	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 40143150 Date 72512 Initials Region (ABCD)
	Site Location 0.3 m; W of HWY 19 on 2355+
	Que = 0 5 lood freq. anal regional regression eq. X
	Bridge discharge $(Q_2) = \frac{20\%}{1320}$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 155 ft. Flow angle at bridge = 0 Abut. Skew = 0 Effective Skew = 10 2,1
	Bridge Width = $\frac{55}{5}$ ft. Flow angle at bridge = $\frac{10}{2}$ Abut. Skew = $\frac{0}{2}$ ° Effective Skew = $\frac{10}{2}$ ° $\frac{1}{2}$
PGRM: "RegionA", "RegionB" "RegionC", or "RegionD"	Width (W ₂) iteration =
	Avg. flow depth at bridge, y_2 iteration = $\frac{54.16}{}$
A".	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{1}{4}$ ft* $q_2 = Q_2/W_2 = \frac{2}{3}$ ft²/s
gion or "I	Driego ven, vi
"Re	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 3 \times \sqrt{7.2} \text{ ft}$ 7 7 3.1 3.2
RM	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$
PG "R	If y ₂ is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,
	17.2-24
	Low Steel Elev. = 55 tt 55 Los Steel Elev. = 655 Coft
	n (Channel) = 0.04%
	n(LOB) = 6.035
	$n (ROB) = 6.036$ Pier Width = 13 ft 6.7 \(\frac{1}{3}\)
	Pier Length = $\frac{1.3}{2}$ ft
	# Piers for $100 \text{ yr} = \underline{}$ ft
	CONTRACTION SCOUR
ıtract	Width of main channel at approach section $W_1 = 1005$ ft
	Width of left overbank flow at approach, $W_{lob} = \frac{1}{2} \frac$
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = \frac{76.55}{1}$ ft Average right overbank flow depth, $y_{rob} = \frac{16.55}{1}$ ft
ЯЖ	
PC	<u>Live Bed Contraction Scour</u> (use if bed material is small cobbles or finer)
	$x = 9$ From Figure 9 W_2 (effective) = 9 ft $y_{cs} = 9$ ft
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
WCS	Estimated bed material $D_{50} = \underbrace{ft}$ Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = \underbrace{ft/s}$ Critical approach velocity, $V_C = \underbrace{V_1 7 y_1^{1/6} D_{50}^{1/3}}_{1/3} = \underbrace{ft/s}$
M: C	If $V < V$ and $D_{ro} >= 0.2$ ft use clearwater equation below, otherwise use live bed scour equation above
PGR	$D_{cso} = 0.0006(q_2/y_1^{7/6})^3 = $ ft If $D_{so} >= D_{cso}$, $\gamma = 0.0$
	$\begin{array}{lll} D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = & \text{ft} & \text{If } D_{50} >= D_{c50}, \chi = 0.0 \\ \text{Otherwise, } \chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = & \text{From Figure 10, } y_{cs} = & \text{ft} \end{array}$
	- cate wise, χ = 0.122) [[q ₂ (25 ₀) γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ
Icr	PIER SCOUR CALCULATIONS
PGRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 =
PGR	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 = ft Froude # at bridge = 23 Using pier width a on Figure 11, $\xi = _{-}^{5}$ Pier scour $y_{ps} = _{-}^{1}$ ft
nent	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = \frac{0.8}{6}$ ft right abutment, $y_{aRT} = \frac{0.8}{6}$ ft
butn	Shape coefficient K = 100 for vertical-wall 0.82 for vertical-wall with wingwalls 0.55 for spill-through
M. A	Using values for $v_{\text{al.}T}$ and $v_{\text{ap.}T}$ on figure 12. $\psi_{\text{LT}} = 3.5$ and $\psi_{\text{p.}T} = 3.5$
PGRM: Abutment	Shape coefficient K_1 = 0.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = 0.82 ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 0.55$ ft

*

61816'Eh

430 SE 43.46911

Route 235 St Stream Silver CK		MRM	Dat	te 7/25/12	Initials Lat			
Bridge Structure No. 40 43 50 Loc			- E 41	14 19 on	23/54			
CDS apardinates: 11/120 Cel (43/1)	taken from: 1				MRM end			
W97 5' 2.5"				NAD27				
Drainage area = $\frac{\sqrt{0}}{\sqrt{0}}$ sq. mi.			1					
The average bottom of the main channel was	ft below	top of guardi	ail at a poin	t_2 ft f	rom left abutment.			
Method used to determine flood flows:Freq.	Anald	Irainage area	ratio 🔀	regional regressi	on equations.			
	SCELLANEO					8/24		
Flows								
Estimated flow passing through bridge		ZA			2568 2011	5 138		
Estimated road overflow & overtopping					348 720 69	10 20		
Consideration	Yes	No	Possibly	Yes	No Possibly	25 32		
Chance of overtopping								
Change of Programs flow								
Armored appearance to channel						100 55		
						500 86		
Euteral instability of chainer				1 1 1	- 16 111	6120		
Riprap at abutments? Yes	No X	Marginal	: blab	ducat Assent	OWER CHISIOE	1, 100		
Friday at additions.	No.	Don't know	lett out	wind, Loes,	nt appear elsew	Mere 1504		
Riprap at abutments? Yes No Marginal i prap and around outle cutside 6/20 Evidence of past Scour? No Don't know contraction abutment 5/09 Debris Potential? High Med Low								
Debris Potential? High Med Low 25 3283								
						50 4340		
Riprap Yes No Don't know NA								
Spur Dike Y	esNo	DoDo	n't know	NA		20000		
Spur Dike Yes No Don't know NA Other extended abutnert Yes No Don't know NA								
Riprap Spur Dike Other Extended abstract Yes No Don't know NA Yes No Don't know NA Yes No Don't know NA Wall + riprap. Bed Material Classification Based on Median Particle Size (D ₅₀)								
Bed Material Classification Based on Median Particle Size (D ₅₀)								
Size range, in mm <0.062 0.062-2.	00	2.00-64		64-250	>250			
Comments, Diagrams & orientation of digital phot	os	W 21 122						
Dett co 9) isht abudnent								
2) win of 10) and a charact								
2) main chance (0), monin channel 3), right CB 4), ptc. 5), right abulment 6-8), left abulment								
3), cight cb								
4) 01								
a planet								
SI. cisk abundan								
6-6). left 2004111								
Summary of Results				-	0.4	7		
		Q100 G	OQ5	(2500 GZS Q10			
Bridge flow evaluated	1320		2011					
Flow depth at left abutment (yaLT), in feet	0.8			2.5		4		
Flow depth at right abutment (yaRT), in feet	04			2,5		_		
Contraction scour depth (ycs), in feet		4.9		17	3.8	_		
Pier scour depth (yps), in feet		4.7		y.	1	4		
Left abutment scour depth (yas), in feet		6.3			5.6	_		
Right abutment scour depth (yas), in feet		6.3			16	4		
1Flow angle of attack	Alexander de la companya de la comp	10		1	0			