	SCOUR ANALYSIS AND REPORTING FORM	
	Bridge Structure No. Clo 170149 Date \$1/8/10 Initials CW Region (ABCD)	
	Site Location () 1 mi Nintersection thru 14 and Medan Ave near Brookings	
	Q ₁₀₀ = 3850 by: drainage area v flood frequency anal. regional regression eq.	
	Site Location O.1 mi Nintersection they 14 and Meday Are near Brockings $Q_{100} = 3850$ by: drainage area v flood frequency anal. regional regression eq. Bridge discharge $(Q_2) = 3331$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)	
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 65 ft. Flow angle at bridge = 0 Abut. Skew = 0 Effective Skew = 0 Width (W ₂) iteration = 0 Abut. Skew = 0 Effective Skew = 0 Abut. Skew = 0 Abut. Skew = 0 Effective Skew = 0 Abut. Skew = 0 Effective Skew = 0 Abut. Ske	
	Width of main channel at approach section $W_1 = 70$ ft	
PGRM: Contract	Width of left overbank flow at approach, $W_{lob} = \frac{65}{65}$ ft Average left overbank flow depth, $y_{lob} = \frac{6}{65}$ ft	
	Width of right overbank flow at approach, $W_{rob} = 65$ ft Average right overbank flow depth, $y_{rob} = 5.6$ ft	
	Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 15,51 \text{From Figure 9} W_2 \text{ (effective)} = 61 \text{ft} y_{cs} = 15,3 \text{ft}$	
PGRM: CWCSNEW		
PGRM: Pier	Froude # at bridge = 0.28 PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), K2 = 1.0 Using pier width a on Figure 11, $\xi = 2$ Pier scour $y_{ps} = 6.6$ ft	
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 6 \cdot 1$ ft right abutment, $y_{aRT} = 5 \cdot 6$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $y_{LT} = 10 \cdot 10$ and $y_{RT} = 10 \cdot 10$ ft Left abutment scour, $y_{as} = y_{LT}(K_1/0.55) = 10 \cdot 10$ ft	

	SCOUR ANALYSIS AND REPORTING FORM		
	Bridge Structure No. 06170149 Date 8/18/10 Initials W Region (A BCD)		
	Site Location O.1 mi Nintersection Huy 14 and Medary Ave near Brockings Q500 = 6010 by: drainage area flood frequency anal regional regression eq		
	Q ₅₀₀ = (aO 1 D by: drainage area 1 flood frequency anal. regional regression eq.		
PGRM: "RegionA", "RegionB", "RecionC", or "RegionD"	Bridge discharge $(Q_2) = 331$ (should be Q_{500} unless there is a relief bridge, road overflow, or bridge overtopping)		
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 65 ft. Flow angle at bridge = 0 Abut. Skew = 0 Effective Skew = 0 Width (W ₂) iteration = 0 Avg. flow depth at bridge, y ₂ iteration = 0 Corrected channel width at bridge Section = W ₂ times cos of flow angle = 0 ft 0 ft Average main channel depth at approach section, y ₁ = 0 ft 0 ft *NOTE: repeat above calculations until y ₂ changes by less than 0.2 Effective pier width = 0 sin(q) + a cos(q)		
If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,			
	Water Surface Elev. = ft Low Steel Elev. = ft $n \text{ (Channel)} = 0.030$ $n \text{ (LOB)} = 0.033$ $Pier Width = 2.0$ $multiple ft $		
	CONTRACTION SCOUR		
PGRM: Contract	Width of main channel at approach section $W_1 = \frac{70}{65}$ ft Width of left overbank flow at approach, $W_{lob} = \frac{65}{65}$ ft Width of right overbank flow at approach, $W_{rob} = \frac{6.1}{65}$ ft Average left overbank flow depth, $y_{lob} = \frac{6.1}{5}$ ft Average right overbank flow depth, $y_{rob} = \frac{6.1}{5}$ ft		
	Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 15.5 \text{ From Figure 9} \qquad W_2 \text{ (effective)} = 6 \text{ ft} \qquad y_{cs} = 15.3 \text{ ft}$		
PGRM: CWCSNEW			
PGRM: Pic	Froude # at bridge = 0.28 PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), K2 = 1.0 Using pier width a on Figure 11, $\xi = 1.0$ Pier scour $y_{ps} = 6.6$ ft		
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = 6$ ft right abutment, $y_{aRT} = 5$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 1.00$ ft Right abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 1.00$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 1.00$ ft		

Sixmile CEMRMDE	ate 8/18/10 Initials Ch			
cation Octor N intersection	on Hur 14 and Medany Ave near			
taken from: USL abutment X	centerline of 1 MRM end Brooking			
Datum of coordinates: WGS84_ X	NAD27			
	To the			
The average bottom of the main channel was 13.5 ft below top of guardrail at a point 21 ft from left abutment.				
Method used to determine flood flows:Freq. Analdrainage area adjustmentregional regression equations.				
SCELLANEOUS CONSIDERATIO	INS			
	Q ₅₀₀ = 6010			
3331	333/			
519	2679			
Yes No Possibly				
X	X			
X	X			
X	X			
X	X			
Riprap at abutments?Yes				
2.00 01	04-230			
Abut. 105 105 105 105 105 105 105 10	Story Approach			
Abut. 105 105 105 105 105 105 105 10	State Approach			
Abut. 275' 1	State - Approach			
Abut. 105 105 105 105 105 105 105 10	Plow Q500 Q500 3331			
Q100 3331	State - Approach			
Abut. 275' 1	Plow Q500 Q500 3331			
Q100 3331 6.1 5.6 15.3	Q500 3331 6.1 5,6 15,3			
Q100 3331	Plow Q500 Q500 3331			
Q100 3331 6.1 5.6 15.3	Q500 3331 6.1 5,6 15,3			
	ft below top of guardrail at a point Anal. drainage area adjustment SCELLANEOUS CONSIDERATION Q100 = 3850 Yes No Possibly X Yes No Possibly X You Marginal Small No Don't know Don't kno			