	SCOUR ANALYSIS AND REPORTING FORM						
	Bridge Structure No. $34/40201$ Date $6/6/12$ Initials Region (ABOD) Site Location 1.5 m N of Kaylor on 4/8 Arc $Q_{100} = 1690$ by: drainage area ratio flood freq. anal. regional regression eq. X						
	Site Location 1.5 m N of Kaylor on 418 Are						
	Q ₁₀₀ = by: drainage area ratio flood freq. anal regional regression eq						
	Bridge discharge $(Q_2) = 1640$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)						
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method						
PGRM: "RegionA", "RegionB", 'RegionC", or "RegionD"	Bridge Width = 6 ft. Flow angle at bridge = 10 ° Abut. Skew = 0 ° Effective Skew = 10 °						
	Width (W ₂) iteration =						
	Avg. flow depth at bridge, y_2 iteration =						
nA", Regi	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{60.07}{\text{ft}}$ ft* $q_2 = Q_2/W_2 = \frac{27.3}{\text{ft}}$ ft ² /s Bridge Vel, $V_2 = \frac{3.7}{\text{ft}}$ ft/s Final $y_2 = q_2/V_2 = \frac{60.07}{\text{ft}}$ ft $\Delta h = \frac{0.3}{\text{ft}}$ ft						
egio,	Bridge Vel, $V_2 = \frac{3}{2} \cdot \frac{7}{1}$ ft/s Final $y_2 = q_2/V_2 = \frac{3}{2}$ ft $\Delta h = \frac{3}{2}$ ft						
4: "R onC"	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \frac{7.6}{\text{ft}}$ ft * NOTE: repeat above calculations until y 2 changes by less than 0.2 Effective pier width = L sin(q) + a cos(q)						
GRN	If y_2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,						
<u>a</u> :	gy is above 25, then accommys. Notice or system in any						
	Water Surface Elev. = 0 ft						
	Water Surface Elev. = $\frac{0}{100}$ ft Low Steel Elev. = $\frac{0}{100}$ ft n (Channel) = $\frac{1}{100}$ $\frac{1}{100}$ ft						
	n (LOB) =						
	n(ROB) = 6.036						
	Pier Width = 1.65 ft						
	Pier Length = $\frac{1.65}{100 \text{ yr}} = \frac{1.65}{100 \text{ ft}}$						
	CONTRACTION SCOUR Width of main channel at approach section $W_1 = 61$ ft CONTRACTION SCOUR $ \begin{array}{cccccccccccccccccccccccccccccccccc$						
PGRM: Contract	Width of main channel at approach section $W_1 = 61$ ft Width of left overbank flow at approach, $W_{lob} = 61$ ft Average left overbank flow depth, $y_{lob} = 3.2$ ft						
	Width of right overbank flow at approach, $W_{rob} = $ ft Average right overbank flow depth, $y_{rob} = $ f						
PGR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)						
	$x = 3.05$ From Figure 9 W_2 (effective) = 56.8 ft $y_{cs} = 3.6$ ft						
	Clear Water Contraction Scour (use if bed material is larger than small cobbles)						
NEW	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s						
NCS	Critical approach velocity, $V_0 = 11.17y_1^{1/6}D_{50}^{1/3} = $ ft/s						
4: C	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.						
PGRM: CWCSNEW	$D_{c50} = 0.0006(g_2/v_1^{7/6})^3 = $ ft If $D_{50} >= D_{c50}$, $\chi = 0.0$						
	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ $Otherwise, \chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ $If D_{50} >= D_{c50}, \chi = 0.0$ From Figure 10, $y_{cs} = ft$						
	σιιοτικός, χ στι 25/1842 (= 30 71 71 71 =						
Pier	PIER SCOUR CALCULATIONS						
PGRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 = $ Froude # at bridge = 6.24 Using pier width a on Figure 11, $\xi = 6.9$ Pier scour $y_{ps} = 5.5$ ft						
PGI	Froude # at bridge = 6.27 Using pier width a on Figure 11, $\xi = 6.7$ Pier scour $y_{ps} = 5.27$ ft						
	ABUTMENT SCOUR CALCULATIONS						
ment	Average flow depth blocked by: left abutment, $v_{t,t} = 32$ ft right abutment, $v_{t,t} = 160$ ft						
Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 20.55 for spil							

PGRM: "RegionA", "RegionB",

2901212h 9145816

Route 418 Am Stream South Round	London (/ MRM	Dat	e 618112	Init	ials Pat		
Rolle 11 VVE Stream Sour France	ution 16	n: 1/	£ 16	lor ma	4/8	4.		
Bridge Structure No. 27/7020/ Loc	ation 1,5	USI abutana	May	contarling of	CÎ MDM	and and		
GPS coordinates: N 43 12 3D.L	taken from:	USL abutmen	CCOA	NAD27	III IVIICIVI C	:nu		
Route 418 Ave Stream South Branch Bridge Structure No. 34140201 Loc GPS coordinates: $N 99 12' 35.2''$ Drainage area = $16562 16.22$ sq. mi.	Datum of co	ordinates: w	US84_/-	NAD21_				
The average bottom of the main channel was	ft helos	y top of guard	rail at a noin	10	ft from le	ft abutment	11:	76
The average bottom of the main channel was	A nal	droinage area	ratio	regional regr	ession equ	ations	51	
Method used to determine flood flows:Freq.	Anai.	dramage area	iatio	regional regi	ession equ	ations.	Sto	24
MIS	CELLANE	OUS CONSI	DERATION	NS			5	64,2
Flows	$Q_{100} =$	1640		$Q_{500} = 3190$				222
Estimated flow passing through bridge	ed flow passing through bridge				time	3078	2	415
Estimated road overflow & overtopping		B			York	102		
Consideration	Yes	No	Possibly	Yes	No	Possibly		787
Chance of overtopping		X				X	60	1160
Chance of Pressure flow		×		X			100	1640
Armored appearance to channel		X			*		100	3180
Lateral instability of channel		×			X		500	5100
Does scour countermeasure(s) appear to have been Riprap Spur Dike Other Bed Material Material Silt/Clay Sand Size range, in mm Size range, in mm	Classification (Classification	NoDo NoDo NoDo on Based on M Gravel 2.00-64	ledian Partic			Boulders_ >250		
Summary of Results		Q100			Q500]	
Bridge flow evaluated		1640			3078		1	
Flow depth at left abutment (yaLT), in feet		3.2 6.2 2.3						
Flow depth at right abutment (yaRT), in feet		0					1	
Contraction scour depth (ycs), in feet		36			8.8		1	

36

11.9 6.6

10

5.6

3.7 17.Z

Pier scour depth (yps), in feet

1Flow angle of attack

Left abutment scour depth (yas), in feet

Right abutment scour depth (yas), in feet