Skip Links

USGS - science for a changing world

Scientific Investigations Report 2013–5150

National Water-Quality Assessment Program
Prepared in cooperation with the Florida Department of Environmental Protection

Estimating Nitrate Concentrations in Groundwater at Selected Wells and Springs in the Surficial Aquifer System and Upper Floridan Aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002–50

By Christy A. Crandall, Brian G. Katz, and Marian P. Berndt

Thumbnail of report PDF (17.3 MB)


Groundwater from the surficial aquifer system and Upper Floridan aquifer in the Dougherty Plain and Marianna Lowlands in southwestern Georgia, northwestern Florida, and southeastern Alabama is affected by elevated nitrate concentrations as a result of the vulnerability of the aquifer, irrigation water-supply development, and intensive agricultural land use. The region relies primarily on groundwater from the Upper Floridan aquifer for drinking-water and irrigation supply. Elevated nitrate concentrations in drinking water are a concern because infants under 6 months of age who drink water containing nitrate concentrations above the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter as nitrogen can become seriously ill with blue baby syndrome.

In response to concerns about water quality in domestic wells and in springs in the lower Apalachicola–Chattahoochee–Flint River Basin, the Florida Department of Environmental Protection funded a study in cooperation with the U.S. Geological Survey to examine water quality in groundwater and springs that provide base flow to the Chipola River. A three-dimensional, steady-state, regional-scale groundwater-flow model and two local-scale models were used in conjunction with particle tracking to identify travel times and areas contributing recharge to six groundwater sites—three long-term monitor wells (CP-18A, CP-21A, and RF-41) and three springs (Jackson Blue Spring, Baltzell Springs Group, and Sandbag Spring) in the lower Apalachicola–Chattahoochee–Flint River Basin. Estimated nitrate input to groundwater at land surface, based on previous studies of nitrogen fertilizer sales and atmospheric nitrate deposition data, were used in the advective transport models for the period 2002 to 2050. Nitrate concentrations in groundwater samples collected from the six sites during 1993 to 2007 and groundwater age tracer data were used to calibrate the transport aspect of the simulations.

Measured nitrate concentrations (as nitrogen) in wells and springs sampled during the study ranged from 0.37 to 12.73 milligrams per liter. Average apparent ages of groundwater calculated from measurements of chlorofluorocarbon, sulfur hexafluoride, and tritium from wells CP-18A, CP-21A,and RF-41 were about 23, 29, and 32 years, respectively. Average apparent ages of groundwater from Baltzell Springs Group, Sandbag Spring, and Jackson Blue Spring were about 16, 18, and 19 years, respectively. Simulated travel times of particles from the six selected sites ranged from less than 1 day to 511 years; both the minimum and maximum particle travel times were estimated for water from Jackson Blue Spring. Median simulated travel times of particles were about 30, 38, and 62 years for Jackson Blue Spring, Sandbag Spring, and Baltzell Springs Group, respectively. Study results indicated that travel times for approximately 50 percent of the particles from all spring sites were less than 50 years. The median simulated travel times of particles arriving at receptor wells CP-18A, CP-21A, and RF-41 were about 50, 35, and 36 years, respectively. All particle travel times were within the same order of magnitude as the tracer-derived average apparent ages for water, although slightly older than the measured ages. Travel time estimates were substantially greater than the measured age for groundwater reaching well CP-18A, as confirmed by the average apparent age of water determined from tracers.

Local-scale particle-tracking models were used to predict nitrate concentrations in the three monitor wells and three springs from 2002 to 2050 for three nitrogen management scenarios: (1) fixed input of nitrate at the 2001 level, (2) reduction of nitrate inputs of 4 percent per year (from the previous year) from 2002 to 2050, and (3) elimination of nitrate input after 2001. Simulated nitrate concentrations in well CP-21A peaked at 7.82 milligrams per liter in 2030, and concentrations in background well RF-41 peaked at 1.10 milligrams per liter in 2020. The simulated particle travel times were longer than indicated by age dating analysis for groundwater in well CP-18A; to account for the poor calibration fit at this well, nitrate concentrations were shifted 21 years. With the shift, simulated nitrate concentrations in groundwater at CP-18A peaked at 13.76 milligrams per liter in 2026. For groundwater in Baltzell Springs Group, Jackson Blue Spring, and Sandbag Spring, simulated nitrate concentrations peaked at 3.77 milligrams per liter in 2006, 3.51 milligrams per liter in 2011, and 0.81 milligram per liter in 2018, respectively, under the three management scenarios. In management scenario 3 (elimination of nitrate input after 2001), simulated nitrate concentrations in Baltzell Springs Group decreased to less than background concentrations (0.10 milligram per liter) by 2033, and in Sandbag Spring concentrations decreased to less than background by 2041. Simulations using nitrate management scenarios 1 (fixed input of nitrate at 2001 levels) and 2 (reduction of 4.0 percent per year) indicate that nitrate concentrations in groundwater may remain above background concentrations through 2050 at all sites.

First posted November 5, 2013

For additional information contact:
Director, USGS Florida Water Science Center
U.S. Geological Survey
Suite 108
4446 Pet Lane
Lutz, FL 33559–6302
Telephone: (813) 498–5000

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.

Suggested citation:

Crandall, C.A., Katz, B.G., and Berndt, M.P., 2013, Estimating nitrate concentrations in groundwater at selected wells and springs in the surficial aquifer system and Upper Floridan aquifer, Dougherty Plain and Marianna Lowlands, Georgia, Florida, and Alabama, 2002–50: U.S. Geological Survey Scientific Investigations Report 2013–5150, 65 p.,




Methods for Predicting the Occurrence and Distribution of Nitrate in Groundwater

Distribution of Nitrate in Groundwater and Estimated Nitrate Concentration at Selected Wells and Springs

Summary and Conclusions

References Cited


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Tuesday, 05-Nov-2013 11:55:16 EST