	SCOUR ANALYSIS AND REPORTING FORM Bridge Structure No. 44010135 Date $10/9/11$ Initials $10/9/11$ Region (A BCD) Site Location $10/9/11$ Region (A BCD) Site Location $10/9/11$ Initials $10/9/11$ Region (A BCD) Site Location $10/9/11$ Region (A BCD)								
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 173 ft. Flow angle at bridge = 18 ° Abut. Skew = 0 ° Effective Skew = 18 ° Width (W ₂) iteration = 173 160 165 Avg. flow depth at bridge, y ₂ iteration = 9.3 9.7 9.6 Corrected channel width at bridge Section = W ₂ times cos of flow angle = 186								
	Water Surface Elev. = $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	173							
PGRM: Contract	CONTRACTION SCOUR Width of main channel at approach section $W_1 = \boxed{7.5}$ ft Width of left overbank flow at approach, $W_{lob} = \boxed{7.3}$ ft Average left overbank flow depth, $y_{lob} = \boxed{5.1}$ ft Width of right overbank flow at approach, $W_{rob} = \boxed{7.3}$ ft Average right overbank flow depth, $y_{rob} = \boxed{7.8}$ ft Live Bed Contraction Scour (use if bed material is small cobbles or finer) $x = \boxed{16.64}$ From Figure 9 w_2 (effective) = $\boxed{149.7}$ ft $y_{cs} = \boxed{15.9}$ ft								
PGRM: CWCSNEW									
PGRM: Pier	Froude # at bridge = 0.27 PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), K2 = 1.0 Using pier width a on Figure 11, $\xi = 7.4$ Pier scour $y_{ps} = 6.7$	<u>/</u> ft							
GRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 5.1$ ft right abutment, $y_{aRT} = 7.8$ ft Shape coefficient K_1 = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 15.2$ and $\psi_{RT} = 19.6$ Left abutment scour, $y_{aLT} = y_{aLT}(K_1/0.55) = 15.2$ ft Right abutment scour $y_{aLT} = y_{aLT}(K_1/0.55) = 1.9$ ft Right abutment scour $y_{aLT} = y_{aLT}(K_1/0.55) = 1.9$ ft								

Route 43 Ary Stream Wolf Ck MRM Date 10/9/11 Initials GPS coordinates: \(\frac{44.5}{3.5} \) \(\frac{44.5}{5.5} \) \(\frac{1}{5.5} \) \(\fra	Route 431 Aver Stream Wolf C	k	MRM	Da	te 10/9	/// Init	tials (
Drainage area = 179,87 sq. mi. Drainage area = 179,87 sq. mi. The average bottom of the main channel was 17. 4 ft below top of guardrail at a point 6 sq. ft from left abutment. Method used to determine flood flows: Freq. Anal. drainage area ratio regional regression equations. MISCELLANEOUS CONSIDERATIONS Flows MISCELLANEOUS CONSIDERATIONS Flows MISCELLANEOUS CONSIDERATIONS Flows Statimated flow passing through bridge Estimated flow passing through bridge Estimated road overflow & overtopping Consideration Yes No Possibly Yes No Possibly Yes No Possibly Chance of overtopping Yes No Possibly Yes Yes No Possibly Yes Yes No Possibly Yes Yes No Possibly Yes	Dil Control 1410/01/26									
Drainage area =	GPS coordinates: $\sqrt{43^{\circ}34'53}$, $2''$ taken from: USL abutment centerline of MRM end									
The average bottom of the main channel was \$\frac{17.9}{\text{ ft below top of guardrail at a point } \frac{1}{\text{ Anal. drainage area ratio}} \frac{1}{\text{ regional regression equations.}} \frac{\text{ High determine flood flows: Freq. Anal. drainage area ratio}}{\text{ Freq. Anal. drainage area ratio}} \frac{1}{\text{ regional regression equations.}} \frac{\text{ MISCELLANEOUS CONSIDERATIONS}}{\text{ Qsoo} = \frac{1}{\text{ 2.00}} \text{ Qsoo} = \frac{1}{\text{ 2.00}} \text{ Qsoo} = \frac{1}{\text{ 2.00}} \text{ Plus 4} \text{ Estimated flow passing through bridge}} \frac{\text{ Qsoo}}{\text{ 19/19.4}} \text{ Plus 4} \text{ Estimated flow passing through bridge}} \frac{\text{ Qsoo}}{\text{ Ves}} \frac{\text{ No Possibly Ves No Possibly Ves No Possibly Ves No Possibly Chance of overtopping}} \frac{\text{ Consideration}}{\text{ Name of overtopping}} \text{ Ves No Possibly Ves No Possibl	Datum of coordinates: WGS84 NAD27									
MISCELLANEOUS CONSIDERATIONS Flow										
Flows	The average bottom of the main channel was 17. 4 ft below top of guardrail at a point 62 ft from left abutment.									
Flows	Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.									
Flows	MISCELL ANEQUS CONSIDER ATIONS									
Estimated flow passing through bridge Estimated flow passing through bridge Consideration Yes No Possibly Armored appearance to channel Lateral instability of channel Riprap at abutments? Evidence of past Scour? Yes No Debris Potential? High Med Low Does scour countermeasure(s) appear to have been designed? Riprap Yes No Don't know NA Spur Dike Yes No Don't know NA Spur Dike Yes No Don't know NA Size range, in mm O.062 O.062-2.00 Comments, Diagrams & orientation of digital photos Iol/M/II Photos 73- R. Abh Tay 174 \$\overline{\text{Cob} \text{7-10}}{\text{33} \text{30}} Yes Summary of Results Summary of Results Plow depth at left abutment (yal.T), in feet Flow depth at right abutment (yal.T), in feet Flow depth (yss), in feet				DEKATIO		1520	0			
Estimated road overflow & overtopping Consideration Ves No Possibly Consideration Ves No Possibly Chance of Pressure flow Ammored appearance to channel Lateral instability of channel Riprap at abutments? Evidence of past Scour? Ves No Marginal Don't know Low Marginal Don't know NA Spur Dike Yes No Don't know NA Spur Dike Yes No Don't know NA Other Yes No Don't know NA Bed Material Classification Based on Median Particle Size (D ₃₀) Material Size range, in mm <0.062 0.062-2.00 2.00-64 64-250 >250 Comments, Diagrams & orientation of digital photos 10/4/11 Photos 1737 174 2017-10 1739 174 2017-10 1730 174 2017-10 1750 1720 71- US Face 100 16200 1720 174 177 177 177 177 177 177 177 177 177										
Consideration Yes No Possibly Yes No Possibly Chance of overtopping Chance of Overtopping Chance of Pressure flow X X X X X X X X X X X X X X X X X X X		_	1200							
Chance of Pressure flow		Yes	No	Possibly	Yes		Possibly			
Armored appearance to channel Lateral instability of channel Riprap at abutments? Evidence of past Scour? Yes No Don't know Evidence of past Scour? Debris Potential? Does scour countermeasure(s) appear to have been designed? Riprap Spur Dike Yes No Don't know NA Spur Dike Yes No Don't know NA Other Silt/Clay Sand Gravel Cobbles Boulders Size range, in mm <0.062 0.062-2.00 Comments, Diagrams & orientation of digital photos 10/4/11 Photos 73- R. Abut The Sand Silt/Scour 72- L. Abut Summary of Results Summary of Results Summary of Results Summary of Results Bridge flow evaluated Plow depth at left abutment (yal.T), in feet Plow depth at right abutment (yaRT), in feet Plow depth (yas), in feet Pier scour depth (yps), in feet Lateral instability of channel A Marginal Don't know NA Don't know NA NA Don't know NA NA Don't know NA NA NA Don't know NA NA Don't know NA NA NA Don't know NA NA NA Don't know NA Don't know NA NA Don't know	Chance of overtopping		X		X					
Riprap at abutments? Evidence of past Scour? Debris Potential? Pigh Med Don't know NA Spur Dike Other Yes No Don't know NA Spur Dike Yes No Don't know NA Spur Dike Yes No Don't know NA Spur Dike Yes No Don't know NA Other Yes No Don't know NA Size range, in mm Other Size range, in mm Other The Total The	Chance of Pressure flow		×				X			
Riprap at abutments? Evidence of past Scour? Debris Potential? Does scour countermeasure(s) appear to have been designed? Riprap A Yes No Don't know NA Spur Dike Other Yes No Don't know NA Bed Material Classification Based on Median Particle Size (D ₅₀) Material Silt/Clay Sand Gravel Cobbles Boulders Size range, in mm <0.062 0.062-2.00 2.00-64 64-250 >250 Comments, Diagrams & orientation of digital photos IOM/II Photos To ITA To ITA To ITA Summary of Results Piers Sour depth (yes), in feet Piers sour depth (yes), in feet Loft Boulders Piers Summary of Results			X			X				
Debris Potential?	Lateral instability of channel		X			X				
Does scour countermeasure(s) appear to have been designed? Riprap	Evidence of past Scour? Yes No Don't know Prosion us of Dilege Street									
No	Debtis Fotential:	ivied/	Low							
No	Does scour countermeasure(s) annear to have been designed?									
Spur Dike		_	Jo Do	v't know	NIA					
No	Same Dilea	/	10Doi	1 t Kilow	IN/A					
Bed Material Classification Based on Median Particle Size (D ₅₀) Material Silt/Clay Sand Gravel Cobbles Boulders Size range, in mm <0.062 0.062-2.00 2.00-64 64-250 >250	Spur DikeYesNoDon't knowNA									
Material Silt/Clay Sand Gravel Cobbles Boulders	OtherYesNoDon't know XNA									
Material Silt/Clay Sand Gravel Cobbles Boulders	Ded Materia	l Classificati	Dd M	dian David	- C' (D					
Size range, in mm <0.062)				
Comments, Diagrams & orientation of digital photos 10/4/						are excessed				
10/4/11	Size range, in mm < 0.062 0.062-2	.00 2.00-64			64-250	>250				
10/4/11	Comments Diagrams & orientation of digital photos									
174 2067-10 13- K, 461+	12 (1) (1)									
15/10		73- R	Ab. +							
Summary of Results Q100 Q500 Bridge flow evaluated 7200 Flow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet 7, 8 Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 15, 2 20,6 Right abutment scour depth (yas), in feet	2 737 2067-10	.0	er OLI							
Summary of Results Q100 Q500 Bridge flow evaluated 7200 Flow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet 7, 8 Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 15, 2 20,6 Right abutment scour depth (yas), in feet	5 151D 64- 45									
Summary of Results Q100 Q500 Bridge flow evaluated 7200 Flow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet 7, 8 Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 7, 8 Q100 Q500 74/94 9, 1	35 3130 GG- USKB									
Summary of Results Q100 Q500 Bridge flow evaluated 7200 Flow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet 7, 8 Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 7, 8 Q100 Q500 74/94 9, 1	60 4880 76- W3 215									
Summary of Results Q100 Q500 Bridge flow evaluated 7200 Flow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet 7, 8 Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 7, 8 Q100 Q500 74/94 9, 1	100 7200 71- US Face									
Bridge flow evaluated Plow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet Q100 Q500 Pi//94 Pi./ Pi./ Pier scour depth (ycs), in feet D2./ Pier scour depth (yps), in feet	600 15200 72-L. Abut									
Bridge flow evaluated Flow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 7, 8 1/, 8 21, 3 6, 2 20, 6 Right abutment scour depth (yas), in feet 7, 9 21, 3 20, 6 22, 8	Summary of Results									
Flow depth at left abutment (yaLT), in feet Flow depth at right abutment (yaRT), in feet Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 11.6 9.1 9.1 9.1 9.1 9.1 12.6		Q100								
Flow depth at right abutment (yaRT), in feet 7, 8 //, 8 Contraction scour depth (ycs), in feet 15, 9 21, 3 Pier scour depth (yps), in feet 6, 1 6, 2 Left abutment scour depth (yas), in feet 15, 2 20, 6 Right abutment scour depth (yas), in feet 14, 6 22, 8										
Contraction scour depth (ycs), in feet Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 15. 9 21. 3 6. 2 20.6 Right abutment scour depth (yas), in feet										
Pier scour depth (yps), in feet Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 15.2 20.6 22.6		7.8								
Left abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet 15.2 20.6 22.8		15.9			-					
Right abutment scour depth (yas), in feet 19.6		6/1								
					c					