	SCOUR ANALYSIS AND REPORTING FORM
	Bridge Structure No. 50202018 Date $6/26/12$ Initials Region (ABCD) Site Location W 3^{-2} St. N Dell Rapids just W of $4/26/15$ $4/26/12$ by: drainage area ratio flood freq. anal. regional regression eq. $4/26/15$
	Site Location W 3th St in Dell Rapids just wof HWY 115
	$Q_{100} = Q_{10} = Q_{10} = Q_{10}$ by: drainage area ratio flood freq. anal. regional regression eq. X
	Bridge discharge $(Q_2) = G77$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method
PGRM: "RegionA", "RegionB", RegionC", or "RegionD"	Bridge Width = $\frac{47}{10}$ ft. Flow angle at bridge = $\frac{40}{10}$ Abut. Skew = $\frac{40}{10}$ ° Effective Skew = $\frac{5}{10}$ °
	Width (W_2) iteration =
	Avg. now depth at oridge, y_2 iteration =
	Corrected channel width at bridge Section = W_2 times cos of flow angle = $\frac{96.82}{1}$ ft* $q_2 = Q_2/W_2 = \frac{18.6}{1}$ ft ² /s
	Bridge Vel, $V_2 = 3$, 1 ft/s Final $y_2 = q_2/V_2 = 6$, 1 ft $\Delta h = 0$. Z ft
PGRM: 'Region	* NOTE: repeat above calculations until y_2 changes by less than 0.2 Effective pier width = $L \sin(q) + a \cos(q)$ If y_2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGD,
	If y is above LS, then account for Road Overflow using FROM. RDOVREGA, RDOVREGE, of RDOVREGE,
	Water Surface Elev. = 6 -6.2 ft
	Low Steel Elev. = 7.4 ft
	n (Channel) = 0.040 -smooth & material n (LOB) = 0.016 csphatt rock ent
	$n(ROB) = \frac{6.020}{6.020}$
	n (ROB) =
	Pier Length = ft
	# Piers for 100 yr = \bigcirc ft
	CONTRACTION SCOUR
ontract	Width of main channel at approach section $W_1 = 6$ ft
	Width of left overbank flow at approach, $W_{lob} = $ ft Average left overbank flow depth, $y_{lob} = $ ft
Σ.	Width of right overbank flow at approach, $W_{rob} = \underline{C}$ ft Average right overbank flow depth, $y_{rob} = \underline{C}$ ft
PGR	Live Bed Contraction Scour (use if bed material is small cobbles or finer)
	$x = 1.91$ From Figure 9 W_2 (effective) = $\frac{9}{16.8}$ ft $y_{cs} = \frac{2.4}{1.91}$ ft $\frac{1}{1.9}$ ft $\frac{1}{1.9}$
EW	Clear Water Contraction Scour (use if bed material is larger than small cobbles)
CS	Estimated bed material $D_{50} = $ ft Average approach velocity, $V_1 = Q_{100}/(y_1W_1) = $ ft/s Critical approach velocity, $V_c = 11.17y_1^{1/6}D_{50}^{1/3} = $ ft/s
5	Critical approach velocity, $Vc = 11.179$, $D_{50}^{m} = 17.5$
GRM: CWCSNEW	If $V_1 < V_c$ and $D_{50} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.
Ь	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = ft$ $Otherwise, \chi = 0.122y_1[\dot{q}_2/(D_{50}^{1/3}y_1^{7/6})]^{6/7} - y_1 = ft$ $If D_{50} >= D_{c50}, \chi = 0.0$ $From Figure 10, y_{cs} = ft$
	Otherwise, $\chi = 0.122 y_1 [q_2/(D_{50} y_1^{-1})]^{-1} - y_1 =$
ier	PIER SCOUR CALCULATIONS
GRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 =
SCR	Froude # at bridge =ft Using pier width a on Figure 11, ξ =ft
ent	ABUTMENT SCOUR CALCULATIONS Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 0$ ft Shape coefficient $K_1 = 0.00$ for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through Lising values for y_{aT} and $y_{aT} = 0.00$ for vertical wall, 0.55 for spill-through
utmo	Average flow depth blocked by: left abutment, $y_{aLT} = \frac{1}{2}$ ft right abutment, $y_{aRT} = \frac{1}{2}$ ft
A: A	Using values for $y = and y = on figure 12 = 0.02 for vertical-wall with wingwalls, 0.00 for spill-through$
GKM: Abutment	Average flow depth blocked by: left abutment, $y_{aLT} = 0$ ft right abutment, $y_{aRT} = 0$ ft Shape coefficient $K_1 = 0.00$ for vertical-wall. Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = 0.82$ for vertical-wall with wingwalls, 0.55 for spill-through Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 0.82$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 0.82$ ft
1.	The desired seems, jas will appear to the seems jas will be seems

25P11.3P

1369 17 16h ogh

Route 3 d St Stream		MRM	Dat	e 6/7/	//> In:	iale Da	42				
Route O OI Stream	. 1/	2r2 ()	Dat U	0 926	in in	lais /CA					
Bridge Structure No. 6020 2018 Lo	cation W	5.0 St 1	n Dell	Kapids	just h	of HW	2115				
GPS coordinates: $\frac{10 + 20 + 49'}{40'} \frac{12 \cdot 1'}{9 \cdot 6'}$ taken from: USL abutment centerline of $\frac{10 \cdot 12}{12 \cdot 1'}$ taken from: USL abutment NAD27											
Drainage area = 10.12 sq. mi.	Datum of co	ordinates: W	GS84_×_	NAD2/_				017			
The average bottom of the main channel was 13ft below top of guardrail at a point35ft from left abutment.											
Method used to determine flood flows:Freq. Analdrainage area ratio regional regression equations.											
MISCELLANEOUS CONSIDERATIONS 8/25											
Flows	Q ₁₀₀ = -6	10 872		Q500 = Q75 1340			100 A	1226			
Estimated flow passing through bridge		37		1287			5	567			
Estimated road overflow & overtopping		. 0		63			10	872			
Consideration	Yes	No	Possibly	Yes	No	Possibly	25	1340			
Chance of overtopping		X		X			50	1740			
Chance of Pressure flow		×					100	2170			
Armored appearance to channel		×	X?		X	大了	500	3290			
Lateral instability of channel		×			×	2		1			
and and observed and rose quarte or right abdust											
Riprap at abutments? Yes No X Marginal Mostly gravel sixed rose quarte on right abundt Evidence of past Scour? Yes No X Don't know - doesn't appear anything can be easily evided Debris Potential? High Med X Low											
Evidence of past Scour? Yes No X Don't know - doesn't appear anything can be easily evided											
Debris Potential?HighMedLow											
Does scour countermeasure(s) appear to have been designed? Riprap Yes X No Don't know NA Spur Dike Yes X No Don't know NA Other Bed Material Classification Based on Median Particle Size (D ₅₀) Material Silt/Clay Sand Gravel Cobbles Boulders Size range, in mm < 0.062 0.062-2.00 2.00-64 64-250 >250 See picture? - God is access tasically are sinht slat of case quarty (bedrock) Comments, Diagrams & orientation of digital photos 1) right of 7-81/eft abstract 3) left on 10) main chantel 4) right abstract 5-6) right abstract Summary of Results											
Summary of Results							1	Hat sheet			
2	QF00 Q10			Q500 Q25				f rose quarterial			
Bridge flow evaluated	872			1287				her material			
Flow depth at left abutment (yaLT), in feet	0							rosion wow			
Flow depth at right abutment (yaRT), in feet	O							kely be less			
Contraction scour depth (ycs), in feet	2,4				2.9						
Pier scour depth (yps), in feet		N/A			NA						
Left abutment scour depth (yas), in feet		U		0				abutment			
Right abutment scour depth (yas), in feet		0			0	walls	are cloud				
1Flow angle of attack	5				5		11	Stopeo			
Right abutment scour depth (yas), in feet Right abutment scour depth (yas), in feet O IFlow angle of attack See Comments/Diagram for justification where required											

3. 2