	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 4109 3081 Date 9-18-12 Initials RFT Region (ABCD)
	Site Location In Spensfish on Grant St between Meier & 3rd St
	Q ₁₀₀ = 9.750 by: drainage area ratio . / flood freq. anal. regional regression eq.
	Bridge discharge $(Q_2) = 7859$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
PGRM: "RegionA", "I "RegionC", or "Region	estimated Qmax scor
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
	Bridge Width = 80 ft. Flow angle at bridge = 5 ° Abut. Skew = 0 ° Effective Skew = 5 °
	Width (W ₂) iteration = 80
	Avg. flow depth at bridge, y ₂ iteration = 8,9
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{79.1}{1}$ ft* $q_2 = Q_2/W_2 = \frac{98.6}{1}$ ft ² /s
	Bridge Vel, $V_2 = 11.1$ ft/s Final $y_2 = q_2/V_2 = 9.9$ ft $\Delta h = 2.5$ ft
	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 1/1.4$
	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$
	If y is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD, ymax scour = 89, flow overtops it bank above this
	Water Surface Elev. = D. A. Water Elev. = D. Water
	Low Steel Elev. = 7.6 ft 80 1 (23 <
	n (Channel) = 0040 045 Straight, that, rocky
	$n(LOB) = 0.095 wooded \qquad 2.9$
	$n (ROB) = \frac{045}{NA} \text{ grass + trees}$ Pier Width = $\frac{NA}{NA}$ ft
	Pier I ength = NA ft
	# Piers for 100 yr = 0 ft
	CONTRACTION SCOUR
PGRM; Contract	Width of main channel at approach section $W_1 = 94$ ft
	Width of left overbank flow at approach, $W_{lob} = 9D$ ft Average left overbank flow depth, $y_{lob} = 2.9$ ft
	Width of right overbank flow at approach, $W_{rob} = 60$ ft Average right overbank flow depth, $y_{rob} = 2.73$ ft
ij	
2	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 3.06$ From Figure 9 W_2 (effective) = 79.7 ft $y_{cs} = 4.3$ ft
PGRM: CWCSNEW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
Ç	Estimated bed material $D_{50} = 0.2$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 2.71$ ft/s
5	Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = 9.8$ ft/s
R.	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
2	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 1/5 \text{ ft}$ If $D_{50} >= D_{c50}$, $\chi = 0.0$
	Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =$ From Figure 10, $y_{cs} =$ ft
!-	
PGRM: Pier	PIER SCOUR CALCULATIONS
ÄΧ	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 = ft Froude # at bridge = ft
7	Froude # at bridge = it Pier scour y_{ps} = it
	ABUTMENT SCOUR CALCULATIONS
men	Average flow depth blocked by: left abutment, $y_{al.T} = 2.9$ ft right abutment, $y_{aRT} = 2.73$ ft
Abut	Shape coefficient K ₁ = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through
PGRM: Abutment	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 11.3$ and $\psi_{RT} = 11.1$
PG	Average flow depth blocked by: left abutment, $y_{aLT} = 2.9$ ft right abutment, $y_{aRT} = 2.73$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 11.3$ and $\psi_{RT} = 11.1$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 11.3$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 11.1$ ft

SCOUR ANALYSIS AND REPORTING FORM Bridge Structure No. 41093081 Date Initials Region (ABCD) Site _____ Location by: drainage area ratio ____ flood freq. anal. ____ regional regression eq. ____ $Q_{500} = _23900$ Bridge discharge $(Q_2) = 7859$ (should be Q_{500} unless there is a relief bridge, road overflow, or bridge overtopping) Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = _____ ft. Flow angle at bridge = _____ o Abut. Skew = ____ o Effective Skew = _____ o Width (W_2) iteration = _____ Avg. flow depth at bridge, y₂ iteration = ______ Corrected channel width at bridge Section = W_2 times cos of flow angle = R^* $q_2 = Q_2/W_2 = R^2/s$ Bridge Vel, $V_2 = _____ft/s$ Final $y_2 = q_2/V_2 = _____ft$ Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \underline{\hspace{1cm}}$ ft • NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$ If y 1 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD, Water Surface Elev. = O. I ft See Q100 cales Low Steel Elev. = 7 (ft n(ROB) =Pier Width = $\bigwedge A$ Pier Length = ____ # Piers for 500 yr = CONTRACTION SCOUR Width of main channel at approach section $W_1 = \underline{\hspace{1cm}}$ ft PGRM: Contract Width of left overbank flow at approach, $W_{lob} =$ _____ft Average left overbank flow depth, $y_{lob} =$ _____ft Width of right overbank flow at approach, $W_{rob} =$ _____ft Average right overbank flow depth, $y_{rob} =$ _____ft Live Bed Contraction Scour (use if bed material is small cobbles or finer) x = From Figure 9 W_2 (effective) = ft <u>Clear Water Contraction Scour</u> (use if bed material is larger than small cobbles) PGRM: CWCSNEW Estimated bed material $D_{50} =$ _____ ft Average approach velocity, $V_1 = Q_{500}/(y_1W_1) = _____ft/s$ Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = _____ft/s$ If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
$$\begin{split} D_{c50} &= 0.0006 (q_2/y_1^{7/6})^3 = \underline{\qquad} \text{ft} & \text{If } D_{50} >= D_{c50}, \ \chi = 0.0 \\ \text{Otherwise, } \chi &= 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad} & \text{From Figure 10, } y_{cs} = \underline{\qquad} \text{ft} \end{split}$$
PGRM: Pie PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), K2 =_______ft

Using pier width a on Figure 11, $\xi =$ _______ft Froude # at bridge = ABUTMENT SCOUR CALCULATIONS PGRM: Abutment Average flow depth blocked by: left abutment, $y_{aLT} = ____ft$ right abutment, $y_{aRT} = _____ft$ Shape coefficient K₁= 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} =$ and $\psi_{RT} =$

Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) =$ _____ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) =$ _____ft

							_		
Route Grant St Stream Spewfish C/4 MRM Date 9-18-12 Initials RFT									
Bridge Structure No. 4139 3081 Location in Spentish, on Grant St between Meies & 3rd GPS coordinates: N 44° 29.233' taken from: USL abutment centerline of fl MRM end Datum of coordinates: WGS84 NAD27									
GPS coordinates: N 44° 29.233'	taken from:	USL abutment	1/	centerline of	of II MRM e	nd			
w 103° 51.795'	Datum of co	ordinates: WO	GS84 .	NAD27					
Drainage area = 164,98 sq. mi.									
The average bottom of the main channel was 14.4 ft below top of guardrail at a point 32 ft from left abutment.									
Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.									
MISCELLANEOUS CONSIDERATIONS									
Estimated flow passing through bridge	Q ₁₀₀ = 9250 7859			$Q_{500} = 23900$					
Estimated road overflow & overtopping	1391			78.59					
Consideration	Yes	No No	Possibly	Yes	16041 No	Possibly			
Chance of overtopping	103	- 170	1 Ossibly	1 65	110	rossibly			
Chance of Pressure flow		<u> </u>		1/					
Armored appearance to channel					-				
Lateral instability of channel					1/				
Riprap at abutments? X Yes No Marginal									
Evidence of past Scour? Yes X No Don't know none dovice S									
Debris Potential?									
Debris Potential? High X Med Low many trees, but no piers to catch debris riprap has been placed at both abutments, upstream, under bridge, and downstream Does scour countermeasure(s) appear to have been designed?									
Primp has been placed at both abutments, upstream, underbridge, and downstream									
Does scour countermeasure(s) appear to have been designed?									
Riprap									
Spur DikeYesNoDon't knowNA									
Other armored 1t bank Yes No Don't know NA									
Bed Material Classification Based on Median Particle Size (D ₅₀)									
Material Silt/Clay Sand Sand		Gravel_X_		Cobbles_X		Boulders			
Material Silt/Clay Sand Gravel Cobbles Boulders Size range, in mm <0.062 0.062-2.00 2.00-64 64.250 >250 Tau flow channel bottom is gravel to cobbles, assume CWCS									
lau How ch	annel 1	oottom i	s grav	vel to a	عاطاطات	, assu	me CWCS		
Str. no. Str. no. approach from bridge LOB from bridge ROB from bridge bridge from near rt. abut amored rt. bank upstream Summary of Results									
approach from bridge									
it about, under bridge									
LOD From Diligi									
ROB from bridge									
haid as from near ct. about									
pringe from a setterm									
armored 17, bane	apsine	<i>α</i> .							
Summary of Results									
		Q100	Wmax Sc		Q500				
Bridge flow evaluated									
Flow depth at left abutment (yaLT), in feet		2.9							
Flow depth at right abutment (yaRT), in feet		2.7							
Contraction scour depth (ycs), in feet		4.3							
Pier scour depth (yps), in feet		NA			· A				
Left abutment scour depth (yas), in feet		11.3							
Right abutment scour depth (yas), in feet		<u> 11, 1</u>							
I Flow angle of attack			I						