	Bridge Structure No. 41165066 Date 4/11/12 Initials Ct. Region (ABCD)
	Site Location 2.5 m; 5 of 5t, Onge
	Q ₁₀₀ = by: drainage area ratio flood freq. anal regional regression eq.
	Bridge discharge $(Q_2) =$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	70
	Avg. flow depth at bridge, y ₂ iteration =
	Corrected channel width at bridge Section = W_2 times cos of flow angle =ft* $q_2 = Q_2/W_2 =ft^2/s$
	Bridge Vel, $V_2 = \underline{\hspace{1cm}} ft/s$ Final $y_2 = q_2/V_2 = \underline{\hspace{1cm}} ft$ $\Delta h = \underline{\hspace{1cm}} ft$
	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = g$ ft * NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$ If y_2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,
	Water Surface Elev. = $\frac{12.5}{100}$ ft Low Steel Elev. = $\frac{12.5}{100}$ ft n (Channel) = $\frac{12.5}{100}$ ft n (LOB) = $\frac{12.5}{100}$ n (ROB) = $\frac{12.5}{100}$ ft Pier Width = $\frac{12.5}{100}$ ft # Piers for $\frac{100}{100}$ yr = $\frac{12.5}{100}$ ft
	CONTRACTION SCOUR
RM: Contract	Width of main channel at approach section $W_1 = \underline{\hspace{1cm}}$ ft
	Width of left overbank flow at approach, $W_{lob} =ft$ Average left overbank flow depth, $y_{lob} =ft$
	Width of right overbank flow at approach, $W_{rob} =ft$ Average right overbank flow depth, $y_{rob} =ft$
5	<u>Live Bed Contraction Scour</u> (use if bed material is small cobbles or finer)
	$x =$ ft $y_{cs} =$ ft
GKM: CWCSNEW	
3	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$
X.	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
<u> </u>	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 =ft If D_{50} >= D_{c50}, \chi = 0.0$ Otherwise, $\chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft From Figure 10, y_{cs} =ft$
	Otherwise, $\chi = 0.122 y_1 [\dot{q}_2/(D_{50})^{1/3} y_1]^{1/6})]^{6/7} - y_1 =ft$
PUKM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1$. Using pier width a on Figure 11, $\xi = 1$. Pier scour $y_{ps} = 1$. ft
FORM: Abument	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = $ ft right abutment, $y_{aRT} = $ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = $ and $\psi_{RT} = $ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = $ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = $ ft

	Bridge Structure No. $\frac{41165066}{41165066}$ Date $\frac{411112}{41112}$ Initials $\frac{6}{4}$ Region (ABCD) Site
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 120 ft. Flow angle at bridge = 30 ° Abut. Skew = 30 ° Effective Skew = 30 ° Width (W ₂) iteration = 30 107 105 Avg. flow depth at bridge, y ₂ iteration = 30 2 4 3 5 Corrected channel width at bridge Section = W ₂ times cos of flow angle = 30 9 ft Average main channel depth at approach section, y ₁ = 30 4 4 6 4 6 7 ft Average main channel depth at approach section, y ₁ = 30 4 4 6 7 ft *NOTE: repeat above calculations until y ₂ changes by less than 0.2 Effective pier width = 30 10 7 ft *NOTE: repeat above calculations until y ₂ changes by less than 0.2 Effective pier width = 30 10 7 ft *NOTE: repeat above calculations until y ₂ changes by less than 0.2 Effective pier width = 30 10 7 ft *NOTE: repeat above calculations until y ₂ changes by less than 0.2 Effective pier width = 30 2 8 6 7 ft
	Water Surface Elev. = $\frac{12.5}{12.5}$ ft $\frac{12.5}{12.5}$
PGRM: Contract	CONTRACTION SCOUR Width of main channel at approach section $W_1 = \underline{150}$ ft Width of left overbank flow at approach, $W_{lob} = \underline{23}$ ft Width of right overbank flow at approach, $W_{rob} = \underline{120}$ ft Average left overbank flow depth, $y_{lob} = \underline{155}$ ft Average right overbank flow depth, $y_{rob} = \underline{555}$ ft
PGR	Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = $
M: CWC	Clear Water Contraction Scour (use if bed material is larger than small cobbles) Estimated bed material $D_{50} = 0$ ft Average approach velocity, $V_1 = Q_{500}/(y_1W_1) = 2$, 6 ft/s Critical approach velocity, $V_0 = 11.17y_1^{1/6}D_{50}^{1/3} = 9$, 73 ft/s If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above. $D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = 0.0006(q_2/y_1^{$
PGRM: Pie.	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = 1$ Using pier width a on Figure 11, $\xi = 3$, g Pier scour $y_{ps} = 3$, g ft
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 1.05$ ft right abutment, $y_{aRT} = 5.5$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 1.00$ ft Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 1.00$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 1.00$ ft

Route St. Onge By Stream False Box	Horn Ch	MRM	Da	te 4/11/	// 2 Ini	tials C5			
Bridge Structure No. 41165066 Lo	ocation 7	6 m'	< f	7	1000				
GPS coordinates: $\Lambda/44^{\circ} 3\Lambda/37/\Lambda^{\circ}$	taken from	LICI abutma	201	contarling of	COMPM				
GPS coordinates: 144° 30′32.00″ W103° 43′ 10.0″	Datum of c	oordinates: W	10001	NAD27	I TI IVIICIVI	end			
		oordinates. v	10304	NADZI_					
Drainage area = $\frac{29.05}{\text{sq. mi}}$ sq. mi				112					
The average bottom of the main channel was 16									
Method used to determine flood flows:Free	ı. Anal	_drainage area	ratio 1	regional reg	ression equ	ations.			
24	ICCELL AND	FOUR CONO	IDED LETTOR	10					
Flows	$Q_{100} =$	EOUS CONS	DERATIO	$Q_{500} =$	4310				
Estimated flow passing through bridge	Q 100			33/0					
Estimated road overflow & overtopping		4.			5110				
Consideration	Yes	No	Possibly	Yes	No	Possibly			
Chance of overtopping	100	1.0	1 000101)	100	Y	1 033101)			
Chance of Pressure flow					~				
Armored appearance to channel				7	Ŷ				
Lateral instability of channel					X				
Riprap at abutments? Yes	No	X Marginal		1 2 2	1.111				
12	No	Don't know	Channe	1 15 0	a little	incised			
Debris Potential?HighX_MedLow									
Decreased and the second of th									
Does scour countermeasure(s) appear to have bee			4.74						
	RiprapNoNANA								
Spur DikeY	res1	NoDo	n't know	X NA					
Other	/es1	NoDo	n't know	X_NA					
Bed Materia	l Classification	on Based on M	ledian Particl	e Size (D ₅₀)					
Material Silt/Clay Sand		Gravel		Cobbles		Boulders			
	14	2.00-64		64-250		>250			
0.002		2.00 04		01-230		- 250			
Comments, Diagrams & orientation of digital pho-	ntos								
1/2 - 11	7103								
J n Att		03 1 - Y	4						
2 75.3 2199-10 5 274 200-45 01-45 RB 25 1200 02-45 LB 50 2050 03-45 Face 100 3260 04-4 App XS	05-	KD APP V							
561 200-45 10 561 01-45 RB	06-	RB App X L. Abut							
10 561 01-45 RB	07-	R. Abut							
25 1200 OZ - USLB	08-								
50 2050 03-US Face	0 8	11013							
600 8310 04 - L. App XS									
Summary of Results									
	T	Q100			Q500				
Bridge flow evaluated		Q100		0					
Flow depth at left abutment (yaLT), in feet				8310					
Flow depth at right abutment (yaRT), in feet				1.15					
Contraction scour depth (ycs), in feet				7	0.0				
Pier scour depth (yps), in feet					6.6				
Left abutment scour depth (yas), in feet				4,	9				
Right abutment scour depth (yas), in feet				15.	9				
1Flow angle of attack				30	00				