	SCOUR ANALYSIS AND REPORTING FORM							
	Bridge Structure No. 47376444 Date 8/11/11 Initials Character Region (ABCD)							
	Site Location 5 mi NE of Hereford on New Underwood Rd							
	Q ₁₀₀ = 36/00 by: drainage area ratio flood freq. anal. regional regression eq.							
	Bridge discharge $(Q_2) = 36100$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)							
	(should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)							
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method							
	Bridge Width = 390 ft. Flow angle at bridge = 10 ° Abut. Skew = 0 ° Effective Skew = 10 °							
nB"	The state of the s							
eg.0								
, " R , i	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{334.33}{q_2 = Q_2/W_2} = \frac{113.8 \text{ ft}^2/\text{s}}{113.8 \text{ ft}^2/\text{s}}$							
Ano "P.								
43								
PGRM: "Re	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \frac{14.5}{1}$ ft							
GRA	*NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$							
<u>q</u> !	If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,							
	Water Surface Elev. = ft							
	Low Steel Elev. = 224 ft 21()							
	n (Channel) = 0.033							
	n(LOB) = 0.037 350							
	n(ROB) = 10.037							
	Pier Width = 3.0 ft Pier Length = 3.0 ft							
	# Piers for 100 yr = 10 ft							
n. S. Ser	Pier Length = 3.0 ft # Piers for 100 yr = 4 ft Over 5 > just use larget or mak egivalent?							
V. A	Width of main channel at approach scatter W = 4(V) 6							
31200	Width of main channel at approach section $W_1 = 40$ ft							
act	Width of left overbank flow at approach, $W_{lob} = \frac{390}{100}$ ft Average left overbank flow depth, $y_{lob} = \frac{1}{100}$							
PGRM: Contract								
2.	Width of right overbank flow at approach, $W_{rob} = 0.0$ ft Average right overbank flow depth, $y_{rob} = 0.0$ ft							
GR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)							
Д.	7 11							
	$x = 3.46$ From Figure 9 W_2 (effective) = 32.4 ft $y_{cs} = 4.3$ ft							
3	Clear Water Contraction Scour (use if bed material is larger than small cobbles)							
NE.	Estimated bed material $D_{50} =$ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) =$ ft/s							
WCS	Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$							
7: C	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.							
PGRM; CWCSNEW								
ď	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = $ ft If $D_{50} >= D_{c50}$, $\chi = 0.0$							
	Otherwise, $\chi = 0.122 y_1 [\dot{q}_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 =ft$							
h								
PGRM: Pier	PIER SCOUR CALCULATIONS							
JRM	Froude # at bridge = 0.43 PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), K2 = 1.0 Using pier width a on Figure 11, $\xi = 10.7$ Pier scour $y_{ps} = 7.4$ ft							
Ь	Froude # at bridge = 0.95 Using pier width a on Figure 11, $\xi = 10.7$ Pier scour $y_{ps} = 1.7$ ft							
	ABUTMENT SCOUR CALCULATIONS							
nent	Average flow depth blocked by: left abutment, $y_{aLT} = 100$ ft right abutment, $y_{aRT} = 000$ ft							
\butı	Shape coefficient K.= 1.00 for vertical-wall 0.82 for vertical-wall with wingwalls 0.55 for onit through							
Ä.	Shape coefficient K_1 = 1.00 for vertical-wall, Using values for y_{aLT} and y_{aRT} on figure 12, ψ_{LT} = $\frac{9.82}{4.3}$ for vertical-wall with wingwalls, and ψ_{RT} = $\frac{0.55}{4.3}$ for spill-through							
PGRM: Abutment	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = \frac{1}{2}$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = \frac{1}{2}$ ft							
7								
1.6	262 24 /							

	SCOUR ANALYSIS AND REPORTING FORM Bridge Structure No. 47378444 Date $3/1//11$ Initials 24 Region (ABCD) Site Location $5m'$ NF of Hereford on New Underwood Rd 240000 by: drainage area ratio flood freq. anal regional regression eq Bridge discharge (22) = 46000 (should be 2500 unless there is a relief bridge, road overflow, or bridge overtopping)							
PGRM: "RegionA", "RegionB", "RegionC", or "RegionD"	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method Bridge Width = 390 ft. Flow angle at bridge = 40 ° Abut. Skew = 40 ° Effective Skew = 40 ° Width (W ₂) iteration = 40 Avg. flow depth at bridge, y ₂ iteration = 40 Skew = 40 ° Corrected channel width at bridge Section = W ₂ times cos of flow angle = 40 ° Skew = 40 ° Corrected channel width at bridge Section = W ₂ times cos of flow angle = 40 ° Skew = 40 ° Effective Skew = 40 ° Effective Skew = 40 ° Skew =							
	Water Surface Elev. = $\frac{1}{200}$ ft Low Steel Elev. = $\frac{1}{200}$ ft n (Channel) = $\frac{1}{200}$ $\frac{1}{200}$ ft n (ROB) = $\frac{1}{200}$ $\frac{1}{200}$ ft Pier Width = $\frac{1}{200}$ ft ft $\frac{1}{200}$ ft $\frac{1}{$							
	CONTRACTION SCOUR							
PGRM: Co	Width of main channel at approach section $W_1 = \frac{400}{500}$ ft Width of left overbank flow at approach, $W_{lob} = \frac{390}{500}$ ft Width of right overbank flow at approach, $W_{rob} = \frac{390}{500}$ ft Average left overbank flow depth, $y_{lob} = \frac{900}{5000}$ ft Average right overbank flow depth, $y_{rob} = \frac{900}{5000}$ ft							
	<u>Live Bed Contraction Scour</u> (use if bed material is small cobbles or finer) $x = 9.74 \text{From Figure 9} W_2 \text{ (effective)} = 372, l \text{ft} y_{es} = 10.7 \text{ft}$							
PGRM: CWCSNEW								
PGRM: Pie	PIER SCOUR CALCULATIONS Correction factor for flow angle of attack (from Table 1), $K2 = \frac{1}{2}$ Using pier width a on Figure 11, $\xi = \frac{10.7}{2}$ Pier scour $y_{ps} = \frac{9.7}{2}$ ft							
PGRM: Abutment	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 90$ ft right abutment, $y_{aRT} = 7.8$ ft Shape coefficient $K_1 = 1.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 20.6$ and $\psi_{RT} = 19.6$ Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 20.6$ ft Right abutment scour $y_{as} = \psi_{BT}(K_1/0.55) = 19.6$ ft							
	7.8							

- N 1 1 1 - Rd local CI	ct			011	11						
Route New UnderwoodStream West E/n			Da				-01				
	Bridge Structure No. 47373444 Location 5 m' NE of Hereford on New Under nood Rd										
GPS coordinates: 149 23 54. /4	GPS coordinates: 144 23 54.7" taken from: USL abutment & centerline of \(\hat{1}\) MRM end										
W102 48 31.2		oordinates: W	GS84_X	NAD27							
Drainage area = 392 sq. mi.											
The average bottom of the main channel was 24		-									
Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.											
MISCELLANEOUS CONSIDERATIONS PK Calcid 8/											
	DERATION	- 21				1706					
Flows	$Q_{100} = 36/66$			Q500 = 94000			PK2				
Estimated flow passing through bridge	34100			9 4000			5	2870			
Estimated road overflow & overtopping Consideration	Ver Ne Percible			Vac	10	6200					
Chance of overtopping	Yes	No	Possibly	Yes	No	Possibly	25	1410			
Chance of Pressure flow		\Q		Odla .		1	50	238			
Armored appearance to channel		2		100	X		100	3810			
Lateral instability of channel		X			X	~	500	9400			
			- American		-						
Riprap at abutments? Yes	No	Marginal									
Evidence of past Scour? Yes	No	Don't knov	7								
Debris Potential? High											
Does scour countermeasure(s) appear to have been	designed?										
Riprap		No Doi	n't know	× _{NA}							
Spur Dike Y	es N		n't know	- 120							
			-								
OtherYesNoNA											
Bed Material	Classification	on Based on Me	edian Particle	e Size (D ₁₀)	r.						
Material Silt/Clay Sand		Gravel		Cobbles		Boulders					
Size range, in mm <0.062 0.062-2.		2.00-64		550000000000000000000000000000000000000							
Size range, in min <0.002 0.002-2.	00	2.00-04		04-230		>250					
Comments, Diagrams & orientation of digital phot	ns				14	. 7					
Comments, Diagrams & orientation of digital photo 2 5/205 of Piers & larger used Photos 1862 ID 83-US 84-US RB FSFW dike 90-US Face 85-US LB 86-LB Spw Dike 91-US Face	In al	Scour	- Shu	all dia	n = 1.	()					
Photo: 144-R-Abot	00 001			· · · · ·	14		Q				
1442-ID 14 1 Ab. 1			4	(71)	10mg	15	Till				
43-115 DI-L. 1 Var	13)	700 b	1	60		1	>	300			
BY-USRB BOWNER 90-US Face	11	1				A	1	7-7			
85-45 LB DIK 91-45 Eggs			TY /			1		4/			
36 - LB SAM DITE 11- 00 Face			0				- th	20			
DI- DD John Wife)			Co.		1				
Summary of Results							1				
D. i.i. o	7	Q100		40	Q500						
Bridge flow evaluated	38100			98000			1				
Flow depth at left abutment (yaLT), in feet	1.0			1.0			-				
Flow depth at right abutment (yaRT), in feet Contraction scour depth (ycs), in feet	0.0				-						
Pier scour depth (yps), in feet		9,4			9		1				
Left abutment scour depth (yas), in feet		4.3			20,6		1				
Right abutment scour depth (yas), in feet		0.0			19.6						
1Flow angle of attack		10			10						