locations than runoff under lower flow conditions. |
First posted April 25, 2014 For additional information, contact: Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. |
Culbertson, C.W., Huntington, T.G., Stoeckel, D.M., Caldwell, J.M., and O’Donnell, Cara, 2014, Water quality and sources of fecal coliform bacteria in the Meduxnekeag River, Houlton, Maine: U.S. Geological Survey Scientific Investigations Report 2013–5144, 31 p., http://dx.doi.org/10.3133/sir20135144.
ISSN 2328-0328 (online)
Acknowledgments
Abstract
Introduction
Purpose and Scope
Previous Investigations
Description of Study Area
Data and Sample Collection
Physical, Chemical, and Nutrient Attributes
Distribution and Source of Fecal Indicator Bacteria
Summary
References Cited