	SCOUR ANALYSIS AND REPORTING FORM Bridge Structure No. 26032070 Date $8-13-10$ Initials cw/RT Region (A BCD) Site 06479200 Location 5.1 m; West of $1-29$ on Exit 201 $Q_{100} = 2030$ by: drainage area flood frequency anal. $$ regional regression eq. Bridge discharge $(Q_2) = 2030$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 34 ft. Flow angle at bridge = 5 Abut. Skew = 0 Effective Skew = 5 Width (W ₂) iteration = 30 Power flow depth at bridge, y ₂ iteration = 30 Power flow angle =
	Water Surface Elev. = $\frac{4}{6}$ ft Low Steel Elev. = $\frac{1}{6}$ ft n (Channel) = $\frac{1033}{1000}$ n (ROB) = $\frac{1033}{1000}$ Pier Width = $\frac{1033}{1000}$ ft # Piers for 100 yr = $\frac{1000}{1000}$ ft
ntract	
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = $ ft Average right overbank flow depth, $y_{rob} = $ ft Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = $
PGRM: CWCSNEW	
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1$. Using pier width a on Figure 11, $\xi = 4$. Pier scour $y_{ps} = 3.3$ ft
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 0$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 0.55$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 0.55$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 0.55$

PGRM: CWCSNEW

PGRM: Abutment PGRM: Pier

SCOUR ANALYSIS AND REPORTING FORM

Route 149 St Stream Big Sioux River Bridge Structure No. 26032070 Loc GPS coordinates: N 45° 13' 28.7' W 97° 09' 32.8"		MDM	Б.	8/12/11	2 1-3:1-6/2	IRT		
Route 199 St Stream Dia Stoly Nin	2/	WRW	Dat	e 0/15/10	Initials	1		
Bridge Structure No. 26032070 Loc	ation 5,1	m; West c	st 1-2.	9 @ Exit	+ 201			
GPS coordinates: N 45° 13' 28.7"	taken from:	USL abutment		centerline of	11 MRM end			
W 97° 09' 32.8	Datum of co	ordinates: WO	GS84_	NAD27_				
Drainage area = 55.62 sq. mi.								
The average bottom of the main channel was, 18,	9 ft belov	v top of guardra	ail at a poin	t 27	ft from left abutment			
Method used to determine flood flows: V Freq.	Anal.	drainage area a	djustment	regiona	l regression equation	is.		
mound used to determine freed news.			•					
MIS	SCELLANE	OUS CONSII	DERATION			_		
Flows	$Q_{100} = 2$	030		$Q_{500} = 3$	530			
Estimated flow passing through bridge	2030			3.5				
Estimated road overflow & overtopping				_				
Consideration	Yes	No	Possibly	Yes	No Possibly	/		
Chance of overtopping		X			X			
Chance of Pressure flow		X			X	_		
Armored appearance to channel		X			X	-		
Lateral instability of channel		X			X			
	V				Photo	5 0 1 +		
Riprap at abutments? Yes X No Marginal Photos Bridge #								
Evidence of past Scour?								
Debris Potential? High Med X Low Washed away 1067 - aproach xs from bridge Does scour countermeasure(s) appear to have been designed?								
					1067 - apre	ach to from		
Does scour countermeasure(s) appear to have been	designed?			V	Dr.d.	ge		
Riprap	esN	loDor	ı't know	NA	1068 - R.	sour dike		
Spur Dike	esN	loDor	i't know	NA	1069-1	1:1		
Vos No Don't know V NA								
	() 				1010 - Bridg	se section from		
Bed Material	Classificatio	n Based on Me	edian Partic	le Size (D ₅₀)	appro	sach		
Bed Material Classification Based on Median Particle Size (D ₅₀) Material Silt/Clay Sand Gravel Cobbles Boulders								
Size range, in mm <0.062 0.062-2.00 2.00-64 64-250 1071 - 2. 4 by +								
1077 PAL+								
Spur diker on both sides of upstream side								
Spur aikes on both sides of upon side								
of boides								
or viage								
Q500 doesn't top dike, would be standing nata Past contraction scour								
USUU doesn't top aike, would be stilling								
Poly and tou lyon (1	m. n							
Tast Contraction 30	Our							
Summary of Results						_		
		Q100			Q500			
Bridge flow evaluated 2020 3530								
Flow depth at left abutment (yaLT), in feet O.O								
Flow depth at right abutment (yaRT), in feet								
Contraction scour depth (ycs), in feet	0.	1		0.	4	1.		
Pier scour depth (yps), in feet	3.2	2		3.4	7			
Left abutment scour depth (yas), in feet	0.			0.0	2	_		
Right abutment scour depth (yas), in feet	0,	U		0.0		_		
1Flow angle of attack	5			5				