60151EH 95156'26

Route 292 St Stream Emanuel	CK	MRM	Da	te 6/8/12	Ini	itials AT	
Bridge Structure No. 05 109 010 L		511	n. F of	HL143	7 fork	0 29	5<+
GPS coordinates: N 43° 9' 14.6"		USL abutmen					20/
(2) 97° 57' 5.6')		ordinates: W				enu	
Drainage area = $\frac{29.12}{}$ sq. m		ordinates. W	0504	NADZI_	-		
The average bottom of the main channel was		u ton of awarden	ail a t a main	a, 40	O C 1-	0.1	
Method used to determine flood flows:Fre							
Method used to determine flood flows:Fre	q. Anai	dramage area	ano X	regional reg	ression equ	iations.	000
M	IISCELLANE	OUS CONSII	DERATION	NS			8/22
Flows	$Q_{100} =$	$Q_{100} = 1970$ $Q_{500} = 3720$			3720		2 30
Estimated flow passing through bridge		1920			2155		
Estimated road overflow & overtopping		0			1565		
Consideration	Yes	No	Possibly	Yes	No	Possibly	25 108
Chance of overtopping			7	X			50 160
Chance of Pressure flow			×	\sim			100 23
Armored appearance to channel		X			X		500 45
Lateral instability of channel		×			X		10.
	227						44
Riprap at abutments? YesNoMarginal Z 61							
Evidence of past Scour? Yes No Don't know							
Debris Potential?High _	Med X	Low					461
							-4-1-
Does scour countermeasure(s) appear to have been designed?							
Riprap	Yes X N	lo Dor	't know	NA		50	350
	Control of the second	lo Dor		0.000000		100	1920
Other			-	NA NA		500/	3720
	103		- KIIOW				
Bed Materia	al Classificatio	n Based on Me	dian Particl	e Size (D)			
Material Silt/Clay Sand		Gravel		Cobbles		Dauldana	
						Boulders_	
Size range, in mm < 0.062 0.062-	2.00	2.00-64		64-250		>250	
Comments, Diagrams & orientation of digital ph	otos						
Comments, Diagrams & orientation of digital ph							
1). main channel	7) last of	3					
2) right about next	S) right	013					
2) Let abutment	9) maire	hannel					
2). right abstract S). right oß 3) litt abstract 9)-main channel							
4-3). guar channel							
a danage downstream							
2). right abstract 3). litt abstract 4-3). guardian of the channel 6). damage danstream Latt abst. Summary of Results							72
Summary of Results							1
		Q100			Q500]
Bridge flow evaluated	1920		2155				

	Q100	Q500
Bridge flow evaluated	1920	2155
Flow depth at left abutment (yaLT), in feet	1.9	2-5
Flow depth at right abutment (yaRT), in feet	2.6	3,2
Contraction scour depth (ycs), in feet	14.9	15.9
Pier scour depth (yps), in feet	4.9	4.9
Left abutment scour depth (yas), in feet	H. Z	18.6
Right abutment scour depth (yas), in feet	19.3	21.6
1Flow angle of attack	40	40

PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Bridge Structure No. $OS O9O O$ Date $OS O9O O9O $
	Water Surface Elev. = $\frac{0.5}{10.0}$ ft Low Steel Elev. = $\frac{10.0}{10.0}$ ft n (Channel) = $\frac{0.0330000}{0.0300}$ n (ROB) = $\frac{0.0350000}{0.0300}$ Pier Width = $\frac{1.35}{1.35}$ ft # Piers for 100 yr = $\frac{1.35}{1.000}$ ft
	CONTRACTION SCOUR
	Width of main channel at approach section $W_1 = 99$ ft
ict	Width of left overbank flow at approach, $W_{lob} = \frac{1.9}{56}$ ft Average left overbank flow depth, $y_{lob} = \frac{1.9}{1.9}$ ft
ontra	
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = 36$ ft Average right overbank flow depth, $y_{rob} = 6$ ft
GRN	Line Bod Controlling Service Service (Cl. 1. 4. 11) Health Co.
Ь	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 199$ From Figure 9 W_2 (effective) = 199 ft $y_{cs} = 199$ ft
	14.79
ZEV	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
CS!	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s
S	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} =ft/s$
PGRM: CWCSNEW	If $V_1 < V_c$ and $D_{50} = 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
PG	$D_{c50} = 0.0006(q_2/y_1^{7/6})^{\frac{3}{2}} =ft$ If $D_{50} >= D_{c50}$, $\chi = 0.0$
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft$
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = $ Using pier width a on Figure 11, $\xi = $ Pier scour $y_{ps} = $ 4.9 ft
100	
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 1.9$ ft right abutment, $y_{aRT} = 2.6$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 1.0$ ft Right abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 19.3$ ft