	SCOUR ANALYSIS AND REPORTING FORM						
	Bridge Structure No. 37100124 Date 6/12/17 Initials 120 Region (ABCD)						
	Site Location 4.4 m; N of Crow Lake on 373 Are						
	Q ₁₀₀ = 3520 by: drainage area ratio flood freq. anal regional regression eq						
	Bridge discharge $(Q_2) = 3520$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)						
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method						
ъ. Т.	Bridge Width = 105 ft. Flow angle at bridge = 10 ° Abut. Skew = 0 ° Effective Skew = 10 ° Width (W) iteration =						
egior D"	Width (W_2) iteration = Avg. flow depth at bridge, y_2 iteration =						
gion!	Corrected channel width at bridge Section = W_2 times cos of flow angle = 103.4 ft* $q_2 = Q_2/W_2 = 34$ ft²/s						
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Bridge Vel, $V_2 = \frac{V_1}{f}$ ft/s Final $y_2 = q_2/V_2 = \frac{8}{2}$ ft $\Delta h = \frac{2}{2}$ ft						
Regi	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 8.6$ ft						
M.:	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$						
PGR "Reg	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,						
	105						
	Water Surface Elev. = O-1, 1 ft Low Steel Elev. = Graph ft						
	n (Channel) - Gelil (
	n (LOB) = 6.035						
	n (ROB) =						
	Pier Width = $\frac{1.65}{1.65}$ ft Pier Length = $\frac{1.65}{1.65}$ ft						
	# Piers for 100 yr = $\frac{1}{2}$ ft						
	50-1 100						
	CONTRACTION SCOUR						
_	Width of main channel at approach section $W_1 = \frac{164}{1000000000000000000000000000000000000$						
ıtracı	Width of left overbank flow at approach, $W_{lob} = \frac{16000}{1000}$ ft Average left overbank flow depth, $y_{lob} = \frac{9.0}{1000}$ ft						
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = \frac{1}{2 \cdot 10^{5}}$ ft Average right overbank flow depth, $y_{rob} = \frac{2 \cdot 1}{2 \cdot 10^{5}}$ ft						
GRM	L' De l'Geste stier Serve (use if had material is small cabbles or finer)						
P(Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = \underbrace{\qquad}_{\text{fine}} \text{From Figure 9} \qquad W_2 \text{ (effective)} = \underbrace{\qquad}_{\text{fine}} \text{fit} \qquad y_{cs} = \underbrace{\qquad}_{\text{fine}} \text{fit}$						
	16.75 W2 (elective) = 15.7 It yes = 11.7						
*	Clear Water Contraction Scour (use if bed material is larger than small cobbles)						
SNE	Estimated bed material $D_{0} = 1$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 1$ ft/s						
Critical approach velocity, $\sqrt{\epsilon} = 11.17y_1^{1/6}D_{50}^{1/3} = $ ft/s							
.ï	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.						
PGF	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ If $D_{50} >= D_{c50}$, $\chi = 0.0$						
	$D_{e50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ $Otherwise, \chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ $If D_{50} >= D_{e50}, \chi = 0.0$ From Figure 10, $y_{es} = ft$						
PGRM: Pier	PIER SCOUR CALCULATIONS						
GRN	L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 = \frac{1}{100}$ Froude # at bridge = $\frac{1}{100}$ Using pier width a on Figure 11, $\xi = \frac{1}{100}$ Pier scour $y_{ps} = \frac{1}{100}$ ft						
Ā	Froude # at order = Caning pier width a on Figure 11, \(\sigma \) The second \(\gamma_{ps} \) R						
Ħ	ABUTMENT SCOUR CALCULATIONS						
utme	Average flow depth blocked by: left abutment, $y_{aLT} = 4.0$ ft right abutment, $y_{aRT} = 2.1$ ft						
(Ab	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = 13.3 and ψ_{RT} = 9.4 Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 13.5$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 1.6$ ft						
Average flow depth blocked by: left abutment, $y_{aLT} = 4.0$ ft right abutment, $y_{aRT} = 2.1$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through using values for y_{aLT} and y_{aRT} on figure 12, $y_{LT} = 13.3$ and $y_{RT} = 9.4$ Left abutment scour, $y_{as} = y_{LT}(K_1/0.55) = 13.5$ ft Right abutment scour $y_{as} = y_{RT}(K_1/0.55) = 9.4$							
P(Left adultment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \underline{15.5}$ It Kight adultment scour $y_{as} = \psi_{RT}(K_1/0.55) = \underline{15.5}$ It						

2 Llo'hh 55921'8b

260.1 ohh

Route 373 Ave Stream		MRM	Da	te \$ -6/1	1/12 Init	tials Ral	_	
Bridge Structure No. 37100 124 Loc	cation 4.4	1 m: N	of Cr	on Lake	on	373 A	Sur	
GPS coordinates: N 441 C/4 (4/1)	taken from:	USL abutmen	t	centerline o	of î MRM e	end		
Bridge Structure No. 37100 124 Los GPS coordinates: N 44 01 1411 Los W 4 940 43" 42,7"	Datum of co	ordinates: W	GS84	NAD27				
Drainage area = $\frac{67,06}{\text{sq. mi.}}$								
The average bottom of the main channel was 13.	3 ft belov	w top of guardi	ail at a poin	it 54	ft from le	ft abutment.	- 1	70
Method used to determine flood flows:Freq.	Anal.	drainage area	ratio	regional reg	ression equ	ations.	5/	50
MI	SCELLANE	EOUS CONSI	DERATIO	NS			5/	24
Flows	Q ₁₀₀ =	352C		$Q_{500} =$	7100		2	198.9
Estimated flow passing through bridge	3520			4687			5	400
Estimated road overflow & overtopping		0		2413			10	796
Consideration	Yes	No	Possibly	Yes	No	Possibly	25	1600
Chance of overtopping		×		X			50	2440
Chance of Pressure flow		X		X			100	3520
Armored appearance to channel		×			×		500	7100
Lateral instability of channel		×			×			11.00
Does scour countermeasure(s) appear to have been Riprap Spur Dike Other Bed Material Material Silt/Clay Sand Size range, in mm <0.062 0.062-2	Med	NoDo NoDo NoDo on Based on M Gravel	n't know n't know n't know edian Partic	NANANA le Size (D ₅₀ Cobbles		Boulders_ >250		
Comments, Diagrams & orientation of digital pho 1) left CD 2), moin chance 3), isht ons 4-3) plets 6-1), isht atut ment 8-9) left a but ment Summary of Results	10), large B. id	thing in s se chann n channel	steer el				_	
		Q100			Q500		1	
Bridge flow evaluated		3520			4687		1	
Flow depth at left abutment (yaLT), in feet		4.0			5.4		1	
Flow depth at right abutment (yaPT), in feet		2,4			3.2		1	
Contraction secur depth (ves) in feet		11.7			M. <		1	

Flow depth at left abutment (yaLT), in feet	4.0	5.4
Flow depth at right abutment (yaRT), in feet	2,4	3.2
Contraction scour depth (ycs), in feet	1107	M, S
Pier scour depth (yps), in feet	5.6	5.7
Left abutment scour depth (yas), in feet	13:3	15.7
Right abutment scour depth (yas), in feet	9.8	11.9
1Flow angle of attack	10	16