	Bridge Structure No. $\frac{26352030}{26352030}$ Date $\frac{6}{3}$ Date				
"RegionC", or "RegionD"	Bridge Width = $\frac{200}{150}$ ft. Flow angle at bridge = $\frac{20}{150}$ Abut. Skew = $\frac{20}{150}$ ° Effective Skew = $\frac{20}{150}$				
	Water Surface Elev. = ft Low Steel Elev. = ft $n \text{ (Channel)} = 0.035$ $n \text{ (LOB)} = 0.037$ $n \text{ (ROB)} = 0.037$ Pier Width = ft Pier Length = ft # Piers for 100 yr = ft				
	Width of main channel at approach section $W_1 = 200 \text{ft}$ Width of left overbank flow at approach, $W_{lob} = 200 \text{ft}$ Width of right overbank flow at approach, $W_{rob} = 200 \text{ft}$ Average left overbank flow depth, $y_{lob} = 200 \text{ft}$ Average right overbank flow depth, $y_{rob} = 200 \text{ft}$				
	Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 12.49 \qquad \text{From Figure 9} \qquad W_2 \text{ (effective)} = 145.6 \qquad \text{ft} \qquad y_{cs} = 13.6 \qquad \text{ft}$				
	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1.0$ Using pier width a on Figure 11, $\xi = 7.7$ Pier scour $y_{ps} = 6.5$ ft				
	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 2$, $y_{aLT} = 2$, $y_{aLT} = 3$ ft right abutment, $y_{aRT} = 3$ ft Shape coefficient $y_{aLT} = 3$ ft right abutment, $y_{aRT} = 3$ ft Using values for y_{aLT} and y_{aRT} on figure 12, $y_{aLT} = 3$ and $y_{aLT} = 3$ ft Left abutment scour, $y_{as} = y_{LT}(K_1/0.55) = 3$ ft Right abutment scour $y_{as} = y_{RT}(K_1/0.55) = 3$ ft				

PGRM: "RegionA", "RegionB",

PGRM: Contract

PGRM: CWCSNEW

PGRM: Abutment PGRM: Pier

Route 145 St. Stream Whetstone Ri	MRM	Date 8/13/10 Initials	Cer			
Bridge Structure No. 26352030 Loc	eation $4N + 6.1E$	Milbank				
Bridge Structure No. 26352030 Loc GPS coordinates: $4517.00'$ Drainage area = 400.94 sq. mi.	taken from: USL abutment	centerline of ↑ MRM end				
96 30/38.6"	Datum of coordinates: WGS84	NAD27				
Drainage area = 400, 94 sq. mi.						
The average bottom of the main channel was 22.5 ft below top of guardrail at a point 56 ft from left abutment.						
Method used to determine flood flows:Freq. Analdrainage area adjustmentregional regression equations.						
MIS	SCELLANEOUS CONSIDERA	ATIONS				
Flows	$Q_{100} = 12900$	$Q_{500} = 19200 19$	000			
Estimated flow passing through bridge	12900	19000				
Estimated road overflow & overtopping						
Consideration	Yes No Pos	ssibly Yes No Po	ssibly			
Chance of overtopping	X	X				
Chance of Pressure flow	X	×				
Armored appearance to channel	X	X				
Lateral instability of channel	X					
Pi	XXXIIII (DS site only) our/erosion on right a				
Riprap at abutments? Yes	NoMarginal		1 1			
Evidence of past Scour?Yes	NoDon't know 54	our/evorsion on right a	ebut.			
Debris Potential?High	MedLow					
Does scour countermeasure(s) appear to have been	designed?					
	es X No Don't kn	now NA				
Spur Dike Yes X No Don't know NA						
Other YesNoDon't knowNA						
	ESNODOILT KII	IOWNA				
Bed Material Classification Based on Median Particle Size (D ₅₀)						
Material Silt/Clay Sand Gravel Cobbles Boulders						
Size range, in mm <0.062 0.062-2.		64-250 >25				
Comments, Diagrams & orientation of digital photos 1063 - ROB						
1067 - 66. 1						
1060-Approach XS from bris	se le	1064- bridg	e trom			
1061- Left over bank (20B) 1065- Right abut. @ bridge						
1062-Channel		1065 - Night 4	but. @ brid			
Summary of Results						
	Q100	Q500				
Bridge flow evaluated	12900	19 000				
Flow depth at left abutment (yaLT), in feet	7.6	10.3				

	Q100	Q500
Bridge flow evaluated	12900	19.000
Flow depth at left abutment (yaLT), in feet	7.8	10.3
Flow depth at right abutment (yaRT), in feet	0.0	0.0
Contraction scour depth (ycs), in feet	13.6	14.4
Pier scour depth (yps), in feet	6.5	6.5
Left abutment scour depth (yas), in feet	19.6	21.6
Right abutment scour depth (yas), in feet	0.0	0.0
1Flow angle of attack	20	20