	ok
SCOUR ANALYSIS AND REPORTING FORM	

	Bridge Structure No. 41163083 Date 9-18-12 Initials PFT Region (ABCD)
	Site Location $\frac{\mathcal{E}ast}{\mathcal{E}x}$ of $\frac{\mathcal{E}x}{\mathcal{E}x}$ 17 $Q_{100} = 3010$ by: drainage area ratio flood freq. anal regional regression eq
	Q ₁₀₀ =
	Bridge discharge $(Q_2) = 3010$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
	Bridge Width = 90 ft. Flow angle at bridge = 20 ° Abut. Skew = 0 ° Effective Skew = 20 °
onB"	The state of the s
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Width (W_2) iteration = 90 Avg. flow depth at bridge, y_2 iteration = 5 , 1
	Corrected channel width at bridge Section = W_2 times cos of flow angle = 84.57 ft* $q_2 = Q_2/W_2 = 35.4$ ft ² /s
	Bridge Vel, $V_2 = 7.0$ ft/s Final $y_2 = q_2/V_2 = 5.1$ ft $\Delta h = 1.0$ ft
"Reg C", c	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 6.1$ ft $y_1 > 3.2$ is about to about flow
RM: gion	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L\sin(q) + a\cos(q)$
PGI "Re	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,
	Water Surface Elev. = dfy ft
	Low Steel Elev. = $\frac{910}{100}$ ft $\frac{90}{200}$ ft $\frac{90}{200}$ ft $\frac{90}{200}$ ft $\frac{90}{200}$ ft $\frac{90}{200}$
	11(FOD) - 1013
	$n(ROB) = \frac{33}{1035}$
	Pier Width = 1.35 ft
	Pier Length = 1,35 ft
	# Piers for 100 yr = $\underline{\qquad}$ ft
	CONTRACTION SCOUR
act	Width of main channel at approach section $W_1 = 90$ ft
	Width of left overbank flow at approach, $W_{lob} = \frac{G_O}{f}$ ft Average left overbank flow depth, $y_{lob} = \frac{2 \cdot 2}{f}$ ft
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = 90$ ft Average right overbank flow depth, $y_{rob} = 2.3$ ft
Ä	Width of right overbank flow at approach, $W_{rob} = 10$ It Average right overbank flow depth, $Y_{rob} = 270$ It
PGR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 3.84$ From Figure 9 W_2 (effective) = 79.2 ft $y_{cs} = 4.5$ ft
EW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
SS	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s
PGRM: CWCSNEW	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$
KM.	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
PG.	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ If $D_{50} >= D_{c50}$, $\chi = 0.0$
	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ $Otherwise, \chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ $If D_{50} >= D_{c50}, \chi = 0.0$ $From Figure 10, y_{cs} = ft$
PGRM: Pier	PIER SCOUR CALCULATIONS
R.W.	L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 = $ Froude # at bridge = 5.5 Using pier width a on Figure 11, $\xi = $ Pier scour $y_{ps} = $ ft
PG	Froude # at bridge = 55 Using pier width a on Figure 11, $\xi = 6$ Pier scour $y_{ps} = 5.4$ ft
5/2	ABUTMENT SCOUR CALCULATIONS
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = \frac{2.2}{\text{ft}}$ right abutment, $y_{aRT} = \frac{2.3}{\text{ft}}$
Abut	Shape coefficient K ₁ = 1.00 for vertical-wall, (0.82 for vertical-wall with wingwalls, 0.55 for spill-through
X	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 9$, 0 and $\psi_{RT} = 9$, 4
Dd.	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 13.5$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 14$ ft

	SCOUR ANALYSIS AND REPORTING FORM							
	Bridge Structure No. 4163083 Date Initials Region (ABCD)							
	Bridge Structure No. 41163 083 Date Initials Region (ABCD) Site Location E of Exit 17							
	Q ₅₀₀ = 7860 by: drainage area ratio flood freq. anal. regional regression eq.							
	Bridge discharge $(Q_2) = 781_0 O$ (should be Q_{500} unless there is a relief bridge, road overflow, or bridge overtopping)							
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 11 \cdot D$ ft *NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$ If y_2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD, Water Surface Elev. = 400 ft In (Channel) = 000 ft In (Channel) = 000 ft In (ROB) = 000 ft							
	Pier Width = $\frac{1.35}{}$ ft							
	Pier Length = 1/35 ft							
	# Piers for 500 yr = $\frac{L}{L}$ ft							
	CONTRACTION SCOUR							
	Width of main channel at approach section $W_1 = 90$ ft							
tract	Width of left overbank flow at approach, $W_{lob} = 90$ ft Average left overbank flow depth, $y_{lob} = 6.2$ ft							
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = 90$ ft Average right overbank flow depth, $y_{rob} = 60$ ft							
GR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)							
-	$x = 12.8$ From Figure 9 W_2 (effective) = 79. Z ft $y_{cs} = 13.8$ ft							
	(chocare) 1772 in Ja 7555 in							
ĭ.	Clear Water Contraction Scour (use if bed material is larger than small cobbles)							
PGRM: CWCSNEW	Estimated bed material $D_{50} = $ ft/s							
CWC	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$							
.ï	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.							
PGI	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ If $D_{50} >= D_{c50}$, $\chi = 0.0$							
	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ $Otherwise, \chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ $From Figure 10, y_{cs} = ft$							
Pic	PIER SCOUR CALCULATIONS							
PGRM: Pic								
PGI	L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 =$							
=	ABUTMENT SCOUR CALCULATIONS							
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{al.T} = \frac{c}{c} \frac{2}{c}$ ft right abutment, $y_{aRT} = \frac{c}{c} \frac{2}{c}$ ft							
Abı	Shape coefficient K_1 = 1.00 for vertical-wall, Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{0.82 \text{ for vertical-wall with wingwalls,}}{17 \cdot 2}$ and $\psi_{RT} = \frac{17 \cdot 5}{17 \cdot 5}$							
RM	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 17.2$ and $\psi_{RT} = 17.5$							
PG	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 25.6$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 26.1$ ft							

Route I-90 Service Stream Polo CK	MRM	Date Initials		
Bridge Structure No. 41163083 Lo	eastion Cost - C Six	7		
CDS coordinates: A/ 1110 29 27 21	cation 2457 of CAT	· · · · · · · · · · · · · · · · · · ·		
GPS coordinates: N 44° 29.022' W 103° 43,470'	Datum of coordinates: WGS84	centerline of î MRM end NAD27		
Drainage area = 19.49 sq. mi.				
The average bottom of the main channel was 13	6. 6 ft below top of guardrail at a r	point 21. It from left abutment		
Method used to determine flood flows:Freq	Anal. drainage area ratio	regional regression equations		
	•		717	
Flows	$\frac{\text{SCELLANEOUS CONSIDERAT}}{ Q_{100} } = 3010$		713	
Estimated flow passing through bridge	3010	Q ₅₀₀ = 7860	2 64	
Estimated now passing through bridge Estimated road overflow & overtopping	3870	7860	10 50	
Consideration	Yes No Possib	du Vas Na Bassible	5 64 5 25 10 50 25 10' 50 15	
Chance of overtopping	res No Possic	oly Yes No Possibly	45 15	
Chance of Pressure flow			38 12	
Armored appearance to channel			10e 30	
Lateral instability of channel			500 77	
Euteral instability of chainer		, , , , , , , , , , , , , , , , , , ,		
Riprap at abutments? Yes	∑NoMarginal			
Evidence of past Scour? Yes	No Y Don't know 0055	ible abitment scaur in	doc louis	
Debris Potential? High	No	this site used to be flow-	JE . 6110	
Debris Potential?High	MedLow Did	This site used to be tlow-	through?	
Does scour countermeasure(s) appear to have been	designed?		2.50	
				
	esNoDon't know			
	esNoDon't know			
OtherY	esNoDon't know	NA		
	Classification Based on Median Par	ticle Size (D ₅₀)		
Material Silt/Clay Sand Sand	Gravel	Cobbles Boulders_		
Size range, in mm <0.062 0.062-2.	.00 2.00-64	64-250 >250		
Comments, Diagrams & orientation of digital phot	tos			
str. no.		1 1-01/20		
sound from bridge	lett abut	under bridge		
approach from bridge LOB from bridge ROB from bridge				
LOB from loringe				
ROB from bridge				
Bridge from approad	h			
Drage to all				
S				
Summary of Results	2102	7 2500	1	
	Q100	Q500		
Bridge flow evaluated	3010 2.2	7860	-	
Flow depth at left abutment (yaLT), in feet	2, 4	6.2	-	
Flow depth at right abutment (yaRT), in feet	2.3 4.5	13.0	1	
Contraction scour depth (ycs), in feet	5,4	13.8 5.4	1	
Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet	13,5	25.6	1	
Right abutment scour depth (yas), in feet	14.0	2/./	†	
1Flow angle of attack	206	200	1	
ar to it unifie of under	02.0	00	-	