	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 062 40070 Date 7125/12 Initials La Region (ABCD)
	Site Location 0.3 mi N of White on 478 Are
	Q ₁₀₀ = 12 1660 by: drainage area ratio flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 2660$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	114
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Bridge Width = 170 ft. Flow angle at bridge = 50 ° Abut. Skew = 0 ° Effective Skew = 50 ° Width (W ₂) iteration = 0 109 109
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{70.06}{100}$ ft* $q_2 = Q_2/W_2 = \frac{38}{100}$ ft ² /s
r"R	Bridge Vel, $V_2 = 4.4$ ft/s Final $y_2 = q_2/V_2 = 6.7$ ft $\Delta h = 0.4$ ft
"Reg C", o	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 9$, ft
CM:	*NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$ 4. 4
PGF "Reg	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,
	Water Surface Elev. = 67.5 ft
	Low Steel Elev. = 11 ft 7 100
	n (Channel) = 9.0 4G $n (LOB) = 0.0.30$
	$n(ROB) = C_1 \circ 30$
	Pier Width =
	Pier Length = 1.7 ft
	# Piers for $100 \text{ yr} = \underline{\qquad}$ ft
	CONTRACTION SCOUR
	Width of main channel at approach section $W_1 = 100$ ft
PGRM: Contract	Width of left overbank flow at approach, $W_{lob} = 7$ ft Average left overbank flow depth, $y_{lob} = 600$ ft
2	Width of right overbank flow at approach, $W_{rob} = 120$ ft Average right overbank flow depth, $y_{rob} = 5.6$ ft
GR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 16.85$ From Figure 9 W_2 (effective) = 63.3 ft $y_{cs} = 16$ ft
	w_2 (effective) $-\frac{1}{8}$ y_{cs} $-\frac{1}{8}$
3	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
PGRM: CWCSNEW	Estimated bed material $D_{50} = /$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = ft/s$
MC.	Estimated bed material $D_{50} = ft$ Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = ft/s$ Critical approach velocity, $V_2 = ft/s$
Ŭ.	If $V_1 < V_2$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live hed scour equation above
PGR	
2.00	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 =ft If D_{50} >= D_{c50}, \chi = 0.0$ Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft$
	71 - 71 - 71 - 71 - 71 - 71 - 71 - 71 -
her	PIER SCOUR CALCULATIONS
PGRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 = 1
PGR	Froude # at bridge = 0.26 Correction factor for flow angle of attack (from Table 1), K2 = 1 Using pier width a on Figure 11, $\xi = 7$ Pier scour $y_{ps} = 5.5$ ft
ent	ABUTMENT SCOUR CALCULATIONS
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{al.T} = 100$ for vertical wall $y_{al.T} = 100$ for vertical $y_{al.T} = 100$ for $y_{al.$
Α	Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through
GR	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{U}{3}$ and $\psi_{RT} = \frac{16}{16}$. Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \frac{6}{16}$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = \frac{16}{16}$ ft
-	Jas TLIVITORY TO THE TOTAL TO THE TOTAL TO

PGRM: Contract

PGRM: CWCSNEW

PGRM: Pie:

PGRM: Abutment

15144'hh

10, 26, 18, 196 ogp

Route 478 Are Stream Six Mile C	Ck	MRM	Da	ate 7/25/12	Initials La			
Bridge Structure No. 06240070 Lo	cation 03	· 1/1	2////	470	A			
GPS coordinates: 1\ 440 7/1 28 2/1	taken from	LICI abutman	WHITE	con 110	MRM end			
	Datum of co	ordinates: W(3584	NAD27	MRW end			
Drainage area = 21, 82 sq. mi.	Datum of co	ordinates. W	3504	_ NAD21				
The average bottom of the main channel was 15,	3 ft below	v top of guardra	ail at a poir	nt 81 f	t from left abutment.			
Method used to determine flood flows: Freq. Anal. drainage area ratio regional regression equations.								
					4	2/23		
Flows		OUS CONSIL	DERATIO		100	2 243		
	$Q_{100} = 266.0$				130	0		
Estimated flow passing through bridge	1660			4130 5 630				
Estimated road overflow & overtopping	0			0 10 10/0				
Consideration	Yes	No	Possibly	Yes	No Possibly	1590		
Chance of overtopping		X		-	TKN /	0 2100		
Chance of Pressure flow					X	00 266		
Armored appearance to channel						The second second		
Lateral instability of channel		×			<u> </u>	00 4140		
Riprap at abutments? Yes	No	Marginal			1	14130		
Riprap at abutments? Yes No Marginal Evidence of past Scour? Yes No Don't know More controller Over 10 left abutment								
Evidence of past Scour? Yes No Don't know Minor controction due to left abulment Debris Potential? High Med Low whole.								
Debtis Potential?High	Med _X	Low			wliff wide	· seiz eng		
Does scour countermeasure(s) appear to have been	designed?							
	,	oDon	't know	NA				
		oDon						
Other 32 (E) CLIMAN Y	esN	o <u>×</u> Don	't know	NA				
Red Material	Classification	n Based on Me	dian Partic	la Siza (D.)				
Bed Material Classification Based on Median Particle Size (D ₅₀)								
	Gravel			Cobbles Boulders				
Size range, in mm <0.062 0.062-2.	.00	2.00-64		64-250	>250	1		
Make to the pr								
Comments, Diagrams & orientation of digital photos Note: The att abutment from the pre- bildge is still in the channel. Using								
1 left cm	7-8) left abutment			KI = 0.55 for abut ment sconr as I believe the				
2) main channel	The mate channel			should protect the actual abutment. The old abutment will have vertical wall scow. The ett right abutment appears to be their as well, just a bit broken and still due to the flow angle, still bursed with dict.				
3).11 cht 03				Shewa from	Ill have vertical	wall scoul		
4) right abituant				old abignote	Lallest a some	s to be then		
S) also								
5) pla- 6) right abutment				as well, ju	est a by proken and	Il Ilal		
of higher actions				the How as	rele, still builed u	in art		
Summary of Results								
,		Q100			Q500			
Bridge flow evaluated	2660			4130				
Flow depth at left abutment (yaLT), in feet	1			149				
Flow depth at right abutment (yaRT), in feet	5.6			7,4				
Contraction scour depth (ycs), in feet	16.8			17.4				
Pier scour depth (yps), in feet	5.8			5,8				
Left abutment scour depth (yas), in feet	4,3			7.8				
Right abutment scour depth (yas), in feet		16.0 14.	./ .		7,3			
1Flow angle of attack		50			50			