SCOUR	ANALYSIS.	AND REPORTING F	7ORN

• - 6---

	Bridge Structure No. 5/177030 Date 10-11-12 Initials 77 Region (ABOD)									
	Site Location 3.7 m; Wet Ward on 223 st									
	Q ₁₀₀ = 3890 by: drainage area ratio flood freq. anal. regional regression eq. x									
	Bridge discharge $(Q_2) = 3890$ (should be Q_{100} unless there is a relief bridge, road overflow, or bridge overtopping)									
25 _N										
	Analytical Procedure for Estimating Hydraulic Variables Needed to Apply Method									
ä,	Bridge Width = 118 ft. Flow angle at bridge = 10 ° Abut. Skew = 0 ° Effective Skew = 10 °									
2019:	Width (W ₂) iteration = 118 119 Avg. flow depth at bridge, y ₂ iteration = $8, 2$ $8, 2$									
ă, i	Corrected channel width at bridge Section = W_2 times cos of flow angle = 14.24 ft* $q_2 = Q_2/W_2 = 34.4$ ft²/s									
"Au										
egi g	Bridge Vel, $V_2 = \frac{1}{1}$ ft/s Final $y_2 = q_2/V_2 = \frac{2 \cdot 2}{1}$ ft $\Delta h = \frac{0 \cdot 3}{1}$ ft									
₩ (;;	Average main channel depth at approach section, $y_1 = \Delta h + y_2 = 2 \cdot b$									
GRI	* NOTE: repeat above calculations until y 2 changes by less than 0.2 Effective pier width = L sin(q) + a cos(q) If y 2 is above LS, then account for Road Overflow using PRGM: RDOVREGA, RDOVREGB, RDOVREGC, or RDOVREGD,									
2. :	marked accounting the section is the section of the section of the section is the section of the section of the section is the section of the section of the section is the section of the									
	Water Surface Elev. = 100 ft old road bed									
	Low Steel Elev. = $\frac{14.4}{100}$ ft $\frac{18}{1000}$ Coac $\frac{18}{1000}$ \frac									
	$n (Channel) = \underbrace{0.035}_{\text{kde}}$									
	$n(LOB) = \frac{030}{000}$ $n(ROB) = \frac{030}{0000}$									
	Pier Length =) (9 ft									
	# Piers for 100 yr = $\frac{4}{100}$ ft									
	CONTRACTION SCOUR									
	Width of main channel at approach section $W_1 = 1 + 8$ ft									
ıtracı	Width of left overbank flow at approach, $W_{lob} = 60$ ft Average left overbank flow depth, $y_{lob} = 3.3$ ft									
PGRM: Contract	Width of right overbank flow at approach, $W_{rob} = 10$ ft Average right overbank flow depth, $y_{rob} = 20$ ft									
RM										
2	Live Bed Contraction Scour (use if bed material is small cobbles or finer)									
	$x = 2$ From Figure 9 W_2 (effective) = 107.5 ft $y_{cs} = 2.5$ ft									
≥	Clear Water Contraction Scour (use if bed material is larger than small cobbles)									
NEV	Estimated bed material $D_{50} = 1$ ft/s									
KC.	Critical approach velocity, $Vc = 11.17y_1^{1/6}D_{50}^{1/3} = ft/s$									
ن ن	If $V_1 < V_c$ and $D_{s0} >= 0.2$ ft, use clear water equation below, otherwise use live bed scour equation above.									
PGRM: CWCSNE	$D = 0.0006 (a / v.)^{7/6} (a) = 0.0006 (a / v.)^{7/6} (a) = 0.0006 (a) (a / v.)^{7/6} (a) (a) (a / v.)^{7/6} (a) ($									
ď.	$D_{c50} = 0.0006(q_2/y_1^{7/6})^3 = $									
	Otherwise, $\chi = 0.122 y_1 [q_2/(D_{50}^{1/3} y_1^{1/6})]^{6/7} - y_1 =ft$									
<u>.</u>	PIER SCOUR CALCULATIONS									
<u>₹</u>	L/a ratio = Correction factor for flow angle of attack (from Table 1), K2 =									
PGRM: Pier	L/a ratio = Correction factor for flow angle of attack (from Table 1), $K2 =$ Froude # at bridge = $$ Our Correction factor for flow angle of attack (from Table 1), $K2 =$ Pier scour $y_{ps} =$ ft									
	<u></u>									
Ę	ABUTMENT SCOUR CALCULATIONS									
PGRM: Abutment	Average flow depth blocked by: left abutment, $y_{al.T} = 3.3$ ft right abutment, $y_{aRT} = 3.3$ ft									
. ∀	Shape coefficient K ₁ = 1.00 for vertical-wall, 0.82 for vertical-wall with wingwalls, 0.55 for spill-through									
Ř.	Using values for y_{aLT} and y_{aRT} on figure 12, $\psi_{LT} = \frac{12}{12}$ and $\psi_{RT} = \frac{3}{2}$									
<u> </u>	Left abutment scour, $y_{as} = \psi_{LT}(K_1/0.55) = 12$ ft Right abutment scour $y_{as} = \psi_{RT}(K_1/0.55) = 3.9$ ft									

SCOUR ANALYSIS AND REPORTING FORM

Route 223 St Stream Spring C	rek	_MRM_	Da	te	Ini	tials					
Bridge Structure No. 5117703 b Location 3.7 m; W of Ward on 223rd St											
GPS coordinates. 440 9 7941	taken from:	USL abutmen	1	centerline c	fî MRM	end					
	Datum of co	ordinates: W									
Drainage area = $\frac{36.09}{36.09}$ sq. mi.	Datum Of Co	ordinates. W	U304 <u> </u>	NADZI_							
	7 Abalas		سنمسم ممانم	. 29	A C 1	Α -1					
The average bottom of the main channel was 18.3 ft below top of guardrail at a point 39 ft from left abutment.											
Method used to determine flood flows:Freq. Analdrainage area ratioregional regression equations.											
MISCELLANEOUS CONSIDERATIONS											
Flows	$Q_{100} = 3890$			Q ₅₀₀ =							
Estimated flow passing through bridge	3890										
Estimated road overflow & overtopping		D		· · ·							
Consideration	Yes	No	Possibly	Yes	No	Possibly					
Chance of overtopping					V						
Chance of Pressure flow											
Armored appearance to channel					V						
Lateral instability of channel		~									
	•	-				-					
Riprap at abutments? Yes	∠ No	Marginal									
Evidence of past Scour? X Yes	No	Don't know	abut.	wntrac	tion, f	pier					
	Med →		,		, ,						
Does scour countermeasure(s) appear to have been designed?											
	-	loDoi	ı't know	I/NA							
		loDoi									
OtherY	esn	loDor	i't know	NA							
Pad Matarial	Classificatio	n Dagad an Ma	dian Dartial	a Siza (D.)							
•		n Based on Mo				D 11					
					Cobbles Boulders						
Size range, in mm < 0.062 0.062-2.	00	2.00-64		64-250		>250					
	4	tere is a	trashli	ره مي در	ass on	Deso has rece	ence t				
Comments, Diagrams & orientation of digital phot	os	icates a f	low he	tween C	on and	Den has rece	int ly (t				
Str. no.	501	ing or sum	040) 200	المدار المرامي	-100 -101= <1.	- 300 L					
approach from bridge	-1	3 - 30.	יייי איייייייייייייייייייייייייייייייי	witte ut	17112 31	10.					
•	105	t abut f	لزلم محدثا	ch							
LDB and old roadbed left abut, from ditch											
ROB and old 1000 ord It. abut, from underboidge											
					a. i1 a	. 1	1 4				
Bridge from approach		11	111	ma. ha	guoz 10.10R	flow, toward	prigg c				
Summary of Results		ar le	aabea	may me	, by con	flow toward of	sering				
		Q100			Q500		7				
Bridge flow evaluated	389 D			······································							
Flow depth at left abutment (yaLT), in feet	3.3										
Flow depth at right abutment (yaRT), in feet	0.9										
Contraction scour depth (ycs), in feet	2.5										
Pier scour depth (yps), in feet				5.8							
Left abutment scour depth (yas), in feet		12									
Right abutment scour depth (yas), in feet		3.9 7.2									
1Flow angle of attack	10°										