	SCOUR ANALYSIS AND REPORTING FORM
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Bridge Structure No. 10240390 Date 9-19-12 Initials PFT Region (ABCD)
	Site Location 1.5 m; St / m; Wot Nisland - Butte Co
	Office 486 by: drainage area ratio flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 32L$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = $\frac{1}{2}$
	CONTRACTION SCOUR
PGRM: Contract	Width of left question H = $\frac{56}{100}$ ft
	Width of left overbank flow at approach, $W_{lob} = \underline{O}_{ft}$ Average left overbank flow depth, $y_{lob} = \underline{O}_{ft}$
M.	Width of right overbank flow at approach, $W_{rob} = 0$ ft Average right overbank flow depth, $y_{rob} = 0$ ft
	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 0.4$ From Figure 9 W_2 (effective) = 50.7 ft $y_{cs} = 0.7$ ft
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
	Estimated bed material $D_{50} = ft$ Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = ft/s$
:WC	Estimated bed material $D_{50} = \frac{\text{tt}}{\text{Critical approach velocity, V}_{c}} = \frac{\text{ft/s}}{\text{Critical approach velocity, V}_{c}} = \frac{\text{ft/s}}{\text{tt/s}}$
EM:	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live field scour equation above.
PGR	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = $ If $D_{50} > D_{c50}, \chi = 0.0$
	Otherwise, $\chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 =ft$
PGRM: Pier	PIER SCOUR CALCULATIONS
	L/a ratio = $\frac{1}{\text{Correction factor for flow angle of attack (from Table 1), K2}}$ Correction factor for flow angle of attack (from Table 1), K2 = $\frac{1}{\text{Correction factor for flow angle of attack (from Table 1), K2}}$ Pier scour $y_{ps} = \frac{7 \cdot l}{l}$ ft
	Froude # at bridge = 0.49 Using pier width a on Figure 11, $\xi = 8$ Pier scour $y_{ps} = 7.1$ ft
Ħ	ABUTMENT SCOUR CALCULATIONS
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = C$ ft right abutment, $y_{aRT} = C$ ft
E Ab	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.59 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = $ and $\psi_{RT} = $
GRM	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{\partial}{\partial x_{aLT}}$ and $\psi_{RT} = \frac{\partial}{\partial x_{aLT}}$ and $\psi_{RT} = \frac{\partial}{\partial x_{aLT}}$ and $\psi_{RT} = \frac{\partial}{\partial x_{aLT}}$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \frac{\partial}{\partial x_{aLT}}$ ft
D	Lett abutilient sebut, $y_{as} = \psi_{LT} K_{1}(0.55) = 0$ Right abutilient sebut $y_{as} = \psi_{RT} (K_{1}(0.55)) = 0$

Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 17/1$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 20.5$ ft

Route Snoma Rd Stream Stinkingwa	1 - Ch	MDM	D						
Route Short No Stream Strangwa	er CK	IVIRIVI_	Da	ite	lnı	itials	_		
Bridge Structure No. 10241) 370 Loc	cation 1,	2 m. 5 t	(mi	h cot	Nisla	ind	_		
GPS coordinates 1/44° 38.848' w103° 34.043'	taken from:	USL abutmen	t	centerline	of Î MRM	end			
W103° 34,0431	Datum of co	oordinates: W	GS84/	NAD27					
Drainage area = $\frac{29.44}{}$ sq. mi.									
The average bottom of the main channel was 16.2 ft below top of guardrail at a point 36 ft from left abutment.									
Method used to determine flood flows:Freq.	Anal.	drainage area i	ratio /	regional reg	ression equ	ations.			
							76		
	SCELLANE	COUS CONSII	DERATIO				12		
Flows	Q50? 486 886			Qmaxswv886 18279			2 35.3		
Estimated flow passing through bridge	886			18279			10 88.5		
Estimated road overflow & overtopping	0			U			2-1171		
Consideration	Yes	No	Possibly	Yes	No	Possibly	50 351		
Chance of overtopping		~				V	ice 486		
Chance of Pressure flow				X			Soe 886		
Armored appearance to channel					V		200 605		
Lateral instability of channel						V]		
Riprap at abutments? Yes	/N-								
Riprap at abutments? Yes	_No _	Marginal	1	n c. 11.0		0 - 01	inder bri		
Evidence of past Scour? X Yes	No	Don't know	CONTI	RCHON	SLOUr	poor	Tride		
Debris Potential?High	Med	_Low +ile	s upst	ream					
Does scour countermeasure(s) appear to have been	designed?								
Riprap Yes No Don't know NA									
Spur Dike Yes No Don't know NA									
OtherYesNoDon't knowNA VesNoDon't knowNA									
	.sIN	oDon	t know -	V_NA					
Bed Material	Classificatio	n Based on Me	dian Particl	e Size (D.)					
/						David			
				Cobbles Boulders					
Size range, in mm <0.062 0.062-2.	00	2.00-64		64-250		>250			
Comments, Diagrams & orientation of digital photo	ne								
		-1 -1		baida	g				
approach from bridge left abut, under bridge									
1 DR from boilder	, , ,		1.		1-0 (1	1.	1111		
208 Combinage	Sco	our book	unge	n pulc	ige ca	2 2196 G	of bridge)		
12013 from bridge									
Bridge from approach									
AND I									
Summary of Results			-						
		Q10050	0?			max scour			
Bridge flow evaluated	886			18279					
Flow depth at left abutment (yaLT), in feet	0			10.17					
Flow depth at right abutment (yaRT), in feet	0			8.9					
Contraction scour depth (ycs), in feet	0.7			14-6					
Pier scour depth (yps), in feet	7,1			7.6					
Left abutment scour depth (yas), in feet		0			17.1				
Right abutment scour depth (yas), in feet	D			20,5					

1Flow angle of attack