SCOUR ANALYSIS AND REPORTING FORM								
	Bridge Structure No. 26/76/70 Date 6/1/12 Initials Lat Region (ABOD)							
	Site Location 7 mi Et 0,9 mi S of Clear Lake on 483 Are							
	$Q_{100} = 292e$ by: drainage area ratio flood freq. anal. regional regression eq. \times							
	Bridge discharge $(Q_2) = 2926$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)							
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method							
	Bridge Width = 65 ft. Flow angle at bridge = 15 ° Abut. Skew = 6 ° Effective Skew = 15 °							
onB	Width (W ₂) iteration =							
Regi	Avg. flow depth at bridge, y ₂ iteration =							
gionA", "Reg or "RegionD"	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{Q_2}{1}$ ft* $q_2 = Q_2/W_2 = \frac{35}{6}$ ft ² /s							
PGRM: "RegionA", "RegionB", RegionC", or "RegionD"	Bridge Vel, $V_2 = 4.2$ ft/s Final $y_2 = q_2/V_2 = 8.4$ ft $\Delta h = 0.4$ ft							
"Re	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \underline{\qquad ft}$							
GRM: "R	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$							
PG R	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,							
	Water Surface Elev. = $G - G = 7$ ft							
	Low Steel Elev. = 9.9 ft							
	n (Channel) = C.cu4							
	n (LOB) =							
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
e .	Pier Length = 1165 ft							
/	# Piers for $100 \text{ yr} = 3 \text{ ft}$							
CONTRACTION SCOUR								
ntract	Width of main channel at approach section $W_1 = 65$ ft							
	Width of left overbank flow at approach, $W_{lob} = $ ft Average left overbank flow depth, $y_{lob} = $ ft							
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = 85$ ft Average right overbank flow depth, $y_{rob} = 48$ ft							
PGR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)							
	$x = 3.59$ From Figure 9 W_2 (effective) = 77, 2 ft $y_{ss} = 9.7$ ft							
ΙΕW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)							
CSV	Estimated bed material $D_{50} = /$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s Critical approach velocity, $V_2 = 11.17y_1^{1/6}D_{50}^{1/3} = $ ft/s							
5	Critical approach velocity, $Vc = 11.17y_1^{110}D_{50}^{110} = 11.17y_1^{110}D_{50}^{110}$							
PGRM: CWCSNEW	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = $							
PC	$D_{c50} = 0.0006(q_2/y_1^{-1})^3 = 11$ If $D_{50} >= D_{c50}$, $\chi = 0.0$							
	Otherwise, $\chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 =ft$							
CL	DIED SCOUD CALCULATIONS							
M: P	PIER SCOUR CALCULATIONS L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 =							
PGRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 = Froude # at bridge = 0.76 Using pier width a on Figure 11, $\xi = 6.9$ Pier scour $y_{ps} = 5.6$ ft							
ment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 4$ ft							
PGRM: Abutment	Shape coefficient K ₁ = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through							
Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \bigcirc$ and $\psi_{RT} = \boxed{14.7}$								
PGF	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = $ and $\psi_{RT} = $ and $\psi_{RT} = $ $\frac{14.7}{}$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = $ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = $ ft							

PGRM: CWCSNEW

61882.174 81123.3P

40 35, 52, 00 dha dha 28' 00

Route 483 A Stream Cobb CK		MRM_	Dat	e 8/1/1	ZInit	ials Ral	_
Bridge Structure No. 20170170 Loc	cation 7	i F +	0.9 mi	5 of [lear La	ke on	483 Ac
GPS coordinates: 1) 1110 H2 1 54.41	taken from:	USL abutmen	t -X	centerline o	of Î MRM e	end	100 110
GPS coordinates: N 440 421 58611 W 960 321 28611	Datum of co	ordinates: W	GS84 V	NAD27		-	
Drainage area = $\frac{16}{42.74}$ sq. mi.	Dutum of co	ordinates. "	-	-11			
Drainage area = $\frac{1-i}{1}$ sq. iii.	1			57	0.0		
The average bottom of the main channel was 13.2	1 tt belov	w top of guardi	ail at a point		_ft from lef	it abutment.	715
Method used to determine flood flows:Freq.	Anal	_drainage area	ratio <u></u>	regional reg	ression equ	ations.	713
MI	SCELLANI	EOUS CONSI	DERATION	NS			872
Flows	Q ₁₀₀ =	2920		Q ₅₀₀ =	4600		5
Estimated flow passing through bridge	2100	2920			3961		
Estimated road overflow & overtopping				639			10 11
Consideration	Yes	No	Possibly	Yes	No	Possibly	25 /
Chance of overtopping		\times		×			50 0
Chance of Pressure flow		×		X			50 3
Armored appearance to channel		X			×		500 4
Lateral instability of channel		X					,
Does scour countermeasure(s) appear to have been Riprap Spur Dike Other Bed Material Material Silt/Clay Sand Size range, in mm <0.062 Comments, Diagrams & orientation of digital pho	n designed? Yes	NoDo NoDo NoDo on Based on M Gravel	n't know n't know n't know edian Particl	NA NA NA	.)	Boulders_>250	
Summary of Results		0100			Q500		
Did a flaw analysts d	Q100 2970			3961			
Bridge flow evaluated							_
Flow depth at left abutment (yaLT), in feet	0			6.3		-	
Flow depth at right abutment (yaRT), in feet		4. 6 4. Z			5.6		
Contraction scour depth (ycs), in feet		116				-	
Pier scour depth (yps), in feet		5.6			517		-
Left abutment scour depth (yas), in feet		0		3.5			_

Right abutment scour depth (yas), in feet

1Flow angle of attack