	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 26019100 Date 10-12-11 Initials 12T Region (ABCD)
	Site BSR nr Florence Location From Milbank 25, 27 W
	Q ₁₀₀ = 2360 by: drainage area ratio flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 2350$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
PGRM: "RegionA", 'RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width $= 50 \cdot 8$ ft. Flow angle at bridge $= 20$ ° Abut. Skew $= 0$ ° Effective Skew $= 20$ ° Width (W_2) iteration $= 47.7$ Avg. flow depth at bridge, y_2 iteration $= 9.9$ Corrected channel width at bridge Section $= W_2$ times cos of flow angle $= 47.7$ ft* $q_2 = Q_2/W_2 = 49.2$ ft²/s Bridge Vel, $V_2 = 5.0$ ft/s Final $y_2 = q_2/V_2 = 9.9$ ft $\Delta h = 0.5$ ft Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 10.4$ ft *NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width $= L \sin(q) + a \cos(q)$ If y_2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGD, or RDOVREGD, Water Surface Elev. $= 9.95$ ft Low Steel Elev. $= 9.95$ ft Channel) $= 0.025$ ft Onex scour will occur at verge of road overflow in (Channel) $= 0.025$ ft Or 9.66 ($Q_{100} \approx 9.96$) Or 9.66 ($Q_{100} \approx 9.96$) Figure Width $= 1.35$ ft Pier Length $= 1.35$ ft Pier Length $= 1.35$ ft Pier Stor $= 100$ yr $= 2$ ft
	387
PGRM: Contract	CONTRACTION SCOUR 114
	Width of main channel at approach section $W_1 = \frac{72}{100}$ ft
	Width of left overbank flow at approach, $W_{lob} = 101.6$ ft Average left overbank flow depth, $y_{lob} = 4.4$ ft
Σ Ü	Width of right overbank flow at approach, $W_{rob} = 101.6$ ft Average right overbank flow depth, $y_{rob} = 4.6$ ft 2×6 ft length
PGR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 18.5$ From Figure 9 W_2 (effective) = 4.5 ft $y_{cs} = 16.9$ ft
	Clear Water Courtmention Security of the demotrated in larger than small each last
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = ft$ Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = ft/s$
	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/2} = \int ft/s$
	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below reflexwise use live bed scour equation above.
	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = $ ft / If $D_{50} >= D_{c50}$, $\chi = 0.0$
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft$
	
A: Pić	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1) K2 =
PGRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 = \frac{1}{2}$ Froude # at bridge = $\frac{1}{2}$ Using pier width a on Figure 11, $\xi = \frac{1}{2}$ Pier scour $y_{ps} = \frac{1}{2}$ ft
- .	
nent	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{al.T} = 4.9$ ft right abutment, $y_{aRT} = 4.6$ ft
GRM: Abutment	Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through
:W: /	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{14.8}{14.8}$ and $\psi_{RT} = \frac{14.3}{14.3}$
Ğ	Left abutment scour $y = y(-(K_1/0.55) = 27.1$ ft Right abutment scour $y = y(-(K_1/0.55) = 21.3$ ft

Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} =$ and $\psi_{RT} =$

Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) =$ ____ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) =$ ____ft

PGRM: "RegionA", "RegionB",

PGRM: Contract

PGRM: CWCSNEW

PGRM: Pie

PGRM: Abutment

Route 152 St Stream Big Slave	River	MRM	Dat	te ,	Init	ials	_	
Bridge Structure No. 26019100 Loc	ation 25	5. 27	w fro	m M	ilban		•	
GPS coordinates: <u>N 45° 10.85</u>	taken from:	USL abutment	<u> </u>	centerline o			-	
W 97° 11.		ordinates: Wo						
Drainage area = $\frac{68.25}{175}$ sq. mi.				•				
The average bottom of the main channel was 13.	5 ft belov	v top of guardra	ail at a poin	t 8.4	ft from lef	t abutment.		
Method used to determine flood flows:Freq.								
1			, , 71 - 11 - 1	0 0	, 1			
MISCELLANEOUS CONSIDERATIONS								
Flows	$Q_{100} = 2360$			Q ₅₀₀ = 3830				
Estimated flow passing through bridge	2350						1	
Estimated road overflow & overtopping	10							
Consideration	Yes	No	Possibly	Yes	No	Possibly		
Chance of overtopping			Vi	V				
Chance of Pressure flow					<u> </u>			
Armored appearance to channel		V						
Lateral instability of channel		I			<u> </u>			
Riprap at abutments? Yes	No	Marginal						
	No.	Warginar	Camala	and w	ader ha	ida. V	ery little	
Evidence of past Scour? Yes	No	Don't know	2000	Scours	cmall	ملطاء	- hour heen	
Debris Potential? High	Med	Low	Pici	_ (Siraci	COPPIE	5 Made been	
D	dagiamad?		dump	ed neo	r end	of min	ery little s have been gwalls.	
Does scour countermeasure(s) appear to have been	designed?		•. •	/374			O .	
RiprapY			i't know					
Spur DikeY	esN		i't know					
OtherY	esN	loDor	i't know	NA NA				
	~1 · · ·		11 15 11					
		n Based on Me						
Material Silt/Clay Sand v		Gravel		Cobbles		Boulders		
Size range, in mm <0.062 0.062-2.	00	2.00-64		64-250		>250		
					otos			
Comments, Diagrams & orientation of digital phot	os	stru	cture n	umber	om brid			
Bridge road overflow may	pegin	locki	مم نهج	treamfr	om brid	lae		
cut a lower stage than est	imated,	1013	from b	sobine				
but it is at a point too ! east of bridge to "see" .	far			•				
but 1715 what porter	124		from k					
east of bridge to see i	ω	Brid	ge from	a left o	approach			
hand level		11	Ĭ .	1.01		1.1		
		Cobb	oles at	- USL	upricu	oca II		
Summary of Results		`						
			Q100 Q5				ı	
Bridge flow evaluated		2350					,	
Flow depth at left abutment (yaLT), in feet		4.9						
Flow depth at right abutment (yaRT), in feet 4.6								
Contraction scour depth (ycs), in feet		6,9					1	
Pier scour depth (yps), in feet		1.9		ļ			ı	
Left abutment scour depth (yas), in feet		Z.(
Right abutment scour depth (yas), in feet		1.3		<u> </u>				
11Flow angle of attack	1 5	70°		I				

Basin Characteristics from Provisional Stream Stats 10-7-11 Cont. D.A. = 68.25 PII = 0.93 100% Subregion A Manually Calculated Peaks

Q₁₀₀ = 2360 efs Q₅₀₀ = 3830 efs