	SCOUR ANALYSIS AND REPORTING FORM						
	Bridge Structure No. 41015040 Date 9-18-12 Initials RFT Region (A)BCD)						
	Site Location D. Le W I-90 Exit 2 on Service Rd, Reaver Ck						
	Q ₁₀₀ = 180 by: drainage area ratio flood freq. anal. regional regression eq.						
	Bridge discharge $(Q_2) = 1180$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)						
	(Should be 42) (Should be 41) amess there is a feller of tops, found overhow, or bridge overhopping)						
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method						
	Pridge Width - (4) A Flow and at bridge - A & Abut Skew - A & Fforting Skew - A						
'Buo	Width (W_2) iteration = $i \circ D$						
in Region	Width (W_2) iteration = $\underline{i_0}$ $\underline{0}$ Avg. flow depth at bridge, y_2 iteration = 3.7						
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Corrected channel width at bridge Section = W_2 times cos of flow angle = $Q_2/W_2 = Q_2/W_2 = \frac{19.7}{19.5}$ ft ² /s						
ion.	Bridge Vel, $V_2 = 5.3$ ft/s Final $y_2 = q_2/V_2 = 3.7$ ft $\Delta h = 0.6$ ft						
Reg	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 4.3$						
N Sign	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width $\sim L \sin(q) + a \cos(q)$						
PGR Reg	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,						
	Interstate median acts as smoothly transitioned appr						
	Water Surface Elev. = ft section. flow is already partially constricted from us						
	Low Steel Elev 10						
	$n \text{ (Channel)} = \underbrace{0.035}_{0.04243}$						
	$n \text{ (LOB)} = \underbrace{0.030}_{\text{n (ROB)}}$						
	Pier Width = 0 ft						
	Pier Length = O ft						
	# Piers for 100 yr = ft						
	CONTRACTION SCOUR						
	Width of main channel at approach section $W_1 = \underline{\omega}$ ft						
Iract	Width of left overbank flow at approach, $W_{lob} = 1$ ft Average left overbank flow depth, $y_{lob} = 1$ ft						
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = O$ ft Average right overbank flow depth, $y_{rob} = O$ ft						
Ë							
<u> </u>	Live Bed Contraction Scour (use if bed material is small cobbles or finer)						
	$x = $ From Figure 9 W_2 (effective) = QO ft $Y_{cs} = $ ft						
E≪	Clear Water Contraction Scour (use if bed material is larger than small cobbles)						
SSN	Estimated bed material $D_{50} = \underline{\qquad}$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = \underline{\qquad}$ ft/s						
PGRM: CWCSNEW	Critical approach velocity, $Vc = 11.17 \frac{1/6}{50} D_{50}^{1/3} = $ ft/s						
Ξ	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.						
FG.	$D_{e50} = 0.0006(q_2/y_1^{7/6})^3 =ft$ If $D_{50} >= D_{e50}$, $\chi = 0.0$						
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =$ ft						
<u>.</u> 5	PIER SCOUR CALCULATIONS						
PGRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 =						
Ř	Froude # at bridge =ft Pier scour y_{ps} =ft						
_							
E	ABUTMENT SCOUR CALCULATIONS						
utta	Average flow depth blocked by: left abutment, $y_{al.T} = 0$ ft right abutment, $y_{aRT} = 0$ ft						
Abı	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through						
PGRM: Abutment	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = $ and $\psi_{RT} = $						
2	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = $ Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = $ ft						

	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 41015040 Date Initials Region (6BCD)
	SiteLocation
	Q ₅₀₀ = 9810 by: drainage area ratio flood freq. anal regional regression eq
	Bridge discharge $(Q_2) = 9443$ (should be Q_{500} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
	Bridge Width = 60 ft. Flow angle at bridge = 0 ° Abut. Skew = 0 ° Effective Skew = 0 ° Width (W ₂) iteration = 60 ° 0
"RegionA", "RegionB", IC", or "RegionD"	Avg. flow depth at bridge, y_2 iteration = 11.5 Corrected channel width at bridge Section = W_2 times cos of flow angle = 1.5 ft
cgio	Corrected channel width at bridge Section = W_2 times cos of flow angle = U_2 ft* $Q_2 = Q_2/W_2 = 157.4$ ft²/s
gion. or "R	Bridge Vel, $V_2 = 13.7$ ft/s Final $y_2 = q_2/V_2 = 11.5$ ft $\Delta h = 3.9$ ft $\Delta $
۾ ۾ ٿ	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 15.4$ ft $y_1 = 12.56$ mostly constricted
PGRM: "Region	* NOTE: repeat above calculations until y 2 changes by less than 0.2 Effective pier width = L sin(q) + a cos(q) USC Zh =
8 5	If v - is above LS, then account for Road Overflow using PRGM: RDOVREGA_RDOVREGE_A+RDOVREGE_A+RDOVREGE
	Water Surface Elev. = ft Road overflow will begin at approx 11.5 ft ~ 9443c
	Low Steel Elev. = _ g, D ft
	$n \text{ (Channel)} = \frac{35}{100}$
	n (LOB) = .030
	$ \frac{\text{n (ROB)} = \frac{0.030}{\text{Pier Width}} = \frac{0.030}{\text{ft}} $ 5.3 $ 6.4 $
	Pier Length = 45 ft
	# Piers for $500 \text{ yr} = 20 \text{ ft}$
	CONTRACTION SCOUR 71.5
	•
EC	Width of main channel at approach section $W_1 = 60$ ft
Omtr	Width of left overbank flow at approach, $W_{lob} = \underline{UU}$ ft Average left overbank flow depth, $y_{lob} = \underline{4.85}$ ft
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = \underline{U} \underline{U}$ ft Average right overbank flow depth, $y_{rob} = \underline{I}, \underline{U}, \underline{T}$ ft
P.G.R.	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 3.52$ From Figure 9 W_2 (effective) = (OD) ft $y_{cs} = 4.1$ ft
Ε¥	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
PGRM: CWCSNEW	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{500}/(y_1W_1) = $ ft/s
გ	Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = $ ft/s
Ä	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
8	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ $Otherwise, \chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ $From Figure 10, y_{cs} = ft$
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft$
ين.	DIED CCOUR CAROUL ATRONG
<u>≥</u>	PIER SCOUR CALCULATIONS L/a ratio = Correction/factor for flow angle of attack (from Table 1), K2 =
PGRM: Pie	Froude # at bridge =ft Using pier winth a on Figure 11, \(\xi = \) Pier scour y _{ps} =ft
_	
Ħ	ABUTMENT SCOUR CALCULATIONS
uttme	Average flow depth blocked by: left abutment, $y_{aLT} = \frac{4.85}{1000}$ ft right abutment, $y_{aRT} = \frac{1.67}{1000}$ ft
: Ab	Shape coefficient K_1 = 1.00 for vertical-wall, (0.82) for vertical-wall with wingwalls, 0.55 for spill-through
PGRM: Abutment	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{14.8}{12.00}$ and $\psi_{RT} = \frac{19.9}{12.00}$
×	Left abutment scour, $y_{as} = \psi_{L1}(K_1/0.55) = 22$ ft Right abutment scour $y_{as} = \psi_{R1}(K_1/0.55) = 10$ ft

I-90									
Route Serv. Road Stream Craw Cre	ek	MRM	Dat	te	Init	ials			
Bridge Structure No. 41121 5 04 12 Loc	cation ()./a	W T-40 E		- Cerui	ce Rd				
GPS coordinates: N 44° 32,814'	taken from:	USL abutment		centerline o	f Î MRM e	nd			
GPS coordinates: N 44° 32.814' taken from: USL abutment centerline of fl MRM end Datum of coordinates: WGS84 NAD27									
Drainage area = 37.93 sq. mi.									
The average bottom of the main channel was 14.6 ft below top of guardrail at a point 30 ft from left abutment.									
Method used to determine flood flows: Freq. Anal. Udrainage area ratio regional regression equations.									
<u> </u>									
		OUS CONSIL	DERATION		0010				
Flows	Q ₁₀₀ =	1180		$Q_{500} =$	9810				
Estimated flow passing through bridge		1180		1443 367					
Estimated road overflow & overtopping	.	<u> </u>	L D 111	9.7					
Consideration	Yes	No	Possibly		No	Possibly			
Chance of overtopping Chance of Pressure flow	<u> </u>	<u> </u>		<u> </u>		<u> </u>			
Armored appearance to channel	 				V	 			
Lateral instability of channel			V						
Editor of monotory of order		<u> </u>			<u> </u>				
Riprap at abutments?YesNoMarginal									
Comments, Diagrams & orientation of digital photo	tos								
str. no		Labut.							
approach from bridge		_							
18 - L L									
LoB									
ROB									
Bridge from approach									
Summary of Results									
	Q100			Q500					
Bridge flow evaluated	1180		9443						
Flow depth at left abutment (yaLT), in feet	0			4,85					
Flow depth at right abutment (yaRT), in feet	D			1,67					
Contraction scour depth (ycs), in feet	0			4.1					

	Q100	Q500
Bridge flow evaluated	1180	9443
Flow depth at left abutment (yaLT), in feet		4,8-5
Flow depth at right abutment (yaRT), in feet	Ð	1,67
Contraction scour depth (ycs), in feet	0	4,1
Pier scour depth (yps), in feet	NA	NA
Left abutment scour depth (yas), in feet	0	22
Right abutment scour depth (yas), in feet	\mathcal{O}	10,3
l Flow angle of attack	00	D _o