	SCOUR ANALYSIS AND REPORTING FORM								
	Bridge Structure No. 32305028 Date 10/29/11 Initials CW Region (ABCD)								
	Site Location 2,5 mi W my of 45 85 on Cox Rd Q100 = 3430 by: drainage area ratio flood freq. anal regional regression eq								
	Q ₁₀₀ = 3430 by: drainage area ratio flood freq. anal. regional regression eq.								
	Bridge discharge $(Q_2) = 3430$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)								
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 0 ft. Flow angle at bridge = 0 Abut. Skew = 0 Effective Skew = 0 Orrected channel width at bridge Section = 0 ft. Corrected channel width at bridge Section = 0 ft. Bridge Vel, 0 iteration = 0 ft. Corrected channel width at bridge Section = 0 ft. Final 0 ft. Final 0 ft. Final 0 ft. Average main channel depth at approach section, 0 ft. *NOTE: repeat above calculations until 0 2 changes by less than 0 2 Effective pier width = 0 so 0 ft. Water Surface Elev. = 0 ft. Low Steel Elev. = 0 ft. In (Channel) = 0 ft. To 0 ft. To 0 ft. The Piers for 0 ft. The Pi								
	CONTRACTION SCOUR								
PGRM: Contract	Width of main channel at approach section $W_1 = \frac{1}{2}$ ft								
	Width of left overbank flow at approach, $W_{lob} = 60$ ft Average left overbank flow depth, $y_{lob} = 60$ ft Average left overbank flow depth, $y_{lob} = 60$ ft								
7. C	Width of left overbank flow at approach, $W_{lob} = 60$ ft Width of right overbank flow at approach, $W_{rob} = 20$ ft Average left overbank flow depth, $y_{lob} = 3.7$ ft Average right overbank flow depth, $y_{rob} = 6.9$ ft								
GRA	Live Bed Contraction Scour (use if bed material is small cobbles or finer)								
<u>a</u>	$x = 3.98$ From Figure 9 W_2 (effective) = 58 ft $y_{cs} = 4.6$ ft								
EW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)								
PGRM: CWCSNEW	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s								
C.C.	Critical approach velocity, $Ve = 11.17y_1^{1/6}D_{50}^{1/3} = 11/8$ If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.								
GRM	$15V_1 \sim V_c$ and $D_{50} > -0.2$ it, use clear water equation below, otherwise use five bed scour equation above.								
P($\begin{aligned} &D_{e50} = 0.0006 (q_2/y_1^{7/6})^3 = \underline{\qquad} & \text{ft} & \text{If } D_{50} > = D_{e50}, \chi = 0.0 \\ &\text{Otherwise, } \chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad} & \text{From Figure 10, } y_{cs} = \underline{\qquad} & \text{ft} \end{aligned}$								
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{1/6})]^{6/7} - y_1 =ft$								
PGRM: Pier	L/a ratio = 1.0 Froude # at bridge = 0.38 PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1.0$ Using pier width a on Figure 11, $\xi = 4.9$ Pier scour $y_{ps} = 4.2$ ft								
Ħ	ABUTMENT SCOUR CALCULATIONS								
Average flow depth blocked by: left abutment, $y_{al.} = 0.9$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through									
f: Ab	Shape coefficient K_1 = 1.00 for vertical-wall, (0.82) for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = (0.82)$ for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and $\psi_{RT} = (0.82)$ for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and $y_{RT} = (0.82)$ for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and $y_{RT} = (0.82)$ for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and $y_{RT} = (0.82)$ for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and $y_{RT} = (0.82)$ for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and $y_{RT} = (0.82)$ for y_{aLT} for								
PGRM: Abutment									
-	/as 101(-1-1-1-7)								

Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 26.9$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 21.9$

Route CON Rd Stream Croo	ed.	CK	MRM	Da	te 10/2	9/11 Ini	itials C4		
Bridge Structure No. 3230 5028	Loc	ation 7	2 40 10/	L110	25 200	1 1	71		
GPS coordinates: N 45°54'31,3" W 103° 35'43.6'	Loc	taken from:	USL abutmen	t_\(\)	centerline	of î MRM	end		
W 103 A) 73.6	4 (************************************	Datum of co	ordinates: W	GS84_X	NAD27				
Drainage area = 49.02	_sq. mi.								
The average bottom of the main channel	was _	ft below	v top of guardr	ail at a poir	it 102	_ft from le	eft abutment.		
Method used to determine flood flows:	Freq.	Anal	drainage area i	ratio	regional reg	gression equ	iations.		
MISCELLANEOUS CONSIDERATIONS									
Flows				$Q_{100} = 3.430$			$Q_{500} = 5780$		
Estimated flow passing through bridge	Estimated flow passing through bridge			3430			5456		
Estimated road overflow & overtopping					324				
Consideration		Yes	No	Possibly	Yes	No	Possibly		
Chance of overtopping			X		X				
Chance of Pressure flow			X				1		
Armored appearance to channel			X			X			
Lateral instability of channel			X			X			
Riprap at abutments? Yes X No Marginal Evidence of past Scour? Debris Potential? Yes No Don't know Ca#k on banks High Med Low									
Does scour countermeasure(s) appear to have been designed?									
Riprap Yes No Don't know NA									
Spur Dike Yes No Don't know X NA									
Other Yes No Don't know NA									
Other	1			I t Know	INA				
Bed Material Classification Based on Median Particle Size (D ₅₀)									
Material Silt/Clay X	Gravel			Cobbles		Boulders			
Size range, in mm <0.062	0.062-2.0	00	2.00-64		64-250		>250		
Comments, Diagrams & orientation of di 10/4/11	gital photo	os							
			Q100			Q500			
Bridge flow evaluated	3430			5456					
Flow depth at left abutment (yaLT), in fe	3,7			6.7					
Flow depth at right abutment (yaRT), in	0.9			4.8					
Contraction scour depth (ycs), in feet	4.6			9, 9					
Pier scour depth (yps), in feet	4.2			4.3					
Left abutment scour depth (yas), in feet		19.	0		2	6.9			
Right abutment scour depth (yas), in feet		5.	8		a	1,9			
1Flow angle of attack		0				2			