| egionA", "RegionB", |                             |                        |
|---------------------|-----------------------------|------------------------|
| PGRM: "R            | PGRM: "RegionA", "RegionB", | "Region?" or "RegionD" |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCOUR ANALYSIS AND REPORTING FORM                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bridge Structure No. 47020156 Date 10-16-12 Initials Region (ABCD)                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site Location 4.7 mi 5 Lennox on 466 Ave                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q <sub>100</sub> = 5600 by: drainage area ratio flood freq. anal. regional regression eq.                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bridge discharge $(Q_2) = 5600$ (should be $Q_{100}$ unless there is a relief bridge, road overflow, or bridge overtopping)                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Β,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bridge Width = $92$ ft. Flow angle at bridge = $18$ ° Abut. Skew = $0$ ° Effective Skew = $18$ °                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| gion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Width (W <sub>2</sub> ) iteration = $92$<br>Avg. flow depth at bridge, y <sub>2</sub> iteration = $11$ , $3$                                                                                                                                                                                       |  |  |  |  |  |  |  |
| PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Corrected channel width at bridge Section = $W_2$ times cos of flow angle = $87.5$ ft* $q_2 = Q_2/W_2 = \frac{\sqrt{4.0} \text{ ft}^2}{\text{s}}$                                                                                                                                                  |  |  |  |  |  |  |  |
| "Reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bridge Vel, $V_2 = 5.7$ ft/s Final $y_2 = q_2/V_2 = 11.3$ ft $\Delta h = 0.7$ ft                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Segical Control of the control of th |                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| M: T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 11.9$ ft  * NOTE: repeat above calculations until $y_2$ changes by less than 0.2  Effective pier width = L sin(q) + a cos(q)                                                                                               |  |  |  |  |  |  |  |
| YGR.<br>Regi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | If $y_2$ is above LS, then account for Road Overflow using PRGM: RDOVREGA. RDOVREGB, RDOVREGC, or RDOVREGD.                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | المالية                                                                                                                                                                                    |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Surface Elev. = $\frac{100 \text{ fb}}{100 \text{ ft}}$ Low Steel Elev. = $\frac{14.00}{0.000}$ ft  n (Channel) = $\frac{10.000}{0.0000}$ ft  n (LOB) = $\frac{10.000}{0.0000}$ Short                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Low Steel Elev. = 14.0 ft                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n (Channel) =                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $n(ROB) = \frac{1027}{1000}$                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pier Width = $1/\sqrt{1}$ ft                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pier Length = $1/67$ ft                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Piers for 100 yr = $3$ ft                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTRACTION SCOUR                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Width of main channel at approach section $W_1 = \frac{G}{2} = \frac{1}{2}$                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Width of left overbank flow at approach, $W_{lob} = 92$ ft  Average left overbank flow depth, $y_{lob} = 4.2$ ft                                                                                                                                                                                   |  |  |  |  |  |  |  |
| ontri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| PGRM: Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Width of right overbank flow at approach, $W_{rob} = 92$ ft Average right overbank flow depth, $y_{rob} = 6$ ft                                                                                                                                                                                    |  |  |  |  |  |  |  |
| ZGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Live Bed Contraction Scour (use if bed material is small cobbles or finer)                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x = 9.22$ From Figure 9 $W_2$ (effective) = 82.5 ft $y_{cs} = 10.1$ ft                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| ΙΕW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clear Water Contraction Scour (use if bed material is larger than small cobbles)                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| <u>&amp;</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| PGRM: CWCSNEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.<br>$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = \frac{1}{10000000000000000000000000000000000$                                                                                          |  |  |  |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $D_{c50} = 0.0006(q_2/y_1^{10})^3 = \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Otherwise, $\chi = 0.122y_1[q_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 =ft$                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| <b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| <del>.</del><br><u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PIER SCOUR CALCULATIONS  Lorentia = 1                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| PGRM: Pier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 =$ Froude # at bridge = O So Using pier width a on Figure 11, $\xi =$ Pier scour $y_{ps} =$ ft                                                                                                                          |  |  |  |  |  |  |  |
| <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trouble # at bridge = Csing pier width a on righte rr, g = rier scout y <sub>ps</sub> = tr                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ABUTMENT SCOUR CALCULATIONS                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| PGRM: Abutment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average flow depth blocked by: left abutment, $y_{al.T} = 4.2$ ft right abutment, $y_{aRT} = 6.4$ ft  Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls,  Using values for $y_{al.T}$ and $y_{aRT}$ on figure 12, $\psi_{l.T} = 13.6$ and $\psi_{RT} = 17.5$ |  |  |  |  |  |  |  |
| : Ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shape coefficient K <sub>1</sub> = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through                                                                                                                                                                           |  |  |  |  |  |  |  |
| iRM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Using values for $y_{aLT}$ and $y_{aRT}$ on figure 12, $\psi_{LT} = 13.6$ and $\psi_{RT} = 17.5$                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 13.6$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 17.5$ ft                                                                                                                                                                        |  |  |  |  |  |  |  |

Left abutment scour,  $y_{as} = \psi_{LT}(K_1/0.55) = 20.2$  ft Right abutment scour  $y_{as} = \psi_{RT}(K_1/0.55) = 22.0$  ft

| 7 |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

| Route 466 Avc Stream Long Creek MRM Date Initials  Bridge Structure No. 42020156 Location 4.7 m. 5 Lenox on 466 Avc  GPS coordinates: V43° 16.599' taken from: USL abutment centerline of \(\hat{1}\) MRM end  Datum of coordinates: WGS84 NAD27 |                    |          |          |                    |       |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|----------|--------------------|-------|----------|--|
| Drainage area = 75.39 sq. mi.                                                                                                                                                                                                                    |                    |          |          |                    |       |          |  |
| The average bottom of the main channel wasft below top of guardrail at a pointft from left abutment.  Method used to determine flood flows:freq. Analdrainage area ratioregional regression equations.  MISCELLANEOUS CONSIDERATIONS             |                    |          |          |                    |       |          |  |
| Flows                                                                                                                                                                                                                                            | Q <sub>100</sub> = | 5600     |          | Q <sub>500</sub> = | 10100 |          |  |
| Estimated flow passing through bridge 5600 ? 1010 0                                                                                                                                                                                              |                    |          |          |                    |       |          |  |
| Estimated road overflow & overtopping                                                                                                                                                                                                            |                    |          |          |                    | 70    |          |  |
| Consideration                                                                                                                                                                                                                                    | Yes                | No       | Possibly | Yes                | No    | Possibly |  |
| Chance of overtopping                                                                                                                                                                                                                            |                    | <b>V</b> |          |                    |       |          |  |
| Chance of Pressure flow                                                                                                                                                                                                                          |                    |          |          |                    |       |          |  |

| Lateral instability of channel |       |       |            |              | l V         |          | ]            |
|--------------------------------|-------|-------|------------|--------------|-------------|----------|--------------|
| Riprap at abutments?           | Yes _ | No    | Marginal   |              |             | 112 - 4  | small umwat  |
| Evidence of past Scour?        | Yes   | No    | Don't know | possibly son | ne contract | fiun, or | small amount |
| Debris Potential?              | High  | Med 3 | Low        | of piersuo   | owat cent   | er pier  |              |

Does scour countermeasure(s) appear to have been designed?

Armored appearance to channel

| Riprap    | _ | ✓ Yes | No | Don't know | NA |
|-----------|---|-------|----|------------|----|
| Spur Dike | _ | Yes   | No | Don't know | NA |
| Other     | _ | Yes   | No | Don't know | NA |

## Bed Material Classification Based on Median Particle Size (D<sub>50</sub>)

| Material          | Silt/Clay_X_ | Sand       | Gravel  | Cobbles | Boulders |
|-------------------|--------------|------------|---------|---------|----------|
| Size range, in mm | < 0.062      | 0.062-2.00 | 2.00-64 | 64-250  | >250     |

Comments, Diagrams & orientation of digital photos
Str. no. on bridge
approach from bridge
LOB from ditch ROB from ditch bridge from upstream

left abut. rt. abut. old pier scour hole

Summary of Results

|                                              | Q100  | Q500  |
|----------------------------------------------|-------|-------|
| Bridge flow evaluated                        | 5600  | 10100 |
| Flow depth at left abutment (yaLT), in feet  | 4,2   | 8,6   |
| Flow depth at right abutment (yaRT), in feet | le 14 | 10.8  |
| Contraction scour depth (ycs), in feet       | 10.1  | 17.2  |
| Pier scour depth (yps), in feet              | 5.8   | 5.9   |
| Left abutment scour depth (yas), in feet     | 13.6  | 20.2  |
| Right abutment scour depth (yas), in feet    | 17,5  | 22,0  |
| 1Flow angle of attack                        | 18°   | 18°   |