	Bridge Structure No. SCOUR ANALYSIS AND REPORTING FORM Bridge Structure No. Scour Analysis And Reporting Form Site Location 2.2 m; W + 0.8 m; N of Ext 193 of I-29 on 450 Q ₁₀₀ = 775 by: drainage area ratio flood freq. anal. regional regression eq. Bridge discharge (Q ₂) = 775 (should be Q ₁₀₀ unless there is a relief bridge, road overflow, or bridge overtopping)
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 71 ft. Flow angle at bridge = 45 o Abut. Skew = 45 o Seffective Skew = 45 o Width (W ₂) iteration = 45 Abut. Skew = 45 o Abut. Skew = 45 o Seffective Skew = 45 o Width (W ₂) iteration = 45 ft. Flow angle at bridge Section = W ₂ times cos of flow angle = 45 ft. Abut. Skew = 45 o Seffective Skew = 45 o Seffective Skew = 45 o Abut. Skew = 45 o Seffective Skew = 45 o S
	CONTRACTION SCOUR
PGRM: Contract	Width of main channel at approach section $W_1 = \frac{67}{27}$ ft Width of left overbank flow at approach, $W_{lob} = \frac{27}{27}$ ft Average left overbank flow depth, $y_{lob} = \frac{27}{27}$ ft Width of right overbank flow at approach, $W_{rob} = \frac{27}{27}$ ft Average right overbank flow depth, $y_{rob} = \frac{27}{27}$ ft Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = \frac{7}{27}$ From Figure 9 w_2 (effective) = $\frac{27}{25}$ ft $w_3 = \frac{27}{25}$ ft
PGRM: CWCSNEW	
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = $ Using pier width a on Figure 11, $\xi = 9$ Pier scour $y_{ps} = 7.2$ ft
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 0.5$ ft right abutment, $y_{aRT} = 2.1$ ft Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 2.3$ and $\psi_{RT} = 9.6$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 15.7$ ft

52021'Sh 61201'Lb

niel Losh

Route 455 Are Stream_		MRM	Dat	. 412117	/ Initi	iale nat				
Route 199 / The Stream	. 11	IVIKIVI	O ()	10	<u></u>	62	416	1		
Bridge Structure No. 4344 16190022 Loc	ation Ld	mi W +	0.8 mi	/V ot	EXIT	75 on	133	Ave		
GPS coordinates: N 450 7' 12.41' W 97 6' 11.3'	taken from:	USL abutmen	ıt	centerline o	f II MRM e	nd				
W 97 6' 11.3'	Datum of co	ordinates: W	GS84	NAD27_						
Drainage area = $\frac{7.33}{\text{sq. mi.}}$	8.7			110						
The average bottom of the main channel was 13,	9 ft belov	v top of guardi	rail at a point	t_43	_ft from lef	t abutment.	7	/3		
Method used to determine flood flows:Freq.	Anal.	drainage area	ratio 🗡 1	regional regi	ression equa	ations.	2/3	39		
				3 173			-810	25		
MIS	CELLANE	OUS CONSI	DERATION	NS				58.7		
Flows	$Q_{100} =$	775		$Q_{500} = 23e$			2	168		
Estimated flow passing through bridge	775			1230			510			
Estimated road overflow & overtopping	C			C				276		
Consideration	Yes	No	Possibly	Yes	No	Possibly	25	450		
Chance of overtopping		X			X		50	604		
Chance of Pressure flow		2			>		100	775		
Armored appearance to channel		>			×		A Section 1			
Lateral instability of channel		×			X		500	1230		
Riprap at abutments? Yes No Marginal Evidence of past Scour? Debris Potential? High Med Low Does scour countermeasure(s) appear to have been designed? Riprap Yes No Don't know NA Spur Dike Yes No Don't know NA Other Yes No Don't know NA Bed Material Classification Based on Median Particle Size (D50) Material Silt/Clay Sand Gravel Cobbles Boulders Size range, in mm <0.062 0.062-2.00 2.00-64 64-250 >250 Comments, Diagrams & orientation of digital photos Other										
Summary of Results							,			
	Q100			Q500			_			
Bridge flow evaluated	775			1230						
Flow depth at left abutment (yaLT), in feet	0.5			1.6						
Flow depth at right abutment (yaRT), in feet	211			3,6						
Contraction scour depth (ycs), in feet	8.3			13.1						
Pier scour depth (yps), in feet	7,2			7.3						

Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet

1Flow angle of attack