	Bridge Structure No. 27089250 Date 10-12-12 Initials RFT Region (ABCD)
	Site Location 3mi S + 3mi W of Burke on 294 St
	Q ₁₀₀ = 7210 by: drainage area ratio flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 7210$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
gionA", "Keg or "RegionD"	Bridge Width = $\frac{140}{120}$ ft. Flow angle at bridge = $\frac{5}{120}$ Abut. Skew = $\frac{5}{120}$ ° Effective Skew = $\frac{5}{120}$ ° Width (W ₂) iteration = $\frac{140}{120}$ 11L 12L 12D 123 122
	Width (W_2) iteration = $\frac{140}{100}$ $\frac{110}{100}$ $\frac{120}{100}$ $\frac{120}{100}$ $\frac{120}{100}$
	Avg. flow depth at bridge, y_2 iteration = 8.5 9.4 9.0 9.3 9.1 9.2
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{121.54}{1}$ ft* $q_2 = \frac{59.3}{1}$ ft ² /s
	Bridge Vel, $V_2 = 6.5$ ft/s Final $y_2 = q_2/V_2 = 9.2$ ft $\Delta h = 0.9$ ft
PUKM: "Region	* NOTE: repeat above calculations until y 2 changes by less than 0.2 Effective pier width = L sin(q) + a cos(q)
Z :-	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD, リュア 10,6 is abut. to abut,
	Water Surface Elev. = dry ft
	LOW Steel Flev. = 19. 4 II
	n (Channel) = . 090 incised (lowflow)
	n(LOB) = 0.090 $ n(ROB) = 0.095$
	$n (ROB) = \frac{0.095}{1.67}$ Pier Width = $\frac{1.67}{1.67}$ ft
	Pier Length = 1,67 ft
	# Piers for $100 \text{ yr} = 4 \text{ ft}$
	CONTRACTION SCOUR
к	Width of main channel at approach section $W_1 = \frac{140}{5}$ ft
ntrac	Width of left overbank flow at approach, $W_{lob} = D_{th}$ ft Average left overbank flow depth, $y_{lob} = D_{th}$ ft
GRM: Contract	Width of right overbank flow at approach, $W_{rob} = 140$ ft Average right overbank flow depth, $y_{rob} = 3.4$ ft
ž	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 4$. From Figure 9 W_2 (effective) = 114.9 ft $y_{cs} = 4$.7 ft
<u>∓</u>	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
GKM: CWCSNEW	Estimated bed material $D_{50} = \underline{\qquad}$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = \underline{\qquad}$ ft/s Critical approach velocity, $V_C = 11.17y_1^{1/6}D_{50}^{1/3} = \underline{\qquad}$ ft/s
<u>≷</u>	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = $ ft/s
Σ	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft use clear water equation below, otherwise use live bed scour equation above.
2	$D_{c50} = 0.0006(q_2/y_1^{100})^3 =ft$ If $D_{50} > = D_{c50}$, $\chi = 0.0$
	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ $D_{c50} = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ From Figure 10, $y_{cs} = ft$
<u> </u>	DIED COOLD CALCUL ATIONS
CKM: Pier	PIER SCOUR CALCULATIONS L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 =
ž	Froude # at bridge = 0.38 Using pier width a on Figure 11, $\xi = 7$ Pier scour $y_{ps} = 6.0$ ft
ient	ABUTMENT SCOUR CALCULATIONS
	Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 3$ ft
₹ ∑	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = 0.82 for vertical-wall with wingwalls, and ψ_{RT} = 1.2. \(\frac{12}{2}\)
rokm: Abutment	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \bigcirc$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 12.2$ ft
-	Tight doubling south yas = WRT(N(0.55) = 12.55 II

SCOUR ANALYSIS AND REPORTING FORM

	SCUR ANALTSIS AND REPORTING FORM
	Bridge Structure No. 27089250 Date Initials Region (ABCD)
	SiteLocation
	Q ₅₀₀ = 12000 by: drainage area ratio flood freq. anal. regional regression eq. V
	Bridge discharge $(Q_2) = 17.000$ (should be Q_{500} unless there is a relief bridge, road overflow, or bridge overtopping)
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Water Surface Elev. = $\frac{d \cdot y}{14.3}$ ft Low Steel Elev. = $\frac{14.3}{14.3}$ ft n (Channel) = $\frac{0.90}{0.095}$ n (ROB) = $\frac{0.95}{0.095}$ Pier Width = $\frac{1.67}{0.167}$ ft
	Pier Length = 1.67 ft
	# Piers for 500 yr = \mathcal{U} ft
	CONTRACTION SCOUR
	Width of main channel at approach section $W_1 = 140$ ft
ಜ್ಞ	
ontr	Width of left overbank flow at approach, $W_{lob} = 37$ ft Average left overbank flow depth, $y_{lob} = 6.3$ ft
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = \frac{UUD}{t}$ Average right overbank flow depth, $y_{rob} = \frac{5U}{t}$
Š	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
_	$x = 3.97$ From Figure 9 W_2 (effective) = 132.9 ft $y_{cs} = 41.6$ ft
3 €	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
PGRM: CWCSNE	Estimated bed material $D_{50} = ft$ Average approach velocity, $V_1 = Q_{500}/(y_1W_1) = ft/s$
C	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = $ ft/s
Ξ̈́	If $V_1 < V_p$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
PGR	If $V_1 < V_0$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft \qquad \text{If } D_{50} >= D_{c50}, \chi = 0.0$
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$
1.1	
PGRM: Pie	PIER SCOUR CALCULATIONS
ĬŘ.	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 =
χ	Froude # at bridge = 0 , 11 Using pier width a on Figure 11, $\xi = 7$ Pier scour $y_{ps} = 6$, 1 ft
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 0.3$ ft right abutment, $y_{aRT} = 5.6$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 1.4$ and $\psi_{RT} = 1.6$. Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 1.4$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 1.6$ ft
PG	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 1.4$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 1.4$ ft

. .

Route 294 St Stream Ponca C	reek	MRM	Dat	te	Init	ials				
Bridge Structure No. 27689250 Location 3m. S + 3m. W of Buke on 294 St GPS coordinates: W43° 2.416' taken from: USL abutment centerline of \(\text{I MRM end} \)										
GPS coordinates: $\sqrt{43^{\circ} \cdot 2.416^{\circ}}$ taken from: USL abutment centerline of 1 MRM end Datum of coordinates: WGS84 NAD27										
Drainage area = 215.4 sq. mi.										
The average bottom of the main channel was 18.2 ft below top of guardrail at a point 61 ft from left abutment.										
Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.										
Flows $Q_{100} = 7210 \qquad Q_{500} = 12000$										
Estimated flow passing through bridge	Q ₁₀₀ -			Q ₅₀₀ = 12000						
Estimated now passing through bridge Estimated road overflow & overtopping		7210		72800						
Consideration	Yes	No	Possibly	Yes	No	Possibly				
Chance of overtopping	103	110	1 Ossibly	1 03	100	1 Ossibly				
Chance of Pressure flow					-					
Armored appearance to channel			 		/	 				
Lateral instability of channel					1					
					<u>;</u>					
Riprap at abutments? Yes	No	✓ Marginal								
Evidence of past Scour? Yes	No	Don't knov	v abutm	ent, cont	raction					
Evidence of past Scour? YesNoDon't know abutment, contraction Debris Potential? HighMedLow										
Does scour countermeasure(s) appear to have been designed?										
Riprap concrete rubble	Yes <u></u> 1	NoDoi	n't know	NA						
		esNoDon't knowNA esNoDon't knowNA								
Bed Material Classification Based on Median Particle Size (D ₅₀)										
Material Silt/Clay Sand	Y	Gravel		Cobbles Boulders						
Size range, in mm <0.062 0.062	-2.00	2 00-64		64-250 >250		>250				
512c range, in num \0.002 0.002	-2.00	2.00-04		04-230		~23 0				
Comments, Diagrams & orientation of digital ph	iotos .									
Str. no.	-:-1	+ =\a .4								
	المرقب المراجع	of about								
bridge from approach lest abut. Tight abut. The state of the state o										
rubble on left										
LOB from ROB opproach from bridge										
ROB	•									
Summary of Results										
		Q100			Q500					
Bridge flow evaluated		7210			12,000					
Flow depth at left abutment (yaLT), in feet		ð			0.3					
Flow depth at right abutment (yaRT), in feet		3,4			5, 6					
Contraction scour depth (ycs), in feet		4.7			4.6					
Pier scour depth (yps), in feet		6.0			6.1					
Left abutment scour depth (yas), in feet		0			1,4					
Right abutment scour depth (yas), in feet		12.2			16.1					
I Flow angle of attack		5°			5₹					