	SCOUR ANALYSIS AND REPORTING FORM								
	Bridge Structure No. 07/07423 Date 7/19/12 Initials 120 Region (ABCO)								
	Site Location O. M. W of Warner on 142 St								
	Q ₁₀₀ = Q ₁₀₀ 1590 by: drainage area ratio flood freq. anal. regional regression eq.								
	Bridge discharge $(Q_2) = 1596$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)								
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method								
F.	Bridge Width = $\frac{92}{}$ ft. Flow angle at bridge = $\frac{20}{}$ Abut. Skew = $\frac{0}{}$ Effective Skew = $\frac{20}{}$ °								
gionE	Width (W ₂) iteration =								
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Avg. flow depth at bridge, y_2 iteration =								
Regi	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{G6.45}{6}$ ft* $q_2 = Q_2/W_2 = \frac{16.4}{6}$ ft²/s								
egior or "	Bridge Vel, $V_2 = \frac{Q_1}{2} = \frac{Q_2}{2} = \frac{Q_2}{2} = \frac{Q_2}{2} = \frac{Q_1}{2} = \frac{Q_2}{2} = \frac{Q_1}{2} = \frac{Q_1}{2} = \frac{Q_2}{2} = \frac{Q_1}{2} $								
"."R	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \underline{\mathcal{G} \cdot \mathcal{S}}$ ft								
3RM egio	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$								
PC "R	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,								
	Water Surface Elev. = -1.3 ft								
	Low Steel Elev. = 10.6 ft n (Channel) = 0.045								
	$n(LOB) = \frac{0.030}{2.000}$								
	$n (ROB) = Q_{c}Q_{c}Q_{c}Q_{c}Q_{c}Q_{c}Q_{c}Q_{c}$								
	Pier Length = $(.7)$ ft								
	# Piers for $100 \text{ yr} = 2 \text{ ft}$								
	720								
CONTRACTION SCOUR									
PGRM: Contract	Width of main channel at approach section $W_1 = 116$ ft Width of left overbank flow at approach, $W_{lob} = 12$ ft Average left overbank flow depth, $y_{lob} = 3.0$ ft								
	Width of right overbank flow at approach, $W_{rob} = 92$ ft Average right overbank flow depth, $y_{rob} = 3.0$ ft								
PGF	Live Bed Contraction Scour (use if bed material is small cobbles or finer)								
	$x = 15.91$ From Figure 9 W_2 (effective) = 63 , 1 ft $y_{cs} = 15.5$ ft								
VEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)								
/CSJ	Estimated bed material D_{50} ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) =ft/s$ Critical approach velocity, $V_0 = \frac{11.17y_1^{1/6}D_{50}^{1/3}}{11.17y_1^{1/6}D_{50}^{1/3}} =ft/s$								
S	Critical approach velocity, Vc $11.1/y_1 - D_{50} = 17/s$								
PGRM: CWCSNEW	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.								
PC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{"3}y_1^{"3})]^{"'} - y_1 =ft$								
E.	NUTRO CONTROL ON A THONG								
A: Pi	PIER SCOUR CALCULATIONS L/a ratio = Correction factor for flow angle of attack (from Table 1) K2 =								
PGRM: Pier	Froude # at bridge = $\bigcirc 113$ Correction factor for flow angle of attack (from Table 1), K2 = $\bigcirc 13$ Using pier width a on Figure 11, $\xi = \bigcirc 7$ Pier scour $y_{ps} = \bigcirc 13$ ft								
П	Trouble with triangle resident yes resident yes resident yes resident yes resident yes								
Ħ	ABUTMENT SCOUR CALCULATIONS								
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = 3$ ft right abutment, $y_{aRT} = 3$ ft								
: Ab	Shape coefficient K_1 = 1.00 for vertical-wall, Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = 0.82 for vertical-wall with wingwalls, and ψ_{RT} = 1.5 ft Right abutment scour $y_{as} = \psi_{LT}(K_1/0.55) = 1.5$ ft								
JRM	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 11.5$ and $\psi_{RT} = 11.5$								
PC	Lett abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 11.5$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 11.5$ ft								

196.0 106 08P 195-5E.37

Route 142St Stream Mockasin	CK	MRM	Da	ite 7/19/1	7 Ini	tials NA			
Bridge Structure No. 07/07423 Lo	cation O. I	m: 1/ of	Wasni	er on	142 St		_		
GPS coordinates: 11 49 19 56.41	taken from:	USL abutment		centerline c	of I MRM	end	_		
W 980 30 00.60	Datum of co	ordinates: Wo	GS84	NAD27_					
Drainage area = $\frac{276,42}{\text{sq. mi.}}$									
The average bottom of the main channel was	ft belov	v top of guardr	ail at a poir	nt 34	ft from le	ft abutment.			
Method used to determine flood flows:Freq.	Anal.	drainage area r	atio 🔀	regional reg	ression equ	ations.			
MI	SCELLANE	OUS CONSII	FRATIO	NS			717		
Flows	SCELLANEOUS CONSIDERATIO			Q500 = Q2 = 3380			7/2		
Estimated flow passing through bridge	1590			2939			2 1161		
Estimated road overflow & overtopping	1576 O			991			5 753		
Consideration	Yes	No	Possibly	Yes	No	Possibly	10 1590		
Chance of overtopping		×	reserve	X	1.0	1 000101)	25 3380		
Chance of Pressure flow		~				×	50 5330 iee 7900		
Armored appearance to channel		2			_		50a 16600		
Lateral instability of channel		~			~		1.0600		
Riprap at abutments? Yes	No	Marginal							
Evidence of past Scour? Yes	No -	Don't know	Some C	entraction	V		1 to closest		
Land technic been Cov									
Debris Potential?HighMedLow									
Does scour countermeasure(s) appear to have been	designed?								
Riprap Yes X No Don't know NA									
Spur Dike Yes No Don't know NA									
OtherY			t Know	NA					
Bed Material	Classificatio	n Based on Me	dian Partic	le Size (D ₅₀)					
Bed Material Classification Based on Median Particle Size (D ₅₀) Material Silt/Clay Sand Gravel Cobbles Boulders									
				A					
Size range, in mm <0.062 0.062-2	.00	2.00-64		64-250		>250			
Comments Diagrams & orientation of digital photo	200								
Comments, Diagrams & orientation of digital photos									
Comments, Diagrams & orientation of digital photos 1) left 03 2) main channel 2) main channel									
2) main chance									
S Cont of									
4) 0,00									
(a) clothe a badwent									
4). pier 5-6), right abulant 7-8). Left abulant									
1 0). Has been									
Summary of Results									
		Q100 Q	21		OSBB: (3	1		
Bridge flow evaluated	1590			2439			1		
Flow depth at left abutment (yaLT), in feet	3.0			5.2			1		
Flow depth at right abutment (yaRT), in feet	3.6			5.2			1		
Contraction scour depth (ycs), in feet		15.5			19.7				
Pier scour depth (yps), in feet 5.2 5.3							1		
Left abutment scour depth (yas), in feet		11.5			15.4		1		
Right abutment scour depth (yas), in feet		11.3 110	5		5.4		1		
							4		

1Flow angle of attack