OK	KI
0,-	

	SCOUR ANALYSIS AND REPORTING FORM						
	Bridge Structure No. 42170155 Date 10-13-4410 Initials Region (ABCD)						
	Site Location 1.6 S Canton						
	$Q_{100} = 5310$ by: drainage area ratio flood freq. anal. regional regression eq						
	Bridge discharge $(Q_2) = \frac{53}{0}$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)						
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method						
	Bridge Width = 127 ft. Flow angle at bridge = 28 ° Abut. Skew = 0 ° Effective Skew = 28 °						
onB	Width (W_a) iteration = $\sqrt{2}$						
GRM: "RegionA", "RegionB" RegionC", or "RegionD"	Avg. flow depth at bridge, y_2 iteration = $\frac{9}{7}$						
gionA", "Reg or "RegionD"	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{1/2}{17}$ ft* $q_2 = Q_2/W_2 = \frac{47}{17}$ ft ² /s						
gion/ or "R	Bridge Vel, $V_2 = \underbrace{\frac{1}{2}}_{0} ft/s$ Final $y_2 = q_2/V_2 = \underbrace{\frac{9}{2}}_{0} ft$ $\Delta h = \underbrace{\frac{9}{2}}_{0} ft$ Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \underbrace{\frac{9}{2}}_{0} ft$						
"Reg C", 0							
GRM: "Re RegionC",	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$						
PGF "Re	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,						
	O(1)						
	Water Surface Elev. = 1 ft Kod						
	Low Steel Elev. = $\frac{10.0}{0.05}$ ft $\frac{0.9}{2}$ ft $\frac{0.9}{2}$ ft $\frac{0.9}{2}$						
	n(LOB) = 0.03						
	Water Surface Elev. = $\frac{0}{10.8}$ ft Road Low Steel Elev. = $\frac{10.8}{0.05}$ ft 0.5 Field 0.2 Field 0.2 Thick n (Channel) = $\frac{0.05}{0.03}$ n (ROB) = $\frac{0.03}{0.045}$						
	Pier Width = ft						
	Pier Length = $\frac{1}{4}$ ft ft $\frac{130}{12}$ $\frac{1214}{120}$						
	# Piers for 100 yr = $\frac{1}{2}$ ft						
	CONTRACTION SCOUR						
	CONTRACTION SCOUR						
PGRM: Contract	Width of main channel at approach section $W_1 = \frac{12}{150}$ ft Width of left overbank flow at approach, $W_{lob} = \frac{12}{150}$ ft Average left overbank flow depth, $y_{lob} = \frac{3}{150}$ ft						
	Width of left overbank flow at approach, $W_{lob} = 30$ ft Average left overbank flow depth, $y_{lob} = 6$ ft						
.C	Width of right overbank flow at approach, $W_{rob} = 100$ ft Average right overbank flow depth, $y_{rob} = 100$ ft						
GRN	I' DIC						
P(Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = 2 2 2 \text{ From Figure 9} \qquad W_2 \text{ (effective)} = 2 2 2 \text{ ft}$						
	$x = 2$ From Figure 9 W_2 (effective) = 2 1 1 t $Y_{cs} = 2$ t						
>	Clear Water Contraction Scour (use if bed material is larger than small cobbles)						
NE.							
NCS	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s Critical approach velocity, $V_0 = 11.52y_1^{1/6}D_{50}^{1/3} = $ ft/s						
.C	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.						
PGRM: CWCSNEW							
D($\begin{aligned} &D_{c50} = 0.0006 (q_2/y_1^{7/6})^3 = \underline{\qquad} & \text{ft} & \text{If } D_{50} > = D_{c50}, \chi = 0.0 \\ &\text{Otherwise, } \chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad} & \text{From Figure 10, } y_{cs} = \underline{\qquad} & \text{ft} \end{aligned}$						
	Otherwise, $\chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 =ft$						
i.	DUED GOOD OUT OUT ATTACKS						
PGRM: Pier	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1) K2 =						
GRN	Froude # at bridge = \bigcirc						
P	Produce # at bridge - String piet width a on Figure 11, ζ - Fiet scout y_{ps} - 878 it						
=	ABUTMENT SCOUR CALCULATIONS						
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{al.T} = 0.319$ ft right abutment, $y_{aRT} = 1.9$ ft						
Abu	Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = and ψ_{RT} = 6.5 for spill-through Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \frac{1}{2}$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = \frac{1}{2}$ ft						
.W							
PGI							

Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 6$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 1$ ft

Route 481 Ave Stream Beaver C	reek	MRM	Dat	e	Init	ials		
Bridge Structure No. 42170155 Location 1.6 S Canton GPS coordinates: M49 16, 752 taken from: USL abutment centerline of î MRM end								
	W 96° 35, 267′ Datum of coordinates: WGS84 NAD27							
Drainage area = 126.96 sq. mi	i			,1,1				
The average bottom of the main channel was	1 ft belov	v top of guard	rail at a poin	t 44	ft from lef	t abutment.		
Method used to determine flood flows: Free	q. Anal.	drainage area	ratio 1	regional reg	ression equ	ations.		
					•			
Flows	$\frac{\textbf{ISCELLANE}}{Q_{100}} =$	5310	DERATION	$Q_{500} =$	8330			
Estimated flow passing through bridge	₹100	5310		8571				
Estimated road overflow & overtopping		7718			1759			
Consideration	Yes	No	Possibly	Yes	No	Possibly		
Chance of overtopping			X	\times	1.0	1 000.01)		
Chance of Pressure flow			X	×				
Armored appearance to channel		×			×			
Lateral instability of channel		X			X			
Evidence of past Scour? Debris Potential? Does scour countermeasure(s) appear to have bee Riprap Spur Dike Other Bed Materia	Med	Don't knowLowDoi toDoi toDoi toDoi to Based on Me	n't know _ n't know _ n't know _ n't know _	NA NA NA)	Boulders_		
Size range, in mm < 0.062 0.062-2	2.00	2.00-64		64-250		>250		
Comments, Diagrams & orientation of digital pholograms 1 - Bridge Deck 2 - UPSI ream 3 - Down 5 + team 4 - Left Overbork 5 - Right Overbank 6 - Left Abut ment 7 - Right Abut ment 8 - Pict 9	otos							
Summary of Results								
		Q100			Q500			
Bridge flow evaluated		5310			6571			
Flow depth at left abutment (yaLT), in feet		0.315			1.55			
Flow depth at right abutment (yaRT), in feet		1.5			2.7			
Contraction scour depth (ycs), in feet		2.8			3.6			
Pier scour depth (yps), in feet		6.6			6,6			
Left abutment scour depth (vas) in feet		15			64			

See Comments/Diagram for justification where required

Right abutment scour depth (yas), in feet 1Flow angle of attack