Skip Links

USGS - science for a changing world

Scientific Investigations Report 2013–5226

Prepared in cooperation with the U.S. Department of Energy

Geochemistry of Groundwater in the Beaver and Camas Creek Drainage Basins, Eastern Idaho

By Gordon W. Rattray and Michael L. Ginsbach

Thumbnail of and link to report PDF (10.1 MB)Abstract

The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL.

Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen.

Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater.

Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake Terreton, is an important contributor of solutes in the Mud Lake-Dubois area. Oxidation-reduction reactions are important influences on the chemistry of groundwater at Camas Meadows and the Camas National Wildlife Refuge. In addition, mixing of different groundwaters or surface water with groundwater appears to be an important physical process influencing groundwater geochemistry in much of the study area, and evaporation may be an important physical process influencing the groundwater geochemistry of the Camas National Wildlife Refuge. The mass-balance modeling results from this study provide an explanation of the natural geochemistry of groundwater in the ESRP aquifer northeast of the INL, and thus provide a starting point for evaluating the natural and anthropogenic geochemistry of groundwater at the INL.

First posted February 6, 2014

For additional information, contact:
Director, Idaho Water Science Center
U.S. Geological Survey
230 Collins Road
Boise, Idaho 83702

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.

Suggested citation:

Rattray, G.W., and Ginsbach, M.L, 2014, Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho: U.S. Geological Survey Scientific Investigations Report 2013–5226 (DOE/ID-22227), 70 p.,

ISSN -2328-0328 (online)




Description of Study Area

Sample Collection, Analytical Methods, and Quality Assurance

Analytical Results

Geochemistry of Groundwater

Summary and Conclusions

References Cited

Appendix A. U.S. Geological Survey Site Numbers

Appendix B. Water-Quality Results from Water Samples Collected with a Bailer

Appendix C. Dissolved Gases

Accessibility FOIA Privacy Policies and Notices logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Contact USGS
Page Last Modified: Thursday, February 06, 2014, 05:18:32 PM