Skip Links

USGS - science for a changing world

Scientific Investigations Report 2013–5177

Prepared in cooperation with the Kansas Department of Transportation

Results of Repeat Bathymetric and Velocimetric Surveys at the Amelia Earhart Bridge on U.S. Highway 59 Over the Missouri River at Atchison, Kansas, 2009–2013

By Richard J. Huizinga

Thumbnail of and link to report PDF (9.81 MB)Abstract

Bathymetric and velocimetric data were collected six times by the U.S. Geological Survey, in cooperation with the Kansas Department of Transportation, in the vicinity of Amelia Earhart Bridge on U.S. Highway 59 over the Missouri River at Atchison, Kansas. A multibeam echosounder mapping system and an acoustic Doppler current meter were used to obtain channel-bed elevations and depth-averaged velocities for a river reach approximately 2,300 feet long and extending across the active channel of the Missouri River. The bathymetric and velocimetric surveys provide a “snapshot” of the channel conditions at the time of each survey, and document changes to the channel-bed elevations and velocities during the course of construction of a new bridge for U.S. Highway 59 downstream from the Amelia Earhart Bridge.

The baseline survey in June 2009 revealed substantial scour holes existed at the railroad bridge piers upstream from and at pier 10 of the Amelia Earhart Bridge, with mostly uniform flow and velocities throughout the study reach. After the construction of a trestle and cofferdam on the left (eastern) bank downstream from the Amelia Earhart Bridge, a survey on June 2, 2010, revealed scour holes with similar size and shape as the baseline for similar flow conditions, with slightly higher velocities and a more substantial contraction of flow near the bridges than the baseline. Subsequent surveys during flooding conditions in June 2010 and July 2011 revealed substantial scour near the bridges compared to the baseline survey caused by the contraction of flow; however, the larger flood in July 2011 resulted in less scour than in June 2010, partly because the removal of the cofferdam for pier 5 of the new bridge in March 2011 diminished the contraction near the bridges. Generally, the downstream part of the study reach exhibited varying amounts of scour in all of the surveys except the last when compared to the baseline. During the final survey, velocities throughout the study area were the lowest of all the surveys, resulting in overall deposition throughout the reach compared to the baseline survey—despite the presence of the trestle in the final survey.

The multiple surveys at the Amelia Earhart Bridge document the effects of moderate- to high-flow conditions on scour, compounded by the effects of adding and removing a constriction in the channel. Additional factors such as pier shape and angle of approach flow also were documented.

First posted November 12, 2013

For additional information contact:
Director, Missouri Water Science Center
U.S. Geological Survey
1400 Independence Road
Rolla, MO 65401
http://mo.water.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Huizinga, R.J., 2013, Results of repeat bathymetric and velocimetric surveys at the Amelia Earhart Bridge on U.S. Highway 59 over the Missouri River at Atchison, Kansas, 2009–2013: U.S. Geological Survey Scientific Investigations Report 2013–5177, 50 p., at http://pubs.usgs.gov/sir/2013/5177.


Contents

Abstract

Introduction

Results of Repeat Bathymetric and Velocimetric Surveys

Summary and Conclusions

References Cited


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sir/2013/5177/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Thursday, 07-Nov-2013 19:27:56 EST