	SCOUR ANALYSIS AND REPORTING FORM						
	Bridge Structure No. 05/87/00 Date 6/10/12 Initials Region (AB 6D)						
	Site Location 3015+ $\sim 2m$; N , 2.7 m ; E Tynda11 $\sim B$ on Homm C $Q_{100} = 1740$ by: drainage area ratio flood freq. anal regional regression eq. \propto						
	Q ₁₀₀ = 1740 by: drainage area ratio flood freq. anal. regional regression eq.						
	Bridge discharge $(Q_2) = 1740$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)						
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 49 ft. Flow angle at bridge = 5 ° Abut. Skew = 0 ° Effective Skew = 5 °						
"Qu	Width (W ₂) iteration =						
	Avg. flow depth at bridge, y ₂ iteration =						
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{46.81}{1}$ ft* $q_2 = Q_2/W_2 = \frac{35.4}{1}$ ft ² /s						
	Bridge Vel, $V_2 = 4$, Z_ft/s Final $y_2 = q_2/V_2 = 5$, Y_ft $\Delta h = 0$, Y_ft						
"	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 5$, \mathcal{E} ft						
gion	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$						
"R	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,						
	Water Surface Elev. = G ft Uq C						
	Low Steel Elev. = 8,55 ft						
	$ n \text{ (Channel)} = 0.040 \\ n \text{ (LOB)} = 6.025 0.050 $						
	$n(LOB) = \frac{1.032 \cdot 0.030}{0.030}$						
	Pier Width = 1.11 ft 2.4						
	$n (ROB) = \underline{ O.030}$ Pier Width = $\underline{I. II}$ ft Pier Length = $\underline{I. II}$ ft # Piers for $100 \text{ yr} = \underline{I}$ ft						
	# Piers for 100 yr = ft ft						
	CONTRACTION SCOUR						
	Width of main channel at approach section $W_1 = \frac{1}{3}$ ft $\frac{3.7 \cdot 2.4}{2.9}$ 0.9						
	Width of left overbank flow at approach, $W_{lob} = \frac{49}{49}$ ft Average left overbank flow depth, $y_{lob} = \frac{3,3}{2}$ ft						
	Width of right overbank flow at approach, $W_{rob} = \frac{VA}{ft}$ ft Average right overbank flow depth, $y_{rob} = \frac{3.0}{ft}$						
	Treating right overbank from at approach, wrong						
	<u>Live Bed Contraction Scour</u> (use if bed material is small cobbles or finer)						
	$x = 5.33$ From Figure 9 W_2 (effective) = 47.7 ft $y_{cs} = 6$ ft						
	Clear Water Contraction Scour (use if bed material is larger than small cobbles)						
	Estimated bed material $D_{50} = ft$ Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = ft/s$						
	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$						
	If $V_1 < V_c$ and $D_{30} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.						
	$D_{c50} = 0.0006(q_2/\chi_1^{7/6})^3 = $ ft If $D_{50} >= D_{c50}$, $\chi = 0.0$						
	$\begin{split} D_{c50} &= 0.0006 (q_2) \chi_1^{7/6})^3 = \underline{\qquad \qquad } ft \\ Otherwise, \ \chi &= 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad \qquad } ft \end{split} \qquad \qquad \\ From \ Figure \ 10, \ y_{cs} = \underline{\qquad \qquad } ft \end{split}$						
	PIER SCOUR CALCULATIONS						
	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1$ Froude # at bridge = 0.26 Using pier width a on Figure 11, $\xi = 5.2$ Pier scour $y_{ps} = 9.2$ ft						
	rioude # at oridge = ref scoul y _{ps} =						
	ABUTMENT SCOUR CALCULATIONS						
	Average flow depth blocked by: left abutment, $y_{aLT} = 3.3$ ft right abutment, $y_{aRT} = 3$ ft						
	Shape coefficient K ₁ = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through						
	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{12}{11.5}$ and $\psi_{RT} = \frac{11.5}{11.5}$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \frac{1.6}{11.5}$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = \frac{1.7.2}{11.5}$ ft						
	Jas YLIVEI Jas YLIVEI Jas TRIVEI						

PGRM: "RegionA", "RegionB",

PGRM: Contract

PGRM: CWCSNEW

PGRM: Abutment PGRM: Pier

97,79847 43.0251

Route 301 St Stream Shatch	Ck	MRM	Da	te 6/10/17	Z Ini	itials Rut			
Route 30 St Stream Snatch Ck MRM Date 6/10/12 Initials Part Bridge Structure No. 05/87/00 Location 2 mi N, 2.7 mi E of Tyndell GPS coordinates: N 130 1 30.611 taken from: USL abutment centerline of MRM end Datum of coordinates: WGS84 NAD27									
GPS coordinates: 11430 1/20/11	talen fram	LICI abotes	M. E	ot ly	compa		_		
W 970 47' 54.4'	Datum of co	ordinates: W	GS84 \	NAD27	of MRM	end			
Drainage area = $\frac{17.85}{17.85}$ sq. mi.									
The average bottom of the main channel was 12,4 ft below top of guardrail at a point 36 ft from left abutment.									
Method used to determine flood flows:Freq. Analdrainage area ratio regional regression equations.									
		oramage area i	<u> </u>	regional reg	ression eqe	iations.	8/22		
		OUS CONSII	DERATIO		2201				
Flows	$Q_{100} =$	1740		$Q_{500} =$	3380		5 234		
Estimated flow passing through bridge		1740		1792			10 437		
Estimated road overflow & overtopping		0	I		1588		1000		
Consideration	Yes	No	Possibly		No	Possibly	1.27		
Chance of overtopping		X		×			50 123		
Chance of Pressure flow	X			×			100 1740		
Armored appearance to channel					X		500 338		
Lateral instability of channel		χ.			L_X		6/4		
Riprap at abutments? Yes	No	Marginal							
Riprap at abutments? Yes No Marginal									
Evidence of past Scour? Yes No Don't know Contraction S 234 Debris Potential? High Med V Low									
Debris Potential? HighMedLow									
25 83/									
Does scour countermeasure(s) appear to have been designed?									
Riprap Yes No Don't know NA									
Spur Dike Yes No Don't know NA 50 3380									
OtherYesNoDon't knowNA									
Bed Material Classification Based on Median Particle Size (D ₅₀)									
Material Silt/Clay Sand Gravel Cobbles Boulders									
					_	1-1-1-1-1	 2		
Size range, in mm <0.062 0.062-2.00 2.00-64 64-250 >250									
Comments, Diagrams & orientation of digital photos									
1). Left oB 2). main channel 10). main Channel									
2) main change									
2). main channel 3). right OB 4). piers 5-6) let tabutrent 7-70, main (domeged)									
U) 1/2 17									
of the threat									
5-6) let tabular									
XXX right abut ment (and	9								
Summary of Results							_		
p:		Q100			Q500				
Bridge flow evaluated	1740			1792			1		
Flow depth at left abutment (yaLT), in feet						1			
ow depth at right abutment (yaRT), in feet 3						1			
Contraction scour depth (ycs), in feet		6			6.3]		
er scour depth (yps), in feet 4.2 4, 3]		
Left abutment scour depth (yas), in feet									
Right abutment scour depth (yas), in feet		17.2			17.4]		
1Flow angle of attack		5			5]		