	SCOUR ANALYSIS AND REPORTING FORM							
	Bridge Structure No. 44006170 Date 62912 Initials Region (ABCD)							
	Site Location m; F of Emen & on 281 St Q ₁₀₀ = Q ₁₀₀ 1490 by: drainage area ratio flood freq. anal. regional regression eq. ×							
	Q ₁₀₀ = Q ₁₀₀ by: drainage area ratio flood freq. anal. regional regression eq. ×							
	Bridge discharge $(Q_2) = \underline{\qquad}$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)							
	Application Department of Fedination Hedgestin Variables No. ded to Assets Method							
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 6 f. ft. Flow angle at bridge = 50 ° Abut. Skew = 6 ° Effective Skew = 50 °							
or "RegionD"	Width (W_2) iteration = Avg. flow depth at bridge, y_2 iteration =							
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{44.35}{1.35}$ ft* $q_2 = Q_2/W_2 = \frac{33.6}{1.35}$ ft*							
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{94.35}{1.5}$ ft* $q_2 = Q_2/W_2 = \frac{33.6}{1.5}$ ft's Bridge Vel, $V_2 = \frac{4.1}{1.5}$ ft/s Final $y_2 = q_2/V_2 = \frac{6.2}{1.5}$ ft $\Delta h = \frac{6.3}{1.5}$ ft							
-	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \frac{8}{5}$ ft							
egionC"	* NOTE: repeat above calculations until y $_2$ changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$							
"K	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,							
	Water Surface Elev. = 1, 9 ft							
	Low Steel Elev. = $\frac{11}{11}$ ft $\frac{2.0}{1.3}$ n (Channel) = $\frac{6.040}{1.3}$							
	$n \text{ (Channel)} = G_{2}G_{3}G_{3}G_{3}$							
	n (LOB) = 0.035 $n (ROB) = 0.035$							
	Pier Width = 1.35 ft							
	Pier Length = 1.35 ft							
	# Piers for 100 yr = 2 ft							
	CONTRACTION SCOUR							
	CONTRACTION SCOUR Width of main channel at approach section W = 95 ft							
	Width of main channel at approach section $W_1 = 95$ ft $3.6 3.2$ Width of left overbank flow at approach, $W_{lob} = 69$ ft Average left overbank flow depth, $y_{lob} = 3.6$							
	Width of right overbank flow at approach, $W_{rob} = 16$ ft Average right overbank flow depth, $y_{rob} = 27$ $5, 4 - 0$							
	Live Bed Contraction Scour (use if bed material is small cobbles or finer)							
	$x = 15.29$ From Figure 9 W_2 (effective) = 9.7 ft $y_{cs} = 15.7$ ft							
	Clear Water Contraction Scour (use if bed material is larger than small cobbles)							
	Estimated bed material D_{50} 1 Average approach velocity, $V_1 = Q_{100}/(y_1 W_1) = 108$							
	Estimated bed material $D_{50} = 1.17y_1^{1/6}D_{50}$ Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = 1.17y_1^{1/6}D_{50}^{1/3} = 1.17y_$							
	$D_{xy} = 0.0006(a_x/v^{-7/6})^3 = 0.2 \text{ ft, association below, otherwise as three bed scott equation above.}$							
	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ $Otherwise, \chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ $If D_{50} >= D_{c50}, \chi = 0.0$ From Figure 10, $y_{cs} = ft$							
	Otherwise, $\chi = 0.122 y_1[q_2/(D_{50} y_1)] = y_1 = $							
	PIER SCOUR CALCULATIONS							
	L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 =$ Froude # at bridge = 0.25 Using pier width a on Figure 11, $\xi = 6$ Pier scour $y_{ps} = 4.8$ ft							
	Froude # at bridge = 0.25 Using pier width a on Figure 11, $\xi = 6$ Pier scour $y_{ps} = 4.8$ ft							
	ABUTMENT SCOUR CALCULATIONS							
	About MENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 3.6$ ft right abutment, $y_{aRT} = 2.7$ ft							
	Shape coefficient K ₁ = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through							
	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 12.6$ and $\psi_{RT} = 15$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 22.6$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 20.0$ ft							
	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 22.8 \text{ ft}$ Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 20.0 \text{ ft}$							

PGRM: "RegionA", "RegionB",

PGRM: Contract

PGRM: CWCSNEW

PGRM: Abutment PGRM: Pier

hbs209 Eh

31556

1956, 25, 42,9841 47899, 42,9891

Route 251 Stream Wolf CK		MRM	Da	te 6/29/1	Z. Ini	tials Ont				
Route 28/57 Stream Wolf CK MRM Date 6/29/12. Initials Day Bridge Structure No. 44006/70 Location 1 m; Fot Emery on 28/54										
GPS coordinates: N 43° 360' 2.3" taken from: USL abutment centerline of \(\hat{1}\) MRM end										
W 97° 35" 43,1"	Datum of co	ordinates: W	GS84	NAD27						
Drainage area = \[\frac{71.71}{\tau_1} \] sq. mi.		ordinates. W	00012	. Tuiber						
		y top of guard	rail at a noin	57	ft from le	ft abutment				
The average bottom of the main channel was 14.7 ft below top of guardrail at a point 52 ft from left abutment. Method used to determine flood flows:Freq. Analdrainage area ratio regional regression equations.										
remod about to determine flood flows1req		_dramage area	Tatio A	regional reg	ression equ	iations.				
MI	SCELLANI	OUS CONSI	DERATIO	NS -			6	15		
Flows	Q1001= Q10 149C			Q500 = 1 Q7. 3070			2	1173		
Estimated flow passing through bridge	1490			2749			5	725		
Estimated road overflow & overtopping	O			321			10	1490		
Consideration	Yes	No	Possibly	Yes	No	Possibly	3135355	3076		
Chance of overtopping		X		×			25	1000		
Chance of Pressure flow		\times		X			50	479		
Armored appearance to channel		×			X		100	7060		
Lateral instability of channel		×			\rightarrow	2	500	1490		
				rate de le	It abut	ment		1		
Riprap at abutments? YesYes	No	Marginal S	some or c	1015100	1 de	wind to	be a			
Riprap at abutments? Yes No X Marginal Some or outside left atubient Evidence of past Scour? Yes No Don't know I believe the abutments would to be a Debris Potential? High Med V Low Spill way, lots of contraction of abutment										
Debris Potential? High	Med	/ Low	501	Il way,	lots of	contractor	e of a	butuer		
5				50	eur.					
Does scour countermeasure(s) appear to have been	designed?									
Riprap Yes No Don't know NA										
Spur Dike Yes No Don't know NA										
	. /		September 1997							
OtherY	es XN	10Do	n't know	NA						
Red Material	Classification	n Danad on M	adian Dantial	- C: (D)						
Bed Material Classification Based on Median Particle Size (D ₅₀)										
Material Silt/Clay X Sand_		Gravel		Cobbles		Boulders				
Size range, in mm <0.062 0.062-2.	00	2.00-64		64-250		>250				
Comments, Diagrams & orientation of digital photos										
1). Left ors										
1). left of 1). main channel 3). right of 11). main channel 4). right abutment erosion 5). ple r 6-8). right abutment 9). left abutment										
5). Fight 013										
4), light abutment exosion										
S) pier										
6-8).15W alutary										
9) left abutment										
Summary of Results										
		Q100°	3		Q500	Gas				
Bridge flow evaluated	flow evaluated $\frac{Q100^{\circ} Q_{1G}}{1790}$ $\frac{Q500^{\circ}}{2}$									
Flow depth at left abutment (yaLT), in feet		3.6			6.9	1 (
Flow depth at right abutment (yaRT), in feet		2.7			4.2					
Contraction scour depth (ycs), in feet		15,1			21,1					
Pier scour depth (yps), in feet										

22,8 20 50

50

See Comments/Diagram for justification where required

Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 1Flow angle of attack