	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 50201173 Date 6/19/12 Initials 100 Region (ABCD)
	Site Location on N Minnesota Are 0.3 mi 5 of 261 St
	Site Location on N Minnesota Are 0.3 mi 5 of 261 St
	Bridge discharge $(Q_2) = 5176$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	300 COAC CARREST CARREST COAC CARREST CARREST COAC CARREST CARREST COAC CARREST CARREST COAC CARREST COAC CARREST CARREST CARREST CARREST CARREST CARREST CARREST CARREST CARR
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
3,	Bridge Width = $\frac{196}{6}$ ft. Flow angle at bridge = $\frac{25}{6}$ Abut. Skew = $\frac{35}{6}$ ° Effective Skew = $\frac{10}{6}$ °
PGRM: "RegionA", "RegionB", 'RegionC", or "RegionD"	Width (W_2) iteration =
	Avg. flow depth at bridge, y_2 iteration =
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{296}{200}$ ft* $q_2 = Q_2/W_2 = \frac{290}{200}$ ft ² /s
	Bridge Vel, $V_2 = 12.1$ ft/s Final $y_2 = q_2/V_2 = 24$ ft $293.97 = 3$ ft
	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = \underline{27}$ ft
RM	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$
7	If y 1 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,
	Water Surface Elev. = $0.7.8$ ft 31.4
	Low Steel Elev. = 24.0 ft_3u
	$n \text{ (Channel)} = \underbrace{0.033}_{\text{CMOD}} = \underbrace{0.033}_{$
	Pier Width = 97 ft ray and ed lem tanknery
	n (ROB) = 6.030 Pier Width = 92 ft -rounded Pier Length = 46 ft concat # Piers for 100 yr = 3 ft face.
	# Piers for $100 \text{ yr} = 3$ ft $face$
PGRM: Contract	CONTRACTION SCOUR
	Width of main channel at approach section $W_1 = \frac{29\%}{100}$ ft
	Width of left overbank flow at approach, $W_{lob} = \frac{1.47}{100}$ ft Average left overbank flow depth, $y_{lob} = \frac{1.47}{100}$ ft
	Width of right overbank flow at approach, $W_{rob} = $ ft Average right overbank flow depth, $y_{rob} = $ ft
GRM	V: D 10
	<u>Live Bed Contraction Scour</u> (use if bed material is small cobbles or finer) $x = 1.0^{11} \text{ From Figure 9} \qquad \text{We (effective)} = 2.87.5 \text{ ft} \qquad \text{v} = 1.5 \text{ ft}$
	$x = 1.09$ From Figure 9 W_2 (effective) = 287.5 ft $y_{cs} = 1.5$ ft
SNE	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s
	Critical approach velocity, $V_c = 11.17v_s^{1/6}D_{co}^{1/3} = ft/s$
M.	Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$ If $V_1 < V_c$ and $D_{50} > = 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
PGR	$D_{c50} = 0.0006(q_2/v_1^{7/6})^3 = $ ft If $D_{50} >= D_{-50}$, $\gamma = 0.0$
	$\begin{split} D_{c50} &= 0.0006 (q_2/y_1^{7/6})^3 = \underline{\qquad} \text{ft} \\ \text{Otherwise, } \chi &= 0.122 y_1 [\dot{q}_2/(D_{50}^{1/3} y_1^{7/6})]^{6/7} - y_1 = \underline{\qquad} \\ \text{From Figure 10, } y_{cs} &= \underline{\qquad} \text{ft} \end{split}$
	110m11gate 10, y _{cs}
Pier	PIER SCOUR CALCULATIONS
PGRM: Pier	L/a ratio = 23 Correction factor for flow angle of attack (from Table 1), $K2 = 2$
PGF	L/a ratio = 23 Correction factor for flow angle of attack (from Table 1), $K2 = 2$ Froude # at bridge = 6.49 Using pier width a on Figure 11, $\xi = 8$ Pier scour $y_{ps} = 49.1$ ft
ient	ABUTMENT SCOUR CALCULATIONS
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 0$ ft Shape coefficient $K_1 = 0$ 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 0$ and $\psi_{RT} = 0$
Z Z	Using values for v and v and properties of the spill-through
GR	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 0$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 5.0$ ft
-	$\frac{1}{10000000000000000000000000000000000$

L35'Eh L987L'9b

d

A Service of the last

10 100

Route N Minnesofa the Stream Big Siohx 1	Diversion	MRM	Da	nte //19/12	In	itials Aat			
Bridge Structure No. 50201173 Location N. Munecota Ane 03 mis & £ 2618+									
GPS coordinates: N 43° 35 49.20 taken from: USL abutment x centerline of î MRM end									
GPS coordinates: N 43 6 35 49.20 taken from: USL abutment x centerline of 1 MRM end Datum of coordinates: WGS84 Y NAD27									
Drainage area = 7 sq. mi.									
The average bottom of the main channel was 31.4 ft below top of guardrail at a point 92 ft from left abutment.									
Method used to determine flood flows: Freq. Anal. drainage area ratio regional regression equations.									
MISCELLANEOUS CONSIDERATIONS 615									
Flows	Q ₁₀₀ =	65120	DEKATIO	Q)60 =	50000	2			
Estimated flow passing through bridge	85/20			5000B			2 196		
Estimated road overflow & overtopping	0			0			10 75,5		
Consideration	Yes	No	Possibly	Yes	No	Possibly	25 114		
Chance of overtopping			7	100	λ	1 000101)	Se 199		
Chance of Pressure flow	X				×		100 176		
Armored appearance to channel		Х			X		7 17 10 10 10 10 10 10 10 10 10 10 10 10 10		
Lateral instability of channel		×			X	=	Soc 252		
<u> </u>		All Control Control	N. a.c.lV	CA 1.		•			
Riprap at abutments? X Yes No Marginal Primerity Obstract Evidence of past Scour? Yes No Don't know 32.66 2 460 5 1130									
Evidence of past Scour? Yes X No Don't know									
Debris Potential? High Med Low 13° 173° 173°									
2 C 7 C/G									
Does scour countermeasure(s) appear to have been designed? Riprap Yes No Don't know NA rose quartz Sour Dike Yes X No Don't know NA to the banks of abultion of Sour Other Yes No Don't know NA to the banks of abultion of Sour Other NA rose quartz NA rose quartz Sour 3455 100 4320 Sour Dike NA to the banks of abultion of Sour Other NA rose and the banks of coally									
Riprap X Y	es N	o Do	n't know	NA "	se qual	wa .	10e 432C		
Spur Dike Yes × No Don't know NA both teaks abitants See 6580									
Other X Y	es N N	o Do	n't know	NA NA	of the frequency	1 / 1.	0 1		
Mark the state of the									
Bed Material	Classificatio	n Based on M	edian Partic	le Size (D ₅₀)	the he	ishot			
Material Silt/Clay Sand_		Gravel		Cobbles		Boulders			
	.00 2.00-64			64.250					
3,		2.00-04				Note	el Used lew I as estimate		
Comments, Diagrams & orientation of digital pho	tos .					CL	1 11.1.		
1) left aboutment Steel as									
Comments, Diagrams & orientation of digital photos 1). Left OB 1). Left of the animal stream 2). main channel sol, right abutnett as stream 10). main channel sol, right abutnett as stream 10). main channel									
2). main channel 8-9), right abutners 31 right off 10), main channel 4), pro15 5), right abutners 50,000 of s a similar to 6									
32 right of 10). Main comments of the flower of									
4), pro15 Colonlated @ Organ									
9), pro15 5). 115ht abutment 50,000 of 5 as									
61-left aburned similar to a									
Cummany of Dagulta						5:0	ut viver		
Summary of Results	Q100			Q500					
Bridge flow evaluated	85120			50000					
Flow depth at left abutment (yaLT), in feet	1,9			C					
Flow depth at right abutment (yaRT), in feet	0			Č					
Contraction scour depth (ycs), in feet	1.5			616					
Pier scour depth (yps), in feet	19.1			13.9					
Left abutment scour depth (yas), in feet	0			6					
Right abutment scour depth (yas), in feet	5-9			0					
1Flow angle of attack	10			10					